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Introduction

In clinical practice, it  is difficult to find relevant 
hemodynamic and oxygenation parameters that can serve 
as titration endpoints for hemodynamic interventions. 
In patients with shock or having undergone major 
surgery associated with high incidence of postoperative 
complications, the accepted goal for hemodynamic 
optimization is to increase O2 delivery (DO2) and thus 
O2 consumption (VO2) (1). However, recent studies have 
failed to confirm that hemodynamic optimization reduces 
morbidity and mortality (2-4). Even when macrocirculatory 
targets are met, microcirculatory disturbances can persist 
and lead to organ dysfunction (5). Hence, improved 
hemodynamic management might only be achieved by 
detecting VO2’s responsiveness to an increase in DO2 

(i.e., in patients with anaerobic metabolism) (6). To date, 
several variables have been described as markers of tissue 
perfusion: oxygen venous saturation (SvO2) (7), the veno-
arterial PCO2 gradient (PCO2 gap) (8), the arterial lactate 
level, and the ratio of the veno-arterial PCO2 gradient to 
the arteriovenous content difference in O2 (i.e., the PCO2 
gap/DavO2 ratio) (9-12). Although these variables have 
been studied in intensive care units (ICUs) and operating 
theaters, they do have some limitations (described in other 
chapter of this publication). Moreover, these conventional 
variables are markers of systemic hypoperfusion, and so are 
not able to detect regional hypoperfusion (5).

In the 1990s, Nakagawa et al. and Tang et al. suggested 
that an increase in tissue PCO2 (“stagnant hypercapnia”) 
was a marker of inadequate tissue perfusion (13,14). Indeed, 
the difference between regional tissue PCO2 and PaCO2 
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(the tissue-arterial PCO2 gap) is an earlier, more accurate 
marker of regional tissue hypoperfusion than whole-body 
parameters are (15,16). This concept has been validated in 
many animal models and clinical studies (13,17-20). From 
a physiological point of view, an increase in tissue PCO2 
results from two mechanisms that must both be present 
to produce “stagnant hypercapnia”. Firstly, an increase in 
tissue CO2 which can results of rises in aerobic metabolism 
with greater CO2 generation by the cells or results of 
tissue hypoxia with an increase in anaerobic glycolysis 
and excessive production of lactic acid (17). Secondly, the 
maintenance of blood flow easily removes CO2 into the 
venous circulation via the “washout phenomenon” (21). 
Thus, stagnant hypercapnia can occur only when blood 
flow is abnormally low. Thus, PCO2 gap increases as cardiac 
output falls in case of tissue hypoxia or without tissue 
hypoxia (22,23) (Figure 1).

These findings have been confirmed by some clinical 
studies (18,24,25)—most notably by Vallet et al.’s study of 
limb-PCO2 gap (26). These researchers demonstrated that 
the PCO2 gap increased when the DO2 fell after a reduction 
in blood flow (ischemic hypoxia) but not when DO2 fell 
with maintenance of blood flow (hypoxic hypoxia). These 
results have been confirmed in animal studies of the tissue-
arterial PCO2 gap (19,20); the latter increased during 
ischemic hypoxia but not during non-ischemic hypoxia.

Hence, these findings suggest that the tissue-arterial 
PCO2 gap is a marker of tissue hypoperfusion in general, 

and not just in cases of hypoxia. The normal reference 
range for the tissue PCO2 gap is 8 to 10 mmHg (20,27).

The objectives of the present review were to describe the 
sites at which regional PCO2 and tissue-arterial PCO2 gap 
have been measured (gastric, sublingual, transcutaneous and 
bladder sites), assess this parameter’s prognostic value, and 
evaluate its utility in goal-directed therapy.

Gastric intramucosal PCO2 (PgCO2)

The tonometric measurement of regional CO2 pressures is 
based on equilibration of a gas’s partial pressure between 
two compartments separated by a semi-permeable 
membrane. Using air or saline as an equilibration medium 
enables the gas analyzer to automatically measure the 
PCO2 at a balloon located at the end of a gastric tube 
(Figure 2). The PCO2 in the collected air is measured using 
infrared spectrometry. The stomach is easy to access, and is 
known to be highly sensitive to tissue hypoperfusion (28). 
Furthermore, PgCO2 measurements have been used to 
detect early splanchnic ischemia (29).

In the event of tissue hypoxia and low VO2, CO2 
production by the gastric mucosa increases. Thus, it 
has been suggested that PgCO2 is a marker of tissue 
hypoxia (30) and can predict morbidity and mortality in 
critically ill patients (31). However, as mentioned in the 
introduction, the PgCO2 − PaCO2 gradient (PgCO2 gap) 
might be more valuable because it reflects the adequacy 

Figure 1 Mechanisms of the CO2 stagnation in the tissues. [1] During tissue hypoxia, aerobic CO2 production (VCO2) falls as a result of a 
decrease in oxygen consumption (VO2). However, anaerobic glycolysis increases, leading to the excessive production of lactic acid and thus 
the generation of H+ ions. The latter are buffered by bicarbonates, and so anaerobic VCO2 increases in the cell. This results in a smaller 
reduction in total VCO2 than in VO2 and thus an increase in the respiratory quotient (RQ) (VCO2/VO2 ratio). [2] Tissue stagnation of CO2 
can occur only when blood flow is abnormally low. 
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of gastric mucosal blood flow. In critically ill patients, the 
PgCO2 gap values measured on admission to the ICU and 
24 h later constituted an independent prognostic factor 
for 28-day mortality, with a cut-off of >20 mmHg (16). 
In a perioperative setting, this index was predictive of 
postoperative complications (27,32). 

When used as a prognostic tool in critically ill patients, 
the PgCO2 gap decreases upon fluid challenge. The change 
is related to the baseline PgCO2: PCO2 gap responders 
were defined by a decrease of more than 3 mmHg. Even 
more interestingly, whole-body indexes of oxygenation 
(SvO2, VO2 and PCO2 gap) remained unchanged after fluid 
challenge, when the PgCO2 gap decreased (33).

The main limitations of this method are the need for 
concomitant H2-blocker use and the discontinuation of 
enteral feeding (34). Moreover, this type of device has not 
been developed commercially, thus limiting its availability.

Esophageal tonometry has been proposed as a convenient 
alternative to gastric tonometry in animal models of  
shock (35,36). Good inter-variable correlations were found 

at this measurement site. However, this site is more difficult 
to access, which explains its scarce use in clinical practice.

Sublingual PCO2 (PslCO2)

The most intensively developed and well-studied sublingual 
CO2 sensor is the CapnoProbe® CO2-sensing optode 
(Nellcor, Pleasanton, CA, USA) (31,37-40). The optode 
contains a CO2-sensing fluorescent dye that is excited by 
light conducted through an optical fiber. The emitted 
fluorescence is then transmitted back to the instrument 
(Figure 3) (31).

Interest in the sublingual region has been stimulated 
by orthogonal polarization spectral imaging studies that 
have evidenced a decrease in sublingual capillary density 
in the event of septic shock (41,42). A study performed in 
the 1980s found that PslCO2 was elevated in a model of 
hemorrhagic shock (43). In animal studies of hemorrhagic 
and septic shock, sublingual CO2 measurements are well 
correlated with PgCO2 and whole-body markers of tissue 
hypoperfusion (13,43,44). The main advantages of this 
technique relate to its noninvasive nature, the absence of 
a requirement for withdrawing enteral feeding, and the 
correlation with the splanchnic region.

The basal value of PslCO2 was found to be predictive of 
mortality in acute circulatory failure and was associated with 
arterial lactate levels. When PslCO2 exceeded a threshold 
of 70 mmHg, its positive predictive value was excellent. 
Conversely, PslCO2 fell more quickly than arterial lactate 
during resuscitation (45). 

However, the most interesting marker appears to be the 
PslCO2 − PaCO2 gradient (the PslCO2 gap). It is reportedly 
a better prognostic factor than whole-body markers (SvO2, 
cardiac index, DO2, and arterial lactate), and the best cut-
off value was 25 mmHg (15). The PslCO2 gap may serve 
as an index of tissue dysoxia and the severity of tissue Figure 2 Gastric intramucosal PCO2.
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Figure 3 Sublingual PCO2 measurement with the CapnoProbe®. The optode contains a CO2-sensing fluorescent dye that is excited by light 
conducted through an optical fiber. The emitted fluorescence is then transmitted back to the instrument.
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hypoperfusion in critically ill patients (38,39). 
With regard to the PslCO2 gap’s potential as a treatment 

target (endpoint), it has been showed that the reperfusion 
of the damaged sublingual microcirculation (assessing using 
orthogonal polarization spectral imaging) was associated 
with the normalization of the PslCO2 gap during the 
resuscitation of patients with septic shock (37). However, 
the PslCO2 gap’s potential value as an endpoint during 
resuscitation has not yet been evaluated in critically ill 
patients. Although, this technique has been tested at the 
bedside, the CapnoProbe® is no longer commercially 
available.

Transcutaneous PCO2 (PcCO2)

Transcutaneous measurement of tissue CO2 is a simple, 
noninvasive technique. Interest in this method has been 
stimulated by studies of capnometry at the earlobe (46). 
The system includes a Severinghaus heated PCO2 electrode 
and a pulse oximetry sensor clipped to the earlobe (TOSCA® 
500 monitor, Linde Medical Sensors, Basel, Switzerland). 
In a study of patients in the ICU, the transcutaneous PCO2 
(PcCO2) was well correlated with PaCO2 (47-49). Other 
devices based on the same technology (SenTec AG, Basel, 
Switzerland) have yielded the same accuracy (50). However, 
a recent study found that measurement repeatability was 
poor (51).

Another study focused on the gradient between PcCO2 
and PaCO2 (the PcCO2 gap) (52). The baseline PcCO2 gap 
levels were significantly higher in patients with septic shock, 
and the decrease after resuscitation was significantly greater 
in survivors than in non-survivors. Interestingly, survivors 
and non-survivors did not differ with regard to the change 
over time in whole-body parameters (cardiac output and 
ScVO2). A PcCO2 gap above 16 mmHg on day one was 
associated with a poor outcome. Interestingly, the variations 
in the PcCO2 gap during fluid challenge were inversely 
correlated with changes in microcirculatory skin blood flow.

Even though a large number of studies have investigated 
transcutaneous PCO2 in the field of neonatology, a 
Cochrane Collaboration review concluded that there was 
no evidence to recommend the use of transcutaneous CO2 
monitoring in neonates (53).

In critically ill patients, the PcCO2 gap might be of 
value as an additional resuscitation endpoint when other 
parameters (e.g., arterial lactate and ScVO2) are in the normal 
range despite persistent tissue hypoperfusion (54). However, 
well-designed, adequately powered, randomized, controlled 

studies of the efficacy and safety of transcutaneous CO2 
monitoring are now required.

Bladder PCO2 (PbCO2)

The results of several animal studies have suggested that 
monitoring the intramucosal PCO2 in the bladder (PbCO2) 
may be a minimally invasive technique for monitoring 
perfusion (55-57). This technique measures PbCO2 via the 
gas analysis of saline samples collected from the balloon of a 
Foley catheter inserted into the bladder. The PbCO2 value 
is well correlated with DO2 and PgCO2 (55,56). However, 
these results were not confirmed by another group of 
researchers (57). Clinical studies of the accuracy of this 
device are required. 

Conclusions

Conventional whole-body hemodynamic markers cannot 
always predict tissue hypoperfusion. By analogy with 
measurement of the whole-body PCO2 gap, the tissue 
PCO2 gap has been described as a marker of blood flow 
adequacy and can be used to detect tissue hypoperfusion. 
Monitoring PgCO2 gap has given good results, although 
several technical limitations and failure to develop this tool 
commercially has prevented the wider use of this technique. 
Further studies are needed to assess the efficacy and safety 
of PslCO2 gap and PcCO2 measurements. Although 
measurement in the bladder are promising, PbCO2 must be 
now studied in patients. Lastly, the blood flow distribution 
across the various organs cannot yet be assessed.
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