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Background: We aim to analyze the ability to detect epithelial growth factor receptor (EGFR) mutations 
on chest CT images of patients with lung adenocarcinoma using radiomics and/or multi-level residual 
convolutionary neural networks (MCNNs).
Methods: We retrospectively collected 1,010 consecutive patients in Shanghai Chest Hospital from 2013 
to 2017, among which 510 patients were EGFR-mutated and 500 patients were wild-type. The patients 
were randomly divided into a training set (810 patients) and a validation set (200 patients) according to a 
balanced distribution of clinical features. The CT images and the corresponding EGFR status measured by 
Amplification Refractory Mutation System (ARMS) method of the patients in the training set were utilized 
to construct both a radiomics-based model (MRadiomics) and MCNNs-based model (MMCNNs). The MRadiomics and 
MMCNNs were combined to build the ModelRadiomics+MCNNs (MRadiomics+MCNNs). Clinical data of gender and smoking 
history constructed the clinical features-based model (MClinical). MClinical was then added into MRadiomics, MMCNNs, 
and MRadiomics+MCNNs to establish the ModelRadiomics+Clinical (MRadiomics+Clinical), the ModelMCNNs+Clinical (MMCNNs+Clinical) 
and the ModelRadiomics+MCNNs+Clinical (MRadiomics+MCNNs+Clinical). All the seven models were tested in the validation set 
to ascertain whether they were competent to detect EGFR mutations. The detection efficiency of each model 
was also compared in terms of area under the curve (AUC), sensitivity and specificity.
Results: The AUC of the MRadiomics, MMCNNs and MRadiomics+MCNNs to predict EGFR mutations was 0.740, 
0.810 and 0.811 respectively. The performance of MMCNNs was better than that of MRadiomics (P=0.0225). The 
addition of clinical features did not improve the AUC of the MRadiomics (P=0.623), the MMCNNs (P=0.114) 
and the MRadiomics+MCNNs (P=0.058). The MRadiomics+MCNNs+Clinical demonstrated the highest AUC value of 0.834. 
The MMCNNs did not demonstrate any inferiority when compared with the MRadiomics+MCNNs (P=0.742) and the 
MRadiomics+MCNNs+Clinical (P=0.056).
Conclusions: Both of the MRadiomics and the MCNNs could predict EGFR mutations on CT images of patients 
with lung adenocarcinoma. The MMCNNs outperformed the MRadiomics in the detection of EGFR mutations. 
The combination of these two models, even added with clinical features, is not significantly more efficient 
than MMCNNs alone.
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Introduction

Tyrosine kinase inhibitors (TKIs) are today the first-line 
standard modality for the treatment of stage IV non-small 
cell lung cancer (NSCLC) with epithelial growth factor 
receptor (EGFR) mutations (1). Data suggest that the EGFR 
mutations are found in approximately in 10% Caucasian 
patients and about 50% Asian-Pacific patients with  
NSCLC (2,3). First-line treatment with TKIs would 
provide longer progression-free survival than chemotherapy. 
The detection of EGFR mutations before treatment in 
those NSCLC is the prerequisite for TKIs treatment (4).  
Biopsies through endoscope or fine needle aspiration 
(FNA) usually provide the specimens for the detection 
of EGFR mutations. However, these methods come with 
several limitations in practice. Patients with low Karnofsky 
performance scores (KPS) are less likely to tolerate such 
invasive procedures repeatedly and not all tumors with 
various sizes or locations are appropriate for biopsy. Most 
importantly, specimens acquired by biopsies are unable to 
demonstrate the intra-tumor and inter-tumor heterogeneity 
and provide us relatively limited information about the 
genotype and phenotype of tumors (5,6). Repeated biopsies 
alongside the whole treatment process to monitor genetic 
change or biopsies on each metastatic lesion to reflect inter-
tumor heterogeneity may not be practical. Therefore, new 
technologies recently attempt to address these problems, 
among which liquid biopsy and image analysis are currently 
the most promising ones. Image analysis is the technology 
utilized to extract and analyze indiscernible information 
in medical images to acquire biological information of 
pathologies. Radiomics and convolutional neural networks 
(CNNs) are now the most frequently utilized methods in 
medical images analysis.

Radiomics is defined as the conversion of images to 
higher dimensional mineable data and the subsequent 
mining of these data for improved decision support. 
The main steps of radiomics include image acquisition, 
segmentation of region of interests (ROIs), features 
extraction and qualification, and classifier modeling (7). 
Given the hypothesis that imaging phenotypes may reflect 
the effects of genotypes, radiomics has been applied to 
detect EGFR mutations and achieved good results (8-10). 
However, many factors may influence the quantification 
of radiomic features, including acquisition modes (11), 
reconstruction parameters (12), and smoothing (13), 
and segmentation thresholds (14,15). Therefore, the 
reproducibility, repeatability and robustness of radiomic 

results are relatively unsatisfactory (16,17). 
Another currently prevalent technology to analyze 

medical images are CNNs, which requires only a set of 
data with minor preprocessing and then discovers the 
informative representations in a self-taught manner (18,19). 
Therefore, CNNs may be likely more reproducible than 
radiomics. CNNs have also demonstrated perfect diagnostic 
ability in retinal diseases and skin cancer, which even 
outperformed experienced experts (20,21). Possessing 
these advantages, CNNs may serve as a useful tool in the 
detection of EGFR mutations. But so far, no studies have 
been available to indicate whether CNNs could be utilized 
in the detection of EGFR mutations and to compare its 
efficacy with that of radiomics. To address these two issues, 
we aim to implement a CNN and perform radiomic analysis 
to detect EGFR mutations and to explore whether these  
two methods are mutually complementary.

Methods

Clinical data collection

We retrospectively collected data from patients in 
Shanghai Chest Hospital from 2013 to 2017. The study 
was approved by Shanghai Chest Hospital, Shanghai 
Jiao Tong University. Ethical approval (ID: KS 1716) 
was obtained for use of the CT images and information 
of EGFR mutations. Because of its retrospective nature, 
informed consents were waived. The inclusion criteria 
for the data in this study were as follows: (I) All patients 
were pathologically diagnosed with lung adenocarcinoma 
regardless of their clinical or pathological stages; (II) 
patients should take CT scanning in our hospital before 
any treatments; (III) the pulmonary lesions for EGFR 
mutation tests should be solid nodules not ground glass 
opacities (GGO); the margins of these solid nodules were 
well-defined on CT images with the longest dimension 
equal to or larger than 0.8 cm; (IV) there was only one 
lesion in bilateral lung, rather than multiple lesions; (V) 
complete clinical data including gender, age, smoking 
history, staging images and EGFR status should be 
available for all patients. As EGFR mutations mainly exist 
in exon 19 and 21, we collected patients harboring exon 19 
and 21 mutations only to ensure enough sample size. All 
patients were split into the training set and the validation 
set randomly with a balanced distribution of clinical 
features including gender, age, smoking history, clinical or 
pathological stage and EGFR status. 
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Image data collection

Contrast and non-contrast CT scanning were undertaken 
before any treatments using Philips Brilliance 64 scanner 
and GE Discovery CT750 HD scanner. The parameters 
used were as follows: Tube voltage, tube current, pitch and 
thickness are 120 kV, 250 mA/s, 0.641 and 5 mm for Philips 
Brilliance 64 scanner and 120 kV, 400 mA/s, 0.984 and  
5 mm for GE Discovery CT750 HD scanner.

EGFR mutations test

EGFR mutation tests by fluorescence PCR (ARMS) were 
conducted on the specimens acquired from surgeries and 
biopsies through FNA or endoscope. The PCR machine 
(Stratagene Mx3000PTM) was provided by Agilent. 
The Human EGFR Gene Mutation Detection Kit was 
manufactured by Amoy Diagnostics Co., Ltd. All the EGFR 
gene mutation tests were accomplished using the same test 
system and protocol.

Tumor segmentation

CT images were introduced into the treatment planning 
system (Pinnacle3 Version 9.10). Pulmonary lesions were 
delineated on non-contrast images with the window level  
of −400 and width of 1,600. The delineation of the lesions 
was performed by two experienced radiation oncologists. 
They reviewed each other’s delineation. Discrepancies 
about delineation were solved by discussion until consensus 
was reached.

The framework of our models building

Patients with EGFR mutations were defined as positive 
samples (label is 1) and others were defined as negative 
samples (label is 0). Our study consisted of two models. 
The major model was CT images-based model, which 
includes radiomics-based model and the multi-level 
residual CNNs (MCNNs) based model. Another model 
is clinical features-based model. The performance was 
validated on the validation set using area under the 
receiver operating characteristic curve (AUC), sensitivity 
and specificity (Figure 1).

Radiomics-based model (MRadiomics)

Quantitative radiomic features of four categories were 

extracted from the ROIs: 14 first-order features, 8 shape-
based and size-based features, 34 textural features, and 384 
wavelet features. A total of 440 features were obtained from 
CT images of one patient for each ROI. We computed the 
P value for each feature by performing an independent test 
between positive and negative samples. The grid search 
method was used to tune the value of P value from 0.00 
to 1.00 with step size 0.01. The optimal threshold was 
finally set as 0.76. Therefore, several features with the 
corresponding P values lower than 0.76 were selected as 
discriminative radiomic features. We used a random forest 
(RF) classification method to combine the merits while 
ignoring the weaknesses of the selected features. The inputs 
to the RF were the discriminative radiomic features and the 
outputs were the EGFR status.

Multi-level residual CNNs based model (MMCNNs)

The MMCNNs contained three residual CNNs with each input 
patches of 21×21×21 voxels (42 mm × 42 mm × 42 mm),  
31×31×31 voxels (62 mm × 62 mm × 62 mm), and 
41×41×41 (82 mm × 82 mm × 82 mm) voxels, respectively. 
Each residual CNN had 152 layers. The structure of the 
MCNNs is presented in Figure 2. The input patches were 
augmented by random rotation, translation, and flipping 
before each and every training epoch. Data augmentation is 
well known to the overcome overfitting of training data and 
to improve the robustness of the model. The output of each 
residual CNN was the probabilities of EGFR mutation and 
wild type.

The Fusion of MRadiomics and MMCNNs

The ModelRadiomics+MCNNs (MRadiomics+MCNNs) consisting of the 
MRadiomics and the MMCNNs was defined as follows:

MRadiomics+MCNNs = wRadiomicsMRadiomics+ wMCNNsMMCNNs

wRadiomics and wMCNNs were weighs that determined the 
contribution of each sub-model to the fused model. 

Clinical features-based model (MClinical)

Among all relevant clinical features, there was significant 
difference only in gender (P<0.0001) and smoking history 
(P<0.0001) between patients with EGFR mutations or not 
(Table 1). Therefore, we built a simple clinical feature-
based model based on gender and smoking history. Logistic 
regression was utilized to test whether these two clinical 
features were indeed associated with EGFR mutations. 



6627

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(12):6624-6635jtd.amegroups.com

Journal of Thoracic Disease, Vol 10, No 12 December 2018

Thereafter we assigned scores to each sample according to 

the clinical feature: female non-smokers given 1.00, female 

smokers and male non-smokers were both given 0.50, and 

male smokers were given 0.00. 

The Fusion of image-based model and clinical  
features-based model

The fused model was constructed by image-based model 
and clinical features-based model as follows:

Radiomic 
features 

extraction

Random 
forest 

classifier

Radiomics-
based model 

(MRadiomics)

MCNNs-
based model 

(MMCNNs)

Image-
based model 

(MRadiomics+MCNNs)

First order features

Shape and size features

Wavelet features

CNN input size : 21*21*21 

CNN input size : 31*31*31 

CNN input size : 41*41*41 

Clinical features based model (Gender, 
Smoking history)        MClinical

Fused model

Validated in 200 patients to predict EGFR 
mutations: AUC, sensitivity, specificity

MRadiomics MRadiomics+Clinical

MMCNNs MMCNNs+Clinical

MRadiomics+MCNNs MRadiomics+MCNNs+Clinical

Textural features

CT images from 
810 patients to 

train models

Figure 1 The framework of this study. Radiomics-based model (MRadiomics) and MCNNs-based model (MMCNNs) were constructed on 
the CT-images from the training set. Then radiomics-based model and MCNNs-based model were combined to build the image-based 
model (MRadiomics+MCNNs). Clinical features (MClinical) were added into the image-based model to establish the fused model (MRadiomics+Clinical, 
MMCNNs+Clinical, MRadiomics+MCNNs+Clinical). All these seven models were tested in the validation set to calculate each AUC, sensitivity and specificity. 
MCCNs, multi-level residual CNNs; CNN, convolutional neural network; AUC, area under the receiver operating characteristic curve; 
EGFR, epithelial growth factor receptor.
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Figure 2 The structure of the MCNNs used in this study. The MMCNNs contained three residual CNNs with each input patches of  
21×21×21 voxels (42 mm × 42 mm × 42 mm), 31×31×31 voxels (62 mm × 62 mm × 62 mm), and 41×41×41 (82 mm × 82 mm × 82 mm) voxels,  
respectively. Each residual CNN had 152 layers. MCCNs, multi-level residual CNNs; CNN, convolutional neural network.
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MRadiomics+Clinical = wRadiomicsMRadiomics + wClinicalMClinical

MMCNNs+Clinical = wMCNNsMMCNNs + wClinicalMClinical

MRadiomics+MCNNs+Clinical = wRadiomics+MCNNsMRadiomics+MCNNs + 
wClinicalMClinical

wRadiomics, wMCNNs and wRadiomics+MCNNs were weighs that 
determined the contribution of each sub-model to the fused 
model. The weight parameters mentioned above were 
decided by using grid search method in the training set.

Statistical analysis

Receiver operating characteristic (ROC) curve was performed 
on the validation set to evaluate the performance of the 
seven models (trained by the training set) in detecting the 
EGFR mutation statues, and the AUC was calculated. The 
P value of paired z-test were conducted to compare the 
AUC of each model and the significance level was set at 
P<0.05. The sensitivity and specificity were obtained from 
the best diagnostic decision point of ROC. The weight 
parameters mentioned above were decided by using grid 

search method in the training set.

Results

Patients’ characteristics

CT images from 1,010 consecutive patients who met 
eligibility criteria from 2013 to 2017 with matching 
EGFR status were retrospectively collected, among which  
510 patients were EGFR-mutated and 500 patients 
were wild-type. The patients’ demographic and clinical 
characteristics were presented in Table 1. There were 
553 males and 457 females with a median age of 63 years 
old (25 to 88 years). Two hundred and sixty-one patients 
(25.8%) were smokers and 749 patients (74.2%) were not. 
Pathological stages were distributed as follows: stage I in 
307 patients (30.4%), stage II in 49 patients (4.9%), stage 
III in 380 patients (37.6%) and stage IV in 274 patients 
(27.1%). The 1,010 patients were randomized into training 
set (810 patients) and validation set (200 patients). There 
was no significant statistical difference of the patients’ 

Table 1 Characteristics of total patients.

Characteristic Overall (n=1,010) Mutation (n=510) Wild type (n=500) Statistical method and P value

Gender, n (%) Pearson χ2 test, P<0.0001

Male 553 (54.8) 209 (41.0) 344 (68.8)

Female 457 (45.2) 301 (59.0) 156 (31.2)

Age (years) Independent-samples t-test, 
P=0.352

Median age 63 62 61

Range 25–88 30–88 25–85

Smoking history, n (%) Pearson χ2 test, P<0.0001

Smoking 261 (25.8) 69 (13.5) 193 (38.6)

No smoking 749 (74.2) 441 (86.5) 307 (61.4)

Pathological stage, n (%) Mann-Whitney test, P=0.062

I 307 (30.4) 181 (35.5) 126 (25.2)

II 49 (4.9) 24 (4.7) 25 (5.0)

III 380 (37.6) 161 (31.6) 219 (43.8)

IV 274 (27.1) 144 (28.2) 130 (26.0)

Sample type, n (%) Pearson χ2 test, P=0.023

Biopsy 386 (38.2) 177 (34.7) 209 (41.8)

Surgery 624 (61.8) 333 (65.3) 291 (58.2)
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characteristics in these two sets as seen in Table 2.

Models performances in the validation set 

We utilized the CT images with corresponding EGFR 
status from the 810 patients to train MRadiomics and 
MMCNNs. The weights parameters were 0.16, 0.20, 0.64, 
0.84 for wClinical,  wRadiomics, wMCNNs and wRadiomics+MCNNs, 
respectively. All the models were tested individually in 
the validation set including 200 patients and the results 
were presented in Figures 3,4, Tables 3,4. According to 
the P value of independent test, we ultimately selected  
388 radiomic features to be put into RF classifier including 

14 first-order features, 7 shape-based and size-based 
features, 33 textural features, and 334 wavelet features. The 
AUC of the MRadiomics to predict EGFR mutations was 0.740 
[95% confidence interval (CI), 0.670–0.811, P<0.0001] 
with specificity of 0.677 and sensitivity of 0.794. The 
MMCNNs achieved an AUC of 0.810 (95% CI, 0.748–0.872, 
P<0.0001) to predict EGFR mutations with specificity of 
0.753 and sensitivity of 0.813, which outperformed the 
MRadiomics (P=0.0225). After combining the MRadiomics and the 
MMCNNs model, the MRadiomics+MCNNs could predict EGFR 
mutations with an AUC of 0.811 (95% CI, 0.749–0.873, 
P<0.0001) with specificity of 0.763 and sensitivity of 0.804. 
The MRadiomics+MCNNs did better than MRadiomics (P=0.009), but 

Table 2 The comparison of patients’ characteristics between training set and validation set. There was no significant difference of patients’ 
characteristics between training set and validation set, including gender, age, smoking history, pathological stage, EGFR status and sample type

Characteristic Training set (n=810) Validation set (n=200) Statistical method and P value

Gender, n (%) Pearson χ2 test, P=0.813

Male 442 (54.6) 111 (55.5)

Female 368 (45.4) 89 (44.5)

Age (years) Independent-samples t-test, P=0.108

Median age 61 62

Range 25–88 39–85

Smoking history, n (%) Pearson χ2 test, P=0.954

Smoking 209 (25.8) 53 (26.5)

No smoking 601 (74.2) 147 (73.5)

Pathological stage, n (%) Mann-Whitney test, P=0.149

I 253 (31.2) 54 (27.0)

II 40 (4.9) 9 (4.5)

III 304 (37.5) 76 (38.0)

IV 213 (26.3) 61 (30.5)

Genetic status, n (%) Pearson χ2 test, P=0.364

Wild type 407 (50.2) 93 (46.5)

Exon 19 mutation 192 (23.7) 57 (28.5)

Exon 21 mutation 211 (26.0) 50 (25.0)

Sample type, n (%) Pearson χ2 test, P=0.81

Biopsy 308 (38.0) 78 (39.0)

Surgery 502 (62.0) 122 (61.0)

EGFR, epithelial growth factor receptor.
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not MMCNNs (P=0.742). 
Clinical features like gender [odds ratio (OR) =2.1, 95% 

CI, 1.57–2.84, P<0.0001] and smoking (OR =0.39, 95% 
CI, 0.27–0.55, P<0.0001) were significantly associated 
with EGFR mutations. The MClinical acquired the lowest 
AUC of 0.686 (95% CI, 0.617–0.756, P<0.0001) with 
specificity of 0.730 and sensitivity of 0.579. The MClinical did 
worse than MMCNNs (P=0.005), but showed no significant 
difference with MRadiomics (P=0.256). Finally, we added 
these two clinical features to the image-based model 
to build the fused model. The AUC of MRadiomics+Clinical, 
MMCNNs+Clinical and MRadiomics+MCNNs+Clinical is 0.758 (95% CI, 
0.690–0.825, P<0.0001), 0.831 (95% CI, 0.773–0.890, 
P<0.0001), and 0.834 (95% CI, 0.776–0.892, P<0.0001) 

respectively. But the addition of clinical features did not 
show significant improvement than MRadiomics (P=0.623) and 
MMCNNs (P=0.114). There was an increasing trend for the 
MRadiomics+MCNNs (P=0.058), but still without significance. 
The MRadiomics+MCNNs+Clinical demonstrated the highest AUC to 
predict EGFR mutations than other models, but exhibited 
significant difference only with MRadiomics (P=0.0009) rather 
than MRadiomics+MCNNs (P=0.058) and MMCNNs (P=0.056). 

Discussion

The value of image analysis to reveal biological information 
is by no means a replacement of pathological biopsy and 
liquid biopsy. Compared with pathological biopsy, the 

Figure 3 The AUC of each model to predict EGFR mutations. (A) The AUC of MRadiomics and MRadiomics+Clinical is 0.740 (95% CI, 0.670–0.811) 
and 0.758 (95% CI, 0.690–0.825); (B) the AUC of MMCNNs and MMCNNs+Clinical is 0.810 (95% CI, 0.748–0.872) and 0.831 (95% CI, 0.773–0.890); 
(C) the AUC of MRadiomics+MCNNs and MRadiomics+MCNNs+Clinical is 0.811 (95% CI, 0.749–0.873) and 0.834 (95% CI, 0.776–0.892); (D) the AUC of 
MClinical is 0.686 (95% CI, 0.617–0.756) and the lowest one. MRadiomics is less efficient than other models except MClinical. There is no significant 
different between MMCNNs, MRadiomics+MCNNs and MRadiomics+MCNNs+Clinical. MCCNs, multi-level residual CNNs; CNN, convolutional neural 
network; AUC, area under the receiver operating characteristic curve; EGFR, epithelial growth factor receptor.
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most promising advantage of image analysis lies in that the 
biological information acquired by images could describe 
the genotype and phenotype of the whole tumor and 

even project the biological information onto each pixel of 
images to reflect intra-tumor heterogeneity. Liquid biopsy 
could reveal the genetic mutations via peripheral blood 
but such systemic information is unable to disclose the 
different molecular changes of each lesion due to inter-
tumor heterogeneity. Image analysis could complement 
this shortcoming and instruct more delicate combination 
between systemic treatment of TKIs and local treatment 
like radiotherapy or mini-invasive surgery. Therefore, it 
is worthwhile to develop image analysis to complement 
pathological biopsy and liquid biopsy for more precise 
systemic treatment and local therapy.

Due to the development and application of targeted 
therapy, examination of patients’ genetic profile is 
recommended to gauge the tumor progression for some 
patients. A single examination before the start of the 
targeted therapy is insufficient for an effective treatment 
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Figure 4 The addition of clinical features did not improve the 
AUC of the MRadiomics (P=0.623), the MMCNNs (P=0.114) and the 
MRadiomics+MCNNs (P=0.058). The MMCNNs outperformed the MRadiomics 
(P=0.0225). The MMCNNs+Radiomics did better than the MRadiomics 
(P=0.009), but not the MMCNNs (P=0.742). The MMCNNs did not 
demonstrate inferiority compared with the MRadiomics+MCNNs (P=0.742) 
and the MRadiomics+MCNNs+Clinical (P=0.056) in terms of AUC. MCCNs, 
multi-level residual CNNs; CNN, convolutional neural network; 
AUC, area under the receiver operating characteristic curve; 
EGFR, epithelial growth factor receptor.

Table 4 The AUC of each model validated in different pathological stages. Because sample size (n=9) of stage II in validation set is too small to 
evaluate, we combine stage I and II for analysis

Model AUC in stage I and II (n=63) AUC in stage III (n=76) AUC in stage IV (n=61)

MClinical 0.630 0.800 0.617

MRadiomics 0.755 0.742 0.736

MRadiomics+Clinical 0.713 0.838 0.718

MMCNNs 0.767 0.815 0.848

MMCNNs+Clinical 0.800 0.860 0.847

MRadiomics+MCNNs 0.771 0.818 0.839

MRadiomics+MCNNs+Clinical 0.803 0.861 0.854

MCCNs, multi-level residual CNNs; CNN, convolutional neural network; AUC, area under the receiver operating characteristic curve.

Table 3 The specificity and sensitivity of these seven models at best 
decision point

Model Specificity Sensitivity

MClinical 0.730 0.579

MRadiomics 0.677 0.794

MRadiomics+Clinical 0.613 0.822

MMCNNs 0.753 0.813

MMCNNs+Clinical 0.688 0.832

MRadiomics+MCNNs 0.763 0.804

MRadiomics+MCNNs+Clinical 0.742 0.822
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nowadays. Multiple examinations, for example by 
performing repeated biopsies, are needed. However, some 
thorny clinical scenarios do not allow for these procedures. 
Medical imaging analysis, as a non-invasive method to 
complement biopsies, has been studied to detect genetic 
mutations. The underlying hypothesis of imaging analysis 
is that advanced imaging technology could capture genomic 
and proteomic patterns expressed in terms of macroscopic 
image-based features (22). Difference of protein expression 
patterns within tumors has been demonstrated to be 
correlated to radiographic findings (23,24). Currently 
there have been several studies on the detection of EGFR 
mutations with the utilization of semantic features, radiomic 
features and CNNs.

Semantic features refer to the manual assessment of 
the tumor phenotype by an expert radiologist, like pleural 
attachment, poorly-defined margin or strong enhancement. 
They are all quantities that vary wildly between radiologists 
as no standards for their definitions exist. Although studies 
utilizing semantic features have shown excellent AUC 
values approaching 0.9, these results would be difficult to 
reproduce (25,26). 

Radiomic features are calculated by algorithms from 
the defined ROIs to extract indiscernible biological 
information from images. These features include tumor 
intensity histogram-based features, shape-based features, 
texture-based features, and other higher-order features (10). 
These features have been demonstrated to predict EGFR 
mutations with AUC values ranging from 0.7 to 0.9 (8,9,15). 
But some of these results were acquired without external 
independent validation. In our study, the AUC of radiomic 
features was achieved in validation set and demonstrated 
that radiomic features are able to predict EGFR mutations. 
To achieve reproducible and best predictive performance, 
factors including scanning parameters, reconstruction 
algorithm and segmentation of ROIs should be standardized 
and universalized, which would be hard to be realized in 
practice. Radiomic features are often case-specific which 
means that the same set of features may not perform 
optimally on different image segmentation problems (27,28). 
In contrast, CNNs need relatively low requirements 
for producing reproducible results. Additionally, CNNs 
automatically extract the features that optimally represent 
the data for the specific problem at hand (19). The 
utilization of CNNs on chest imaging currently emphasized 
on the detection of malignant pulmonary nodules with their 
AUC values ranging from 0.7 to 0.9 (29-31). So far there 
have been no studies utilizing CNNs to predict EGFR 

mutations and let alone studies comparing CNNs and 
radiomic features in a same sample.

Our study utilized a CNN and radiomic analysis to 
detect EGFR mutations with an aim to explore their 
differences and mutual complementarities. The AUC of the 
CNN to detect EGFR mutations was 0.81 on independent 
validation set, which is comparable to the results of the 
above-mentioned studies to detect malignant pulmonary 
nodules. With specificity maintaining 0.753, sensitivity 
of CNN is 0.813. These results indicate that the CNN is 
competent to detect EGFR mutations tentatively. Radiomic 
analysis in our study achieves an AUC of 0.74, which 
is achieved under strict external validation and higher 
than that of previous studies (8,9,15). Nevertheless, the 
specificity of the radiomic features was only 0.677 with a 
sensitivity of 0.794. Therefore, considering AUC, specificity 
and sensitivity, radiomic analysis performs worse than the 
CNN. Thereafter we fused the clinical, radiomics, and 
MCNN models to improve the detection accuracy by giving 
each model a voting weight. A higher weight was given to 
a model with better performance. Then the final possibility 
of EGFR mutations was figured out. However, the AUC 
has not been improved significantly compared to the CNN 
alone after the combination. Given that automatically 
generated features by the CNN could generate the same 
performance of hand-crafted features (32), this phenomenon 
maybe due to that the CNN has already extracted enough 
features to support the detection and there has left little 
room for improvement with the addition of radiomic 
features. Another explanation of this phenomenon may 
attribute to our relatively tentative combination method. It 
was just a simple algorithm that assigned voting weights to 
the predictive result of each submodel. This combination 
method did not involve the MCNN structure. The 
addition of clinical features including gender and smoking 
history into all these three image-based models (MRadiomics, 
MMCNNs, MRadiomics+MCNNs) did not improve the AUC with 
statistical significance despite the increasing tendency of the 
MMCNNs+Clinical. This phenomenon also implicates that CNN 
alone is competent to predict EGFR mutations without the 
help of radiomics or clinical features in spite of the close 
association between Asian female non-smokers and EGFR 
mutations. 

Compared with previous studies utilizing semantic (25,26)  
or radiomic features (8,9,15) to predict EGFR mutations, 
our study recruited the largest sample size and achieved 
a satisfactory result under strict external validation. We 
compared the predictive efficacy between CNNs and 
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radiomic features in a same sample, and explored the 
possibility of the combination of these two methods. 
Clinical features of gender and smoking history were also 
proposed to complement CNNs or radiomic features. Our 
result is equivalent to or even better than that of previous 
studies. The predictive ability of all the model studies, 
however, is far from clinical demands. But there are several 
issues with our study entailing further improvement: (I) 
The CT-images were acquired by different scanners in 
our hospital and the scanning parameters have not been 
standardized. The scanning thickness of 5 mm may lead to 
loss of some radiomic information. The radiomic features 
extracted have not been validated by a test-retest in RIDER 
dataset to ensure reproducibility (33). All the above-
mentioned flaws may compromise the results of radiomics-
based model. More quality control measures are needed. 
(II) The structure of our MCNNs is relatively preliminary 
and the specificity of the models is unsatisfactory, which 
currently cannot be utilized in clinical practice to predict 
EGFR mutations. (III) The combination method we used 
was relatively simple, which only combined the result of 
each submodel through assigning voting weights. (IV) As 
female non-smokers are strongly associated with EGFR 
mutations, separate analysis of male and female patients 
may produce more reliable results. (V) The generalizability 
of our findings should be evaluated in other institutes 
because all the patients were enrolled only in our hospital. 
This study is a tentative exploration about whether CNNs 
could predict EGFR mutations on CT-images. Further 
improvement of the predictive ability and broader validation 
of CNN would be warranted. Other uncommon mutation 
sites like exon 18 and 20 of EGFR would be included as 
well. Among the forthcoming work, the emphasis would 
be the improvement the predictive ability of MMCNNs and 
development of an advanced method combining MMCNNs and 
MRadiomics. It includes the utilization of transfer learning (34),  
multi-instance deep learning (35), aggregated residual 
transformations for deep neural networks (36) and other 
methods. We hope that the refined MMCNNs could satisfy 
clinical requirements to detect EGFR mutations and 
furthermore provide information about other biological 
processes.

Conclusions

Both of the MRadiomics and the MMCNNs could predict 
EGFR mutations on CT images of patients with lung 
adenocarcinoma. The MMCNNs outperformed the MRadiomics 

in the detection of EGFR mutations. The combination of 
these two models, even added with clinical features, is not 
significantly more efficient than MMCNNs alone. Therefore, 
MMCNNs would be the main modality for future exploration 
of detecting EGFR mutations by image analysis.
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