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Objective: To evaluate the dominant role in rat pulmonary artery (PA) remodeling induced by chronic 
smoking exposure (CSE). 
Methods: Thirty-five male Sprague-Dawley (SD) rats were exposed to 36 cigarettes per day, 6 days per 
week, for 1, 3, or 5 months. Another 35 SD rats were sham-exposed during the same period. Hemodynamic 
measurement, evaluation of the right ventricular hypertrophy index (RVHI) plus right ventricle-to-weight 
ratio, and hematoxylin eosin staining was performed. Wall thickness, artery radius, luminal area, and total 
area were measured morphometrically. Western blotting assessed expression of PPAR-γ BMP4, BMPR2, and 
TRPC1/4/6 in the artery and lung. Store-operated calcium entry (SOCE) and [Ca2+]i were measured using 
Fura-2 as dye.
Results: Mean right ventricular pressure increased after 3 months of smoking exposure and continued to 
increase through 5 months. Right ventricular systolic pressure (RVSP) increased after 3 months of exposure 
and then stabilized. RVHI increased after 5 months; right ventricle-to-weight ratio was elevated after 3 months 
and further increased after 5 months. Wall thickness-to-radius ratio does-dependently increased after 3 months 
through 5 months, in parallel with the decreased luminal area/total area ratio after 5 months. Other changes 
included the development of inflammatory responses, enlargement of the alveolar spaces, and reductions in 
the endothelial lining of PAs, proliferative smooth muscle cells, fibroblasts, and adventitia. Moreover, BMP4 
and TRPC1/4/6 expression increased to varying degrees in the arteries and lungs of smoking-exposed animals, 
whereas BMPR expression and SOCE increased only in the arteries, and PPAR-γ was downregulated in both 
the arteries and lungs. 
Conclusions: In SD rats, smoking exposure induces pulmonary vascular remodeling. The consequences 
of increased SOCE include increase in TRPC1/4/6, probably via augmented BMP4 expression, which also 
contribute to inflammatory responses in the lung. Moreover, interactions between BMP4 and PPAR-γ may 
play a role in preventing inflammation under normal physiological conditions.
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Introduction

Pulmonary artery hypertension (PAH) is a disease affecting 
the precapillary pulmonary arterial bed, and it results from 
abnormal interactions between endothelial and smooth 
muscle cells, leading to a progressive narrowing of the 
pulmonary arteries (PAs) and their branches (1-3). PAH is a 
severe complication of smoking-induced chronic obstructive 
pulmonary disease (COPD) (4), in which pulmonary arterial 
remodeling and vasoconstriction play crucial roles, but the 
underlying pathogenic mechanisms are not fully understood. 

BMP4 is a recently discovered vascular pro-inflammatory 
biomarker; its levels are enhanced in endothelial cells by 
disturbed blood flow, and it activates inflammation along 
with the generation of reactive oxygen species (ROS) in an 
endothelium-dependent manner (5), leading to endothelial 
cell malfunction (6,7). BMP4 was showed to induce and 
stimulate NADPH oxidases in endothelial cells in vitro, 
and therefore to produce superoxide, which in turn causes 
inflammatory responses (6). Although BMPs implement 
various functions, their signaling is transduced by binding 
with two types of serine/threonine kinase receptors, BMPRI 
and BMPRII (8-11).

According to Takano et al., modulation of the interactive 
BMP system and TNF-α receptor signaling essential for 
bone metabolism is related to the functional activities of 
PPAR (12). Moreover, BMP4 was previously found to 
augment the expression of TRPC1, TRPC4, and TRPC6 
in cultured rat pulmonary arterial smooth muscle cells 
(PASMCs) (13).

In addition, TRPC1 and TRPC4 are likely to constitute 
a store-operated calcium channel (SOCC) (14-17), 
participating primarily in store-operated calcium entry 
(SOCE), while TRPC6 is a receptor-operated calcium 
channel (ROCC) involved in the regulation of vascular 
contractility (18-21). TRPC4 may contribute to the 
regulation of SOCE-mediated and agonist-stimulated 
cell proliferation and contraction of PASMCs (21-23). 
According to Liu et al., enhanced expression of TRPC1/4/6 
and SOCE was observed in monocrotaline (MCT)-induced 
PAH (24), implying that TRPC-dependent SOCE plays a 
crucial role in the pathogenesis of PAH. 

We, therefore, further investigated the pathogenesis of PAH 
by using a smoking-exposed rat model, and performed western 
blotting and calcium imaging to test the hypothesis that enhanced 
SOCE in smoking-treated arteries is involved in PPAR-γ 
signaling, which also plays a part in stimulating inflammatory 
responses that are followed by vascular remodeling. 

Methods

Animals

Male SD rats (180-200 g) from the Guangdong Medical 
Laboratory Animal Centre were maintained in a specefic 
pathogen free (SPF) room providing a 12/12 light/dark 
cycle. The rats were acclimatized for one week before 
smoking exposure (25). 

Smoking-exposed rat model

The smoke-exposure group consisted of 35 SD rats that 
were exposed to 36 commercially available non-filtered 
cigarettes every 12 hours (10:00-12:00 in the morning 
and 16:00-18:00 in the afternoon), 6 days per week, for  
5 months. A further 35 SD rats in the control group were 
exposed to air (26,27). Rats were anesthetized with 3% 
pentobarbital sodium (45 mg/kg, intraperitoneal) after 
1, 3, or 5 months of smoking exposure. Right ventricular 
systolic pressure (RVSP), right ventricular diastolic pressure 
(RVDP), and heart rate was measured by catheterizing 
the right ventricle directly with polyethylene catheters 
connected to pressure transducers (MP150; BIOPAC 
Systems. Inc., USA). After the hemodynamic measurements, 
the heart and lungs were removed and the ratio of the wet 
weight of the right ventricle to that of the left ventricular 
wall plus septum [RV/(LV + S)] was calculated. This is the 
right ventricular hypertrophy index (RVHI). The PAs were 
dissected as described below. All procedures were carried 
out according to the guidelines of the Animal Care and Use 
Committee of Guangzhou Medical University (24).

Isolation and culture of PASMCs

We dissected the distal (>4th generation) intrapulmonary 
arteries and removed the endothelium with a cotton swab. 
Myocytes obtained by enzymatic digestion were cultured 
for 4-5 days in smooth muscle growth medium (GIBCO 
DMEM 31600) with 10% serum in a damp atmosphere 
of 5% CO2:95% air at 37 ℃. Twenty-four hours before an 
experiment, we exchanged the medium for some containing 
0.5% serum to stop cell growth. Purity was assessed as  
>95% (18) by observing cell morphology under a phase-contrast 
microscope after immune-fluorescence staining of α-actin.

Histological staining & morphological analysis

We dissected the heart and lungs from exposed and control 
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rats as described above, with distal lung samples isolated for 
observation of remodeling in the PA and bronchus. Rats 
anesthetized with 3% pentobarbital sodium (45 mg/kg, 
intraperitoneal) were restrained in the supine position. The 
distal part of the left lung was removed and fixed for 24 hours 
in 4% paraformaldehyde, followed by embedding in paraffin 
wax. Six 5-μm-thick sections from each lung were stained with 
hematoxylin and eosin and observed and photographed using 
a Leica DM4000 B microscope with 20× and 40× objectives. 
The lumen and total area, as well as the wall thickness and 
arterial radii of the 51- to 150-μm (outer diameter) PAs were 
measured using Image Pro Plus 6.0 software (24,28).

Western blotting

PASMCs and lung specimens were lysed in radio 
immunoprecipitation assay lysis buffer containing 1% 
phenylmethanesulfonyl fluoride as a protease inhibitor, 
1× PBS, 1% NP40, 0.1% SDS, 5 mM EDTA, 0.5% 
sodium deoxycholate, and 1 mM sodium orthovanadate. 
They were homogenized manually (PASMCs) or with an 
electric homogenizer (lung tissue). The overall protein 
concentration of the homogenates was quantified using 
bicinchoninic acid protein reagents (Bio-Rad) and 
bovine serum albumin standards. Protein homogenates 
were resolved by 10% SDS-PAGE calibrated with 
precision plus prestained protein molecular weight 
markers (Bio-Rad). Separated proteins were transferred 
to polyvinylidene difluoride membranes (pore size, 0.45 
μm; Bio-Rad), blocked with 5% non-fat milk powder 
dissolved in tris-buffered saline (TBS) containing 0.2% 
Tween 20, and blotted with specific antibodies. Western 
blots were performed using rabbit anti-PPAR-ɣ (SANTA 
CRUZ), mouse anti-BMP4 (Millipore), mouse anti-
BMPR2 (BD Transduction Laboratories), rabbit anti-
TRPC1 (Alomone Labs), rabbit anti-TRPC4 (SANTA 
CRUZ), rabbit anti-TRPC6 (Alomone Labs), mouse anti-
α-actin (SANTA CRUZ), goat anti-rabbit and goat anti-
mouse IgG (KPL). The membranes were then washed 
five times for 10 min each and incubated with horseradish 
peroxidase-conjugated goat anti-rabbit or anti-mouse 
IgG for 70 min. Bound antibodies were detected using 
an Immun-Star™ WesternC™ Chemiluminescence Kit 
(Bio-Rad) (29).

Measurement of intracellular Ca2+

SOCE and [Ca2+]i were measured by dyeing with Fura-2 

(Molecular Probes, Eugene, OR, USA), as previously described 
(18,30). The coverslips were fixed in a polycarbonate chamber 
clamped to a heated aluminum platform (RC-26G; Warner 
Instruments, Hamden, CT, USA) on the stage of a Leica 
DMI4000B inverted microscope. A dual channel heater 
controller (TC-344B; Warner Instruments) was connected 
to the heat exchanger to maintain its temperature at 37 ℃. 
Ratiometric measurement at 340 and 380 nm was performed 
on the Fura-2 fluorescence of single PASMCs visualized with 
a 20× fluorescence objective (UApo N340; Leica).

Statistical analysis

Data are shown as means ± SEM. Statistical comparisons 
were performed using Student’s t-test. Differences were 
considered significant when P<0.05 (31). 

Results

There were profound symptoms of PAH in smoking-exposed 
rats examined at the end of the 1st, 3rd, or 5th month of 
smoking exposure. The control animals weighed 203±3.7 
g (n=21) at the start and 596±21 g (n=11) at the end of the 
experiment, whereas the smoke-exposed animals weighed 
199±4.2 g (n=21; values not significantly different from 
the control group) at the start, and 472±19 g (n=10; values 
significantly different from the controls) at the end. RVSP 
significantly increased at the end of the 3rd month [control, 
18.35±0.7 mmHg, n=4; chronic smoking exposure (CSE), 
22.49±1.4 mmHg, n=3, P<0.05; Figure 1]. The mean RVP, 
calculated from the formula 1/3(RVSP - RVDP) + RVDP, also 
increased after three months (control, 9.06±0.63 mmHg, n=4; 
CSE, 12.45±0.93 mmHg, n=3, P<0.05), and after five months 
(control, 7.5±0.4 mmHg, n=5; CSE, 11.51±1.5 mmHg, n=5, 
P<0.05; Figure 1C-G). The RVHI RV/(LV + S) was elevated at 
the end of the 5th month (control, 30.54±2.32%, n=6; CSE, 
43.32%±3%, n=6, P<0.05; Figure 1I), as was the RV/weight 
ratio (g/kg) at the end of the 3rd month (control, 0.49±0.05, 
n=4; CSE, 0.63±0.02, n=4, P<0.05) and the 5th month (control, 
0.46±0.02, n=6; CSE, 0.66±0.02, n=6, P<0.001; Figure 1J). 

In the histological examinations of distal lung sections of 
CSE rats, we observed the medial walls of the muscular small 
PAs (vessel outer diameters of 50-150 μm) were significantly 
thickened. Morphological analysis of these vessels showed the 
luminal area to total area ratio had significantly diminished 
at the end of the 5th month (control, 0.45±0.1, n=3; CSE, 
0.16±0.05, n=6, P<0.05; Figure 1O-Q), and the wall thickness 
to artery radius ratio was notably enhanced in CSE-treated 



821Journal of Thoracic Disease, Vol 6, No 6 Jun 2014

© Pioneer Bioscience Publishing Company. All rights reserved. J Thorac Dis 2014;6(6):818-828www.jthoracdis.com

Figure 1 Verification of PAH in smoking-exposed rats. (A-F) Waveforms of representative right ventricular pressures in rats exposed to air or 
4/12/20 weeks of cigarette smoke; (G,H) statistical analyses of right ventricular pressure [4-week control, n=3, 4-week chronic smoking exposure 
(CSE), n=5; 12-week control, n=4, 12-week CSE, n=3; 20-week control, n=5, 20-week CSE, n=5]; (I,J) RVHI, calculated as RV/(LV + S) and RV/
weight (4-week control and CSE, n=4; 12-week control and CSE, n=4; 20-week control and CSE, n=6); (K-P) representative hematoxylin and eosin 
staining of lung slices from control and CSE rats, showing small PAs and bronchia (main photomicrographs, magnification 200×, scale bars 100 μm; 
small photomicrographs, magnification 400×, scale bars 50 μm); (Q,R) the ratio of luminal area to total area (%) and the ratio of wall thickness to artery 
radius (%) in control and CSE PAs of 51-150 μm outer diameter (4-week control and CSE, n=4; 12-week control, n=3, 12-week CSE, n=4; 20-week 
control, n=3, 20-week CSE, n=6). *, P value <0.05; **, P value <0.001. 
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rats at the end of the 3rd month (control, 0.28±0.02, n=3; 
CSE, 0.51±0.05, n=4, P<0.05) and the 5th month (control, 
0.25±0.04, n=3; CSE, 0.58±0.08, n=6, P<0.05); these two 
parameters altered in a dose-dependent way (Figure 1M-P,R). 
In addition, there were the infiltration of inflammatory 
factors, the enlargement of the alveolar spaces, the low level 
of endothelial lining in the severely dilated PAs, as well as the 
scarcity of proliferative smooth muscle cells, fibroblasts, and 
adventitia (Figure 1K-P) (1), all of which indicate that vascular 
remodeling and neo-muscularization was taking place in the 
distal intrapulmonary arteries of rats experiencing CSE.

To further  explore  the  molecular  mechanisms 
underlying pulmonary vascular remodeling, SOCE and 
basal [Ca2+] were examined at the end of five months of 
smoking exposure. We found that SOCE increased from 
0.069±0.007 (control, n=5 in 57 cells) to 0.107±0.012 (CSE, 
n=5 in 87 cells; Figure 2A,B). The augmented SOCE in 
the PASMCs of rats undergoing CSE indicates that TRPC 
protein expression is elevated during CSE-induced PAH, 
as described below. 

PPAR-γ protein levels (related to α-actin in endothelium-
denuded PAs) declined significantly after 3 and 5 months 
of smoking exposure compared with the control (3 months: 
control, n=4; CSE, n=5, P<0.001. 5 months: control, n=4; 
CSE, n=4, P<0.05; Figure 3), with the corresponding levels 
in whole lung declining after exposures of 3 months (control, 
n=4; CSE, n=4, P<0.05) and 5 months (control, n=4; CSE, 
n=5, P<0.05; Figure 3F-H). Mature and precursor BMP4 
protein levels related to α-actin in endothelium-denuded 
PAs were upregulated significantly after smoking exposures 
of 3 and 5 months compared with the control (3 months: 
control, n=4; CSE, n= 5; both precursor and mature BMP4, 
P<0.05; 5 months: control, n=4; CSE, n=4; precursor 
BMP4, P<0.05, mature BMP4, P<0.001; Figure 4). The 
same trends were seen in whole lung (3 months: control, 
n=4; CSE, n=4; precursor BMP4, P<0.001, mature BMP4, 
P<0.05; 5 months: control, n=4; CSE, n=5; both precursor 
and mature BMP4, P<0.001; Figure 4G-J). In addition, the 
expression of BMPRII was markedly enhanced in the PAs of 
rats subjected to CSE for 5 months (control, n=4; CSE, n=4, 
P<0.05; Figure 5), while there was no significant alteration 
of BMPRII expression in whole lung (Figure 5E-H). In 
summary, CSE had opposite effects on BMP4 and PPAR-γ, 
with the former being elevated and the latter lowered. The 
augmented expression of BMP4 might contribute to the 
upregulation of BMPRII.

Smoking exposures of 3 and 5 months markedly enhanced 
TRPC1 expression in the PA (3 months: control n=4; CSE n=5, 

P<0.05. 5 months: control n=4; CSE n=5, P<0.05; Figure 6); 
smoking exposure of 1, 3 and 5 months significantly increased 
TRPC1 expression in whole lung (1 month: control n=4; 
CSE n=4, P<0.05. 3 months: control n=4; CSE n=4, P<0.05. 
5 months: control n=4; CSE n=5, P<0.05; Figure 6E-H). 
TRPC4 protein levels in the PA were upregulated after 
smoking exposure of 1 month (control, n=4; CSE, n=4, 
P<0.05), 3 months (control, n=4; CSE, n=5, P<0.05) and 
5 months (control, n=4; CSE, n=4, P<0.05; Figure 7), 
although TRPC4 expression in whole lung was significantly 
enhanced only after smoking exposure of 5 months (control, 
n=4; CSE, n=4, P<0.001; Figure 7G-H). TRPC6 expression 
in the PA increased considerably after smoking exposure 
of 3 and 5 months (3 months: control, n=4; CSE, n=5, 
P<0.05. 5 months: control, n=4; CSE, n=5, P<0.001; Figure 8), 
and the corresponding levels in whole lung were enhanced after 
smoking exposure of 1 month (control, n=4: CSE, n=4, P<0.05), 
3 months (control, n=4; CSE, n=5, P<0.05), and 5 months 
(control, n=4; CSE, n=5, P<0.001; Figure 8E-H).

Discussion
 

PAH is an important complication of COPD and an 
independent risk factor that affects the course of COPD. 
Studies on smoking patients with mild COPD have 
demonstrated that 25% have slow-progressive increases 
in pulmonary arterial pressure (32,33). Smoking is one 
of the main causes of COPD and PAH, but the specific 
mechanism by which CSE causes chronic PAH is still 
unclear. 

This research presents evidence suggesting that PPAR-γ 
and BMP4 function as upstream [Ca2+]i regulators in the 
PAs of rats exposed to cigarette smoke. First, PPAR-γ 
expression was found to be inhibited in the PAs and 
whole lungs of CSE rats, suggesting that during cigarette-
smoke-induced PAH, this anti-inflammatory biomarker 
became dysfunctional, and the defect is at the level of 
PPAR-γ gene expression. Second, we found that (1) 
cigarette smoke exposure upregulated BMP4 and TRPC 
expression not only in PAs but also in the whole lung 
and (2) cigarette smoke induced inflammatory responses 
in whole lung as consequences of vascular remodeling. 
According to Floyd et al. (30), there was no doubt that 
persistent vasoconstriction was induced by increased 
[Ca2+]i. Moreover, Lu et al. (13) demonstrated that calcium 
signaling in PASMCs is regulated by BMP4, probably via 
upregulated TRPC expression; the latter increases SOCE 
and basal [Ca2+]i in PASMCs, and thus promotes pulmonary 
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n=5). *, P value <0.05; **, P value <0.001.
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Figure 5 Alterations in BMPR2 expression in PAs and whole lungs from rats exposed to air or 4/12/20 weeks of cigarette smoke. (A-C) 

Representative western blots of BMPR2 proteins in PAs of control and CSE rats; (D) quantitative analysis of BMPR2 proteins in PAs (4-week control 

and CSE, n=4; 12-week control, n=4, 12-week CSE, n=5; 20-week control and CSE, n=4); (E-G) representative western blots of BMPR2 proteins in 

whole lungs of control and CSE rats; (H) quantitative analysis of BMPR2 proteins in whole lungs (4-week control, n=3, 4-week CSE, n=4; 12-week 

control, n=4, 12-week CSE, n=3; 20-week control, n=4, 20-week CSE, n=5). *, P value <0.05.

Figure 6 Alterations in TRPC1 expression in PAs and whole lungs from rats exposed to air or 4/12/20 weeks cigarette smoke. (A-C) Representative 
western blots of TRPC1 proteins in PAs of control and CSE rats; (D) quantitative analysis of TRPC1 proteins in PAs (4-week control, n=4, 4-week 
CSE, n=5; 12-week control, n=4, 12-week CSE, n=5; 20-week control, n=4, 20-week CSE, n=5); (E-G) representative western blots of TRPC1 
proteins in whole lungs of control and CSE rats; (H) quantitative analysis of TRPC1 proteins in whole lungs (4-week control and CSE, n=4; 12-week 
control and CSE, n=4; 20-week control, n=4, 20-week CSE, n=5). *, P value <0.05.
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Figure 7 Alterations in TRPC4 expression in PAs and whole lungs from rats exposed to air or 4/12/20 weeks cigarette smoke. (A-C) 
Representative western blots of TRPC4 proteins in PAs from control and CSE rats; (D) quantitative analysis of TRPC4 proteins in PAs (4-week 
control and CSE, n=4; 12-week control, n=4, 12-week CSE, n=5; 20-week control and CSE, n=4); (E-G) representative western blots of 
TRPC4 proteins in whole lungs of control and CSE rats; (H) quantitative analysis of TRPC4 proteins in whole lungs (4-week control, n=4, 
4-week CSE, n=5; 12-week control and CSE, n=4; 20-week control and CSE, n=4). *, P value <0.05; **, P value <0.001.
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vascular remodeling during PAH. Last, our findings suggest 
that augmented BMP4 expression may contribute to the 
enhanced expression of BMPR2.

In conclusion, we found that cigarette smoke upregulates 
TRPC1, TRPC4, and TRPC6 expression in pulmonary 
arteries, probably by promoting BMP4 expression. This 
leads to increased SOCE, which plays a prominent role in 
dose-dependent vascular remodeling. Augmented expression 
of BMP4 in the whole lung contributes to inflammatory 
responses, and BMP4 may also interact with PPAR-γ under 
normal physiological conditions, thus establishing a barrier 
to inflammatory responses. 

We propose that the downregulation of PPAR-γ and 
upregulation of BMP4 is crucial in enhanced SOCE, 
following the upregulation of TRPC1/4/6 in the PAs and 
lungs of smoking-exposed rats. These changes in PPAR-γ 
and BMP4 expression also play a part in stimulating 

inflammatory responses that lead to vascular remodeling. 
PPAR-γ, expressed in both alveolar macrophages and 
neutrophils, plays an anti-inflammatory role, and is involved 
in macrophage activation (34-36).
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