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The histologic subclassification of tumors as either 
squamous cell carcinoma or adenocarcinoma is used by 
convention to guide systemic chemotherapy for patients 
diagnosed with non-small cell lung cancer (NSCLC) (1,2). 
The current gold standard for histopathologic classification 
of tissue specimens is visual microscopic inspection of tissue 
specimens by pathologists. In cases where morphological 
appearance is not adequate for classification, discriminatory 
immunohistochemical (IHC) stains are often required. 
Visual inspection of pathology slides is a labor-intensive 
process and diagnosis may be further delayed if IHC stains 
are required for definitive diagnosis. Over the last 20 years, 
further insights into the heterogeneous nature of NSCLC, 
particularly adenocarcinoma, have motivated new research 
areas endeavoring to elucidate additional actionable 
characteristics of tumor cells and the surrounding tumor 
microenvironment. In this era of precision medicine, 
identification of targetable somatic mutations is an essential 
step in determining optimal systemic therapy in patients 
with adenocarcinoma of pulmonary origin. Despite 
the many advancements in methodologies for testing 
genetic alterations, molecular testing is also often time 
consuming and can be limited by availability of adequate 
tissue samples (3,4). Associations between morphologic  
appearances on histopathology and certain genetic 
alterations have been previously described, however these 

findings lack discriminatory power to an extent required to 
impact traditional diagnostic protocols (5,6). 

Advances in computer science, statistics, and data science 
have produced image classification algorithms devised to 
recognize patterns intrinsic to various types of objects. 
These algorithms are being widely used commercially 
outside the medical field in applications such as image and 
facial recognition on social media (7). This technology 
has many potential applications in the medical field as 
well, including the potential for automated classification 
of histopathologic specimens. Over the last decade rapid 
advancements in computing power, the availability of large 
datasets, and development of improved algorithms have 
accelerated the pace of innovations in image classification. 
The use of deep convoluted neural networks (DCNN), 
in particular, which are modeled after biologic networks 
involved in image processing (such as the visual cortex) have 
improved the predictive performance and robustness of 
image-derived classifiers. These essentially process multiple 
layers of non-linear information in the form of extracted 
image-based features to recognize patterns which can then 
be used to classify images into different categories (8,9). In 
a recently published study in Nature Medicine, Coudray 
et al. trained a deep convolutional neural image processing 
network to automatically classify histopathological subsets 
from digitalized lung specimens as well as to predict 
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common mutated genes in adenocarcinoma of the lung (10). 
The performance of their models was quite promising, with 
accuracy comparable to that of pathologists and findings 
that were reproducible irrespective of the methodologies 
used for tissue preservation and processing. Crucial for 
histopathologic image processing, the authors used a pre-
trained image recognition model (Inception V3) which 
has the ability to process data at multiple resolutions. 
This model has demonstrated good performance in the 
presence of both limited hyperparameter specification 
and computational capacity, and thus valuable to broader 
dissemination of big data analytics (11). 

In this study, 1,634 whole slide images (1,176 of tumor 
tissue and 459 of normal lung) obtained from The Cancer 
Genome Atlas (TCGA) database were used to train and 
validate image classification models. Training the classifiers 
using whole slide images, the authors eliminated potential 
confounders that could arise by training and validating the 
model on tiles obtained from the same specimen. Since the 
whole slide images were too large to be utilized as an input 
for the neural network, the images were split into non-
overlapping tiles for analysis. The authors first developed 
a classification model that could discriminate between the 
tiles consisting of normal lung tissue, adenocarcinoma 
and squamous cell carcinoma. The performance of this 
model was assessed by area under the receiver operating 
characteristic curve (AUC), where an AUC of 1 reflects 
perfect class discrimination, while an AUC of 0.5 implies 
that the classifier is no more informative than random 
guessing. The AUC of their model was reported as 0.97, 
which is higher than what has been achieved in previously 
reported studies, some of which used conventional  
feature-based image processing and machine-learning 
methods (11,12). When compared to the classification of 
whole slide images in the training set by two thoracic 
pathologists and one anatomic pathologist, the deep-
learning model had a slightly higher agreement with 
the TCGA classification, although this did not reach 
statistical significance (AUC 0.82 vs.  0.78 for the 
consensus of the three pathologists). Out of the slides 
that were misclassified by the model, over half were 
also inaccurately identified by at least one pathologist. 
In addition, 45 of the 54 TCGA images that had been 
misclassified by at least one pathologist was accurately 
classified by the model. 

Since real world pathology slides often differ from the 
TCGA slides in that they have a lower content of tumor 
cells, artifacts from processing and other features such 

as blood clots, necrosis and inflammation that can affect 
the accuracy of automated image recognition models; 
the authors went on to validate their classifier using an 
independent set of formalin-fixed paraffin-embedded 
(FFPE), frozen section and biopsy specimens (n=140, 98 
and 102 respectively). To account for some of the previously 
mentioned complexities of real-world biopsies, areas of high 
tumor content were manually annotated by pathologists and 
selected for testing. In these high tumor content areas, the 
model was able to accurately classify adenocarcinoma from 
squamous cell carcinoma with encouraging accuracy (AUC 
ranging from 0.833 to 0.9777), with a higher accuracy 
at 5× magnification than 20× likely due to the higher 
number of non-malignant features visible at the higher 
resolution. Even after replacing the manual annotation 
of high tumor content areas with an automated selection 
process, the performance of trained classifier was more or 
less equivalent. For the cases that were morphologically 
inconclusive with regards to histology per evaluation by 
pathologists (one third of the total cases), the model was 
able to accurately determine the histopathology with an 
AUC of 0.809 which was only marginally lower than the 
AUC of the slides that had an obvious morphology. 

In another set of experiments, the authors used a similar 
deep learning approach to distinguish somatic mutations in 
specimens of lung adenocarcinoma. They first trained and 
validated the model on specimens from the TCGA with 
at least 10% mutated tumors and were able to identify six 
mutations—serine/threonine protein kinase 11 (STK11), 
EGFR, FAT atypical cadherin 1 (FAT1), SET binding 
protein 1 (SETBP1), KRAS and TP53 with AUCs between 
0.733 and 0.856. In 4 out of the 6 genetic mutations, the 
model-based classifier was found to be associated with allele 
frequency. In an independent validation set of matched 
adenocarcinoma specimens with and without EGFR 
mutations (n=29 and 34 respectively), the AUC of the 
model was 0.75 in those that had EGFR testing performed 
by sequencing and 0.659 in those with testing performed 
by IHC. Of note, the classifier had been trained on images 
from TCGA which were tested using sequencing and 
therefore included other less common EGFR mutations 
which cannot be detected by IHC. 

The findings reported in this study are intriguing and 
pave the path for further development of such deep learning 
models for processing digitalized histopathology images. 
The authors should be commended for not only testing 
the model in a set of slides with optimal tumor content 
and lesser artifacts (TCGA), but also pursuing rigorous 



371

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2019;11(2):369-372jtd.amegroups.com

Journal of Thoracic Disease, Vol 11, No 2 February 2019

validation of the robustness of their model in independent 
real-world specimens that were procured and processed in a 
variety of different manners (fresh frozen and FFPE slides). 
The fact that the discriminative performance of the classifier 
for histology was equivalent to that of three pathologists 
suggests that image processing technologies may have 
evolved to an extent that warrants more widespread 
interrogations with clinical applications. In addition, the 
model performed almost as well in slides where morphology 
alone was considered to be inadequate for classification by 
pathologists, which further attests to the robustness of the 
model. 

While phenotypic associations of somatic mutations 
are not routinely used for predicting oncogenic drivers 
in NSCLC, the authors of this study reported promising 
predicative capabilities for 6 frequently noted genetic 
alterations in this population. Although the predictive 
capability of their genetic predictive model when tested 
in an independent cohort of patients with known EGFR 
mutation status was less accurate than that of their histology 
classification models, these findings warrant further testing 
in larger independent cohorts. Of note, the model was 
unable to detect ALK rearrangements despite the specific 
morphologic patterns described with this genetic alteration. 
It is therefore likely that the predictive performance of the 
DCNN for genetic mutations depends on the degree of 
phenotypic changes associated with them. 

Multiple studies have highlighted the importance of 
shortening the time to diagnosis and treatment in patients 
with advanced NSCLC (13). Using traditional diagnostics, 
it usually takes a few days for the histopathologic diagnosis 
and at least a week at most institutes to obtain additional 
molecular testing. The authors state that by using 
multiple graphics processing units (GPUs), the histologic 
classification using their model could be executed in seconds. 
Scanning of the slides to create digitalized images is currently 
a rate limiting step in this process, however with newer 
technology that may no longer be the case (14). It is plausible 
that in the future such deep learning image classification 
models could be integrated with traditional visual 
inspection to hasten the time to diagnosis, reduce inter 
observer variation and aide diagnosis in morphologically 
inconclusive cases. It is however important to note that 
while pathologists are trained to account for artifacts and 
variability that may arise as a consequence of different tissue 
processing methods, automated models that are trained 
on standardized slides which lack the ability to accurately 

classify such non-malignant features. Future research efforts 
directed at automated classification of such features may 
further improve upon the performance of these models 
in real world specimens. Nonetheless due to the inherent 
extent of variability in these features it is possible that the 
discriminative abilities of automated models may serve to 
compliment, but not replace conventional pathological 
evaluations. The integration of automated models trained 
on histology slides into routine clinical practice is also likely 
to be limited by the fact that many patients with NSCLC 
only have cytology specimens available at diagnosis. 

The genetic mutation predicting capabilities of the 
models reported in this study are hypothesis generating 
and warrant further investigation and validation in larger 
cohorts. However, the performance of these models would 
have to be comparable to that obtained by sequencing 
to merit integration into routine clinical diagnostics. In 
addition, the ability of any such platform to detect all 
targetable mutations is key, since therapeutic decisions 
are usually delayed until information about all such driver 
mutations is available. There is however value to automated 
mutation prediction in not only hastening the time to treat 
by allowing early detection of oncogenic drivers, but also 
potentially forgoing the need for additional biopsies in cases 
with limited tissue for diagnosis. 

In conclusion, the findings reported by Coudray et al.  
forecast an era of integrative diagnostics where deep 
learning approaches could be integrated with traditional 
diagnostic methods to aide pathologists .  Further 
refinements o discern non-malignant artifacts would be an 
important step for generalizability of these models. It is also 
of the utmost importance that future research endeavors in 
this field exhaustively interrogate the reproducibility and 
robustness of their models in the manner reported in this 
study. Other foreseeable hurdles to the routine application 
of deep learning techniques include the additional costs 
and infrastructure requirements for their implementation, 
although after the initial investment it is likely that the cost 
of evaluating individual cases would be favorable compared 
to traditional testing. The economic viability of such an 
integrated workflow model would have to be assessed before 
automated histopathologic classification becomes a part of 
the standard diagnostic process. 
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