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Introduction

Smal l  ce l l  lung  cancer  (SCLC) i s  an  aggress ive 
neuroendocrine neoplasia, strongly related to smoking 
attitude, characterized by rapid growth and very poor 
overall survival (1). It accounts for 13–15% of all lung 
cancers and represents the sixth common cause of death for 
malignant tumours (2).

Histological evaluation is mandatory. According to the 
World Health Organization (WHO), morphology and 
immunohistochemistry should be performed for the final 
diagnosis (3). Prognosis and management of patients are 
mainly related to tumour staging (4). 

Most patients are diagnosed with advanced disease 
often with a metastatic dissemination [extensive stage 
(ES)]. Despite several research efforts, the survival remains 
poor and only slight improvements have been made for 
appropriate management and effective therapies. Based 
on the most recent ESMO guidelines, the management 
of the disease consists of chemotherapy and radiotherapy. 

A surgical approach is limited to a small percentage of 
localized cancers (T1-2, N0-1, M0) (1). The standard 
chemotherapy has not significantly changed in the last 
decades. Despite a good response after the first treatments, 
due to the elevated proliferative index and the sensitivity 
to DNA damaging drugs, the neoplasia acquires a chemo-
resistance whose mechanisms remain unclear. Unlike 
NSCLC, a targeted therapy for SCLC has not yet been 
defined. The biology of SCLC is indeed not completely 
understood. Several studies have focused on the research of 
the molecular mechanisms responsible for the development, 
clinical behaviour and tumour landscape but the results 
are not conclusive (5). In the last five years some advances 
at the molecular level have resulted in the development of 
prognostic biomarkers and novel target agents (Figure 1). 

In this review we summarized some of the most 
important reports on biomarkers in the sections entitled: 
(I) cancer biomarkers (from genetic to post-transcriptional 
alterations); (II) immune microenvironment biomarkers; 
(III) circulating biomarkers. 
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Cancer biomarkers (from genetic to post-
transcriptional alterations)

The molecular events which cause SCLC have not been 
clearly defined and a whole genetic characterization remains 
challenging. Only a few cases are treated by surgery and 
therefore tumour tissue available for molecular analysis is 
lacking. Recently, some efforts have been done to obtain 
more in depth information about the molecular signature of 
the neoplasia. 

TP53 and Rb have been the most important molecular 
pathways investigated in SCLC. The inactivation of the 
two genes in a mouse model caused a high incidence 
of murine SCLC similar to the humans. This finding, 
together with the high penetrance of murine SCLC, 
was considered an important first step for testing new 
treatment modalities for SCLC (6).

More systematic genomic analyses were carried out 
several years later. In 2012 Peifer et al. conducted a 
wide analysis by using SNP array, exome sequencing, 
transcriptome and genome sequencing on a broad number 
of SCLC specimens. The results confirmed the inactivation 

of Rb and TP53, revealed mutations in PTEN, in SLIT2, 
and EPHA7, and focal amplifications of the MYC family 
and FGFR1. Furthermore, recurrent mutations in histone-
modifying genes, CREBBP ,  EP300 ,  and MLL  were 
detected. These results increased the knowledge of the 
main biological events for the development of the neoplasia 
with the identification of new potential targetable genome 
alterations (7).

In the same year, Sos et al. performed a genomic and 
chemical vulnerability analysis on SCLC cell lines in order 
to identify therapeutically relevant genome alterations. The 
authors found that a subset of SCLC was susceptible to the 
action of Aurora B kinase inhibitors. This was another step 
to further investigation of the molecular basis in SCLC and 
consequently to a rational therapeutic approach (8). 

A more in depth analysis on human tissue, SCLC and 
lymphoblastoid cell lines identified new recurrent somatic 
mutations. Among them, mutations in kinases, G-protein-
coupled receptors, chromatin-modifying protein and SOX 
gene family members were detected. In addition, analysis 
of RNA sequencing data showed a recurrent RLF-MYCL1 
fusion whose silencing obtained in cell lines decreased the 

Figure 1 Biomarkers in SCLC reported in the text. On the left the key biomarkers involved in the genetic, epigenetic and post-
transcriptional landscape. On the right the cancer interaction with the immune microenvironment and the circulating biomarkers. SCLC, 
small cell lung cancer.
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proliferative activity (9).
Genome-wide copy number analysis found that 

amplifications of loci of MYC family genes were frequent 
and mutually exclusive. KIAA1432, was also identified 
as amplified in SCLC with frequent fusion transcripts in 
several amplified regions. This suggested a simultaneous 
occurrence of amplification and fusion of genes in a related 
way (10).

In 2015 the same group further explored the genes 
frequently mutated and expressed in SCLC potentially 
targetable in therapy. In addition to the most frequent 
TP53, Rb1 and PTEN alterations other genes, in particular 
TMEM132D, SPTA1 and VPS13B, were found, representing 
other therapeutic targets for the neoplasm (11).

In a relevant number of SCLC cases together with the 
main inactivation of TP53 and Rb, an inactivated mutation 
of NOTCH family genes was detected. This group of genes 
appeared involved in neuroendocrine differentiation in 
SCLC, as confirmed in a pre-clinical mouse model (12).

More recently the protein DLL-3 has been studied as 
a potential targetable biomarker in SCLC. This protein is 
normally expressed in the fetal brain where it acts on the 
somitogenesis and is an inhibitory ligand for the Notch 
pathway, suppressing oncogenesis and tumour growth. 

In 2015 Saunders et al. discovered the association 
between DLL3 expression and the neuroendocrine 
phenotype. The study, carried out on xenograft models and 
human neoplastic tissue, demonstrated the up-regulation 
and the aberrant expression of DLL3 in SCLC. In this 
tumour, the employment of an anti-DLL3 treatment 
resulted effective in eradicating tumour initiating cells (13).

Based on these results several subsequent studies and 
clinical trials further investigated the role of DLL-3 and 
the efficacy of the administration of conjugated drugs for a 
target therapy in SCLC (14,15).

Some studies focused on the role of chromatin 
remodeling by chromatin modifying complex Polycomb 
Repressive Complex 2 (PRC2). This macromolecule is 
composed of subunits among which EZH1 or EZH2 
(enhancer of zeste homolog), two histone H3K27 
methyltransferases.

Already in 2013 the PRC2 overexpression and PRC2-
target gene repression, such as cellular adhesion-related 
genes, was demonstrated to be associated with a poor 
prognosis in SCLC (16).

In the same year, Coe et al. studied the function of 
EZH2 as an oncogene. The high and aberrant expression 
of the histone methyltransferase was considered responsible 

for the hypermethylation of PRC2-target genes with 
consequent pro-tumourigenic functions in vitro (17). 

The protein was discovered to work also on pro-apoptotic 
genes (Puma and Bad) whose inhibition promoted the 
proliferative activity and interfered with p21 levels (18). More 
recently findings from multiple patient-derived xenografts 
have linked the up-regulation of EZH2 with H3K27me3 
associated SLFN11 gene silencing as a frequent mechanism 
of acquired chemoresistance in SCLC (19). Several EZH2 
inhibitors are now under investigation for the treatment of 
different malignancies but not yet for SCLC.

An important role in SCLC biology has been demonstrated 
by non-coding RNA (ncRNA). 

NcRNA are transcripts not translated into protein that 
are involved in key molecular processes (gene expression, 
genetic imprinting, histone modification, chromatin 
dynamics, etc.) through the interaction with all kinds of 
molecules. Several types of non-coding RNA are known. 
Among them, small non-coding RNA (sncRNA) and long 
non-coding RNA (lncRNA) are functionally important in 
SCLC. The distinction between the two groups is based on 
the number of nucleotides (less than and more than 200, 
respectively). 

A lncRNA, CCAT2 (colon cancer-associated transcript 2),  
was detected in SCLC tissue and cell lines and its over-
expression associated with advanced stage and poor 
prognosis (20). Recently the same group has identified 
a novel lncRNA, BLACAT1 (bladder cancer-associated 
transcript 1) involved in the biology of SCLC. BLACAT1 
expression was higher in SCLC and was related to a 
suppressive activity in proliferation, migration and invasion, 
suggesting an oncogenic function. The authors concluded 
that the BLACAT1 acted as an oncogene correlated with a 
worse clinical status and outcome in SCLC patients (21). 

Niu et al. have found that the expression of a splice 
variant of LIM-kinase-2 (LIMK2b) and its binding with 
EZH2 was regulated by the lncRNA TUG1 (taurine up-
regulated gene 1). TUG1 was over-expressed in SCLC 
tissues promoting cell growth and chemo-resistance (22). 

Similarly, the pathway of EZH1 protein was regulated by 
another lncRNA, HOTTIP (HOXA transcript at the distal tip)  
whose amplification in SCLC was associated with a more 
aggressive biological behavior (23). 

In the group of ncRNA, miRNAs (microRNA) were also 
studied in SCLC. 

Several miRNAs, such as miR-134 and miR-92a-2, 
were suggested to be involved in the mechanism of chemo-
resistance by interfering in different processes. Some of these 
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are the HOXA1 function, ZEB2 expression, regulation of 
apoptosis and autophagy, Kras/mapk pathway, PARP1 activity 
and epithelial mesenchymal transition (24-32).

A mechanism often damaged in the complex biology of 
SCLC is DNA repair. In this context, PARP1 [poly (ADP-
ribose) polymerase 1] plays a fundamental role. The protein 
is involved in the repair of single-stranded DNA (ssDNA) 
and is found over-expressed in many gynecological cancers. 
Given the high level of DNA damage PARP protein levels 
are upregulated in SCLC more than other cancers, as 
demonstrated by a study of proteomic and gene expression 
profile (33).

Based on these data, the authors speculated on the 
usefulness of PARP1-inhibitors, evaluating the combination 
with other treatments. This inhibition acts on the E2F1 
pathways, strengthening the therapeutic efficacy of inducing 
double-strand DNA break agents (33). 

The efficacy of a PARP inhibitor BMN 673 was tested in 
vitro and in xenograft models by Cardnell et al. (34). Drug 
sensitivity was associated with high expression of DNA 
repair proteins while resistance was related to baseline 
activation of PI3K/mTOR pathway.

The association between PARP inhibitors and alkylating 
agents in SCLC has been reported recently. Interestingly, 
the expression of SLFN11 (schlafen family member 11), 
a guardian of the genome that promotes cell death in 
response to DNA damage, emerged as a strong predictor of 
the SCLC sensibility to the combination therapy of PARP 
inhibitors with temozolomide. Several clinical trials of a 
number of PARP inhibitors are ongoing in patients with 
SCLC (5,35).

Gardner et al. confirmed the link between the high 
levels of SLFN11 and the chemo-sensitivity of SCLC and 
calls into question the remodeling of chromatin EZH2-
mediated as being responsible for silencing of SLFN11, 
re-establishing in vitro the levels of protein after EZH2-
inhibition (19).

Another factor which emerged as a promising target for 
therapy in SCLC is WEE1, a kinase regulating cell cycle 
progression. The efficacy of WEE1 inhibitor (AZD1775) 
is limited by a common resistance. Sen et al. focused on the 
resistance mechanisms in order to enhance the treatment 
response. The authors found that the expression of AXL, 
a receptor tyrosine kinase, promoted the resistance by 
silencing mTOR cascade and activating an alternative DNA 
damage repair pathway (36).

Chemoresistance and early metastatic spread are the 
main factors for SCLC aggressive behavior. Here below 

are reported some of the most important key post-
transcriptional molecular factors involved in metastatic 
spread.

The chemokine receptor CXCR4 was reported to be 
involved in SCLC progression in 2002 by Kijima et al. 
The authors found that all SCLC cell lines expressed 
CXCR4 receptors as well as c-kit even if in a lower 
percentage, suggesting their role in the pathogenesis of the 
neoplasm. The administration of small-molecule inhibitors 
demonstrated that the two pathways were cooperative in 
biological and biochemical functions and therefore the 
inhibition of both signals could be a targetable marker (37).

The high expression of CXCR4 was also confirmed 
in 2003 both on cell lines and primary tumour samples. 
Insights on its ligand CXCL12 and interaction with 
integrin signaling suggested a key role in cell motility and 
migration. This link gives resistance to chemotherapy thus 
its inhibition was reported as new therapeutic strategies for 
SCLC patients (38,39). 

Further investigations demonstrated that this pathway 
was mainly mediated by a2, a4, a5, and b1 integrins whose 
activation resulted in an increased adhesion of SCLC cells 
to fibronectin and collagen. Stromal cells offer protection 
against chemotherapy-induced apoptosis thus the inhibition 
of this mechanism such as the T14 molecule and its 
derivatives and Plerixafor (AMD3100) could be helpful in 
overcoming the resistance (40,41).

Other works demonstrated alternative roles for CXCR4. 
In 2009 Pfeiffer et al. focused on the activation of the 
JAK2/STAT3 pathway by the link of CXCR4/CXCL12. 
The authors observed high levels of phosphorylated 
STAT3 in SCLC tissues, suggesting an important role in 
tumour biology. In cell lines STAT3 phosphorylation was 
demonstrated to be increased after CXCL12 stimulation 
through a cascade involving JAK2. These results supported 
an activity of CXCR4 both in VCAM1-mediated cell 
adhesion, spreading and cell growth through JAK2/STAT3 
as mediators (42). 

The inhibitor effect of the blockade of CXCR4 was 
investigated in an orthotopic xenograft mouse model. In 
mice with chemoresistant tumours, the administration 
of the molecule AMD3100 reduced tumour size and 
metastases formation, suggesting that the combination 
of CXCR4 inhibitors and standard chemotherapy could 
improve the neoplastic response and survival (43).

CXCR4 was confirmed to be expressed at high levels 
in SCLC and to correlate with bone and brain metastases, 
acting as an independent prognostic factor for survival (44). 
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The combination of the CXCR4 antagonist LY2510924 
to chemotherapy was the object of a multicenter, open-
label, randomized phase II study but the addition of this 
drug in extensive-disease SCLC did not seem to improve 
therapeutic efficacy (45).

High levels of CXCR4 and uPAR (urokinase receptor, a 
key factor expressed in renal tumours) were associated with 
increased lymph-nodal metastases and worse prognosis. 
In cell lines, their co-expression showed a higher invasive 
and migrating capacity. When injected in mice these were 
responsible for an increase in tumour size and the induction 
of lung metastases (46). 

Overexpression of uPAR and HIF-1α/HIF-2α (transcription 
factors, involved in the angiogenetic process) were detected 
in tissues of SCLC patients with shorter overall survival (47). 
HIF-1α overexpression was more recently confirmed as an 
independent poor prognostic factor in SCLC patients (48).

Overexpression of VEGF, another important pathway 
involved in angiogenesis and metastatic processes, was 
found strictly related to high vascularization and nodal 
metastasis in ES-SCLC patients. 

Nevertheless, at multivariate analysis, VEGF expression 
was the most important factor influencing overall survival. 
Higher expression of VEGF and survivin (inhibitor of 
apoptosis) was also detected in neoplastic tissue of SCLC 
patients compared to the control group and their expression 
was significantly associated with lymph node metastasis and 
shorter overall survival. Both factors resulted as independent 
poor prognostic factors (49).

Immune microenvironment biomarkers

Preclinical and clinical studies in the oncological field have 
demonstrated that the immune system has a crucial role in 
recognizing and eradicating tumour cells, thus providing a 
rationale for immunotherapy in different tumours (50). 

In addition to its anticancer abilities, the immune 
system can also promote the growth and proliferation of 
tumour cells, since the microenvironment often contains 
immunosuppressive cell types such as Tregs, myeloid-derived 
suppressor cells and tumour-associated macrophages (51).  
Thus, the imbalance between immune-inhibitory and 
-stimulating mechanisms in the tumour microenvironment 
is crucial in determining tumour immune response and the 
rate of tumour progression (51).

The immune system has also been demonstrated to be 
involved in the pathophysiology of SCLC, particularly 
in relation to the frequent occurrence of paraneoplastic 

disorders (e.g., Lambert-Eaton myasthenic syndrome) and 
the positive predictive impact of immune activity on patient 
prognosis (50).

Immune checkpoint pathways involving the cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) and 
programmed cell death protein-1 (PD-1) receptors and their 
ligands dampen the T-cell immune response (52) and represent 
important biomarkers in different tumour types both for 
prognostic and therapeutic purposes. Nevertheless at present 
limited data have been reported on immune checkpoint 
blockade in patients with SCLC and only a few studies were 
investigated the prognostic and predictive role of this marker. 

CTLA-4 is a transmembrane protein receptor expressed 
on the surface of T cells which regulate responses in the 
early stages of T-cell activation (53). CTLA-4 outcompetes 
the CD28 receptor for binding to its ligands, CD80/
CD86, expressed by antigene-presenting cells (APCs), 
providing an inhibitory rather than stimulatory signal to 
the T cell. Thus, CTLA-4 is involved in the limitation of 
inflammatory responses and the tolerance to self-antigens, 
preventing autoimmunity. However, CTLA-4 may also play 
a detrimental role by inhibiting antitumor immunity and 
its blockade, therefore, may remove the inhibitory signal 
and stimulate antitumor immunity. It was the first immune 
checkpoint receptor to be targeted by a therapeutic agent 
(Ipilimumab) and it was tested in some trials, with positive 
results for progression-free survival but not for overall 
survival (5).

PD-1 is another important immune checkpoint receptor 
largely studied in oncology (54). It belongs to the CD28 
family protein and it is expressed on the surface of T cells, 
regulating their activation and proliferation. It has been 
widely demonstrated that binding of PD-1 (expressed on 
activated tumor-infiltrating T cells) to PD-L1 (expressed 
on tumor cells and on tumor immune microenvironment) 
can inhibit antitumor immune responses in different 
malignancies, such as NSCLC, melanoma and renal cell 
cancer (55,56). In 2016, a multicentre, open-label, phase I/II  
trial of nivolumab (monoclonal antibody against PD-1)  
with or without ipilimumab in patients with recurrent 
ES-SCLC showed a better 1-year survival (57) leading 
to the incorporation of the nivolumab and ipilimumab 
combination as a National Comprehensive Cancer Network 
(NCCN) guideline recommendation for the second-line 
treatment of ES-SCLC. However, the efficacy of checkpoint 
inhibitors in patients with SCLC needs to be confirmed 
in randomized trials, and these treatments have not been 
formally approved for the treatment of SCLC (5). Only 
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a few studies have investigated the distribution of PD-L1 
expression in SCLC tissue samples, reporting contradictory 
data concerning immunostaining and correlation with 
clinical outcomes.

A paper exploring the PD-1/PD-L1 expression pattern in 
SCLC was published in 2015 by Schultheis et al., and none 
of the patients showed positive PD-L1 immunostaining in 
the tumour cell component, while 18.5% of them showed 
positivity in tumour-infiltrating macrophages and 48% in 
T-lymphocytes (58).

Other interesting studies showed a correlation between 
positive PD-L1 immunostaining and a longer overall survival (59)  
or disease-free survival (60). A comparative study using the 
three different antibodies was done by Takada et al. and 
reproducible data were found only when a 5% cut-off of PD-L1  
positive immunostaining was chosen (61).

The predictive role of PD-L1 expression on tumour and 
different immune cell components was investigated by two 
studies that focused on brain metastases of SCLC and a 
positive prognostic role was found for PD-L1 expression, in 
particular in T-lymphocytes, supporting the hypothesis that 
an active immune microenvironment may be targettable in 
metastatic SCLC (62,63).

In 2016, for the first time, copy number alteration 
of CD274, the gene encoding PD-L1, was examined to 
determine in detail genomic alterations that may affect PD-L1  
expression levels in SCLC. The authors reported that a 
subset (2%) of SCLC showed amplification of CD272, 
resulting in high immunohistochemical expression of PD-L1,  
concluding that the amplification of this region could be 
particularly sensitive to therapeutic PD-1/PD-L1 (64). In 
2017 the first and only article about a negative prognostic 
impact of PD-L1 expression in SCLC was published by 
Chang et al. A direct correlation was found between tumour 
cells an T-lymphocyte PD-L1 expression, as well as with 
advanced disease stage (IV); multivariate analysis revealed 
that high tumour PD-L1 expression and stage IV disease 
represented two independent risk factors for poor overall 
survival (65).

Interestingly, the role of immune microenvironment in 
SCLC focusing on PD-L1 expression and FOXP3-positive 
tumour infiltrating T-lymphocytes was investigated in a 
large number of non-metastatic and metastatic SCLC tests. 
PD-L1 was more frequently detected in non-metastatic 
SCLC cases, leading to the hypothesis that downregulation 
of PD-L1 could be related to a high invasion potential. 
Another intriguing result was the potential prognostic 
impact of FOXP3+T-lymphocytes in the different stages 

of SCLC (66). More studies are needed to clarify the role 
of PD-L1 in SCLC, in terms of prevalence of PD-L1 
expression and in evaluating its role in predicting response 
to the treatment and outcome.

Overexpression of CD47, a cell-surface molecule that 
inhibits activation and phagocytic activity of macrophages, 
was found on the surface of human SCLC cells and has 
been implicated in immune escape by tumours (67). To date, 
only experimental studies have been performed, and clinical 
exploration of CD47/SIRPα inhibition as a therapeutic 
strategy for SCLC is expected to begin.

Circulating biomarkers

Several efforts have been made for years to find cost-
effective and non-invasive serum markers able to 
indicate the biology and the behavior of SCLC. Several 
serum biomarkers have been identified and reported in 
publications. However despite extensive studies, cancer 
detection and follow-up via a single marker remains difficult 
due to the low sensitivity, specificity and reproducibility of 
serum biomarkers. Multiple biomarkers rather than a single 
serum marker testing could be the most sensitive approach 
in the future.

The significance of neuron specific enolase (NSE) in 
SCLC has been investigated and reported to have a role in 
the diagnosis, treatment and follow-up since the mid-eighties. 
The levels of NSE were found to have a stronger correlation 
to disease extent and response to treatment in patients in 
comparison to other markers [such as carcinoembryonic 
antigen (CEA); calcitonin, ferritin, lactate dehydrogenase 
(LDH)] (68,69). The sensitivity and specificity of NSE serum 
marker has been addressed by several authors often with 
contradictory results. NSE levels in SCLC patients were 
considered to have a good specificity, whereas the sensitivity 
appeared depending on the stage of disease. Indeed, the 
levels were elevated in a majority of ES-SCLC and in a less 
percentage of limited one (70).

NSE measurements before therapy also resulted 
useful in evaluating response duration, as emerged from a 
multivariate analysis (71).

More recently, a meta-analysis about the association of 
serum NSE levels and the prognosis of SCLC confirmed 
that patients with high levels of NSE showed a shorter 
overall survival than patients with low ones, attributing a 
prognostic value to the marker (72).

In patients treated with first line platinum-based 
chemotherapy high levels of serum NSE as well as lactate 
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dehydrogenase (LDH) had a worse progression free survival 
and overall survival, confirming a suggested prognostic and 
predictive function (73).

A high level of serum LDH, a metabolic enzyme 
detected in patients with several types of malignancies, was 
identified as a prognostic factor to better stratify patients 
with SCLC (74). Several studies found a significant relation 
between serum LDH levels and outcome either in limited-
stage and extensive disease SCLC (75,76).

A potential validation for the use of LDH in monitoring 
treatment response and for discriminating different forms of 
diseases has also recently been proposed by Chen et al. (77).

Serum pro-gastrin-releasing peptide (ProGRP), a 
neuropeptide involved in several physiological mechanisms, 
was reported as a useful marker for treatment monitoring 
and survival in SCLC (78).

However the prognostic and predictive value of 
ProGRP remained doubtful as emerged from the results 
of multivariate analyses especially if compared to other 
markers such as NSE (79,80). 

Higher levels of carcinoembryonic antigen (CEA), an 
oncofetal protein, in patients with ES-SCLC and a strong 
correlation with response and survival was firstly reported 
by Sculier et al. in 1985 (81).

The relevance of CEA serum concentrations in SCLC 
patients in predicting the outcome was suggested by Zhu 
et al. In extensive-stage disease, normal serum CEA levels 
together with thoracic irradiation therapy and more than 
4 cycles of chemotherapy were independent prognostic 
factors for overall survival in SCLC (82).

CEA has also been recently investigated as predictor 
of brain metastasis and survival in prophylactic cranial 
irradiated SCLC patients (83). 

CTCs (circulating tumour cells) are cancer cells that 
are shed into vessels from tumors and have the potential 
to develop metastatic lesions. SCLC is the cancer with 
the higher level of CTCs. Given the metastatic potential 
of these cells, many studies have been carried out to 
understand their diagnostic, prognostic and predictive value 
in neoplastic diseases and their utility as biomarker or as 
“liquid biopsy”. The prognostic value of CTCs in SCLC 
was controversial until the early 2000s mainly due not yet 
well developed technologies for detection (84). 

In 2012, Hou et al. found that the CTCs, apoptotic 
CTCs and CTM (circulating tumor microemboli) number 
after one cycle of chemotherapy were independent 
prognostic factors for SCLC (85). 

Several other groups confirmed more recently the link 

between CTCs and poor prognosis in SCLC patients (86-88).  
However the role of CTCs as predictors to therapeutic 
response remains quite debated. Wang et al. found relation 
between the CTCs levels and serum NSE but not with the 
therapy responsiveness (89).

The decrease in the number of CTCs in response to a 
second-line chemotherapy was proposed to be related to 
the effect on the metastases or resident SCLC lesions rather 
than an effective tumor progression blockage (90).

Several studies deepened the molecular biology of CTCs 
and highlighted different genetic profiles responsible of 
chemosensitive or chemorefractory SCLC (91,92). Several 
works have recently focused on the expression of different 
CTC biomarkers, such as receptor of tyrosine kinase, 
CXCR4, VEGFR2, Bcl-2, etc. and their correlation with 
prognosis and chemo-resistance mechanisms (93-95).

The CTCs are the responsible of the metastatic 
dissemination of SCLC. This is proven by the expression 
of epithelial-mesenchymal transition (EMT) phenotype 
in SCLC cell lines derived from primary tumors and 
metastases. The presence of a CTC with a mesenchymal-
like phenotype, based on the low expression of E-cadherine 
and the high expression of c-MET, was associated with 
longer survival (96).
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