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Introduction

Anatomically located between the left ventricle outflow 
tract and the ascending aorta root, aortic valves play a key 
functional role in the cardiac cycle by enabling blood influx 
into the aorta lumen in response to ventricular systole and 
avoiding blood backflow into the left ventricle chamber 
during ventricular diastole. In such hemodynamics, 

valve cusps are subjected to recurring cycles of bending, 
shearing and tearing stresses, since they cyclically open 
and close about a billion times during a lifetime. It is thus 
not surprising that these specialized anatomic components 
frequently undergo structural alterations leading to two 
distinct congenital or acquired valvulopathies, i.e., aortic 
valve regurgitation and calcific aortic valve stenosis (CAVS). 
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Aortic valve regurgitation is due to cusp weakening 
commonly associated with dilation of the ascending aorta 
root, causing improper valve closure with blood re-entry 
into the left ventricle chamber during ventricular diastole. 
Conversely, CAVS is characterized by cusp stiffness 
due to fibrosis and calcification, with obstruction of the 
left ventricular outflow tract leading to concentric left 
ventricle hypertrophy with associated angina, syncope and  
dyspnea (1). Valve calcification is a form of ectopic 
calcification due to very poor cusp vascularization with the 
consequent absence of an efficient macrophage-mediated 
scavenging of degenerated cells and their remnants, 
which act as early calcification foci. Valve calcification is 
conventionally distinguished into (I) metastatic calcification, 
i .e., diffused calcification due to systemic mineral 
imbalance, typically affecting uremic subjects, and (II) 
dystrophic calcification, i.e., topic calcification caused by 
tissue injury, aging and/or existence of other comorbidities, 
typically occurring in non-uremic subjects (2). Degenerative 
CAVS is the most common valve disorder caused by valve 
dystrophic calcification affecting the elderly population in 
the Western world (3). First described by Mönckeberg in 
1904 (4), CAVS was regarded for years as a passive age-

related process, with the major role being played by the 
prolonged shear-and-tear effect of hemodynamic stress 
on valve cusps (5-7). In the last two decades, the concept 
of CAVS etiopathogenesis has undergone considerable 
changes in that this valve disease is no longer regarded as 
the end stage of a mere degenerative process associated 
with cell death (8-11), but rather as a multifactorial calcific 
disorder including (I) accumulation of altered lipids, (II) 
release of proinflammatory mediators, (III) downregulated 
expression of anti-calcific factors, (IV) gene polymorphisms 
and (V) cell osteoblastic differentiation (12-22) (Figure 1).  
Concerning this latter aspect, reports have increased of 
possible transdifferentiation of aortic valve interstitial 
cells (AVICs) into osteoblast-like cells with heterotopic 
bone formation (23-28). Although these interesting results 
contribute to increasing knowledge on the processes 
underlying calcific valve disorders, they seem to have 
introduced the misconception that the terms “ectopic 
calcification” and “ectopic ossification” indicate the same 
pathological process. In this regard, it is worth pointing out 
that heterotopic bone formation was histologically shown 
to have occurred in less than 13% of thousands of explanted 
CAVS-affected valves (14,24) and actual osteocyte-like 

Figure 1 Factors reported to be potentially involved in aortic valve mineralization.
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differentiation was observed in only one of 31 failed heart 
valves (23), strongly suggesting that valve ossification may 
be a mere epiphenomenon sometimes co-occurring with 
or superimposing on valve calcification, rather than this 
histogenetic process being regarded as a sine qua non for the 
occurrence of mineralizing processes. Ectopic calcification 
is also the main cause of failure in the mid to long term 
of bioprosthetic valves fabricated using native valves or 
pericardium harvested from animals (xenografts) or humans 
(allografts) (29,30). It was estimated that 20% to 30% of 
bioprosthetic valves require replacement within 10 years 
of implantation, with failed valve bioprostheses increasing 
up to 50%, or more in pediatric patients, within 15 years 
of implantation (2,29). Malfunctioning of implanted valve 
bioprostheses is reported to be due mainly to (I) cytotoxic 
effects exerted by treatments with glutaraldehyde (GA) or 
other crosslinking agents for xenografts (29,31-33), (II) 
tissue alterations caused by cryopreservation/thawing for 
allografts (29,34-37) and (III) occurrence of graft-versus-
host rejection for both types (34,35,37-40). Disadvantages 
limiting the efficacy of the valve substitutes currently used in 
clinical practice in terms of biocompatibility, durability and 
capacity for tissue remodelling stimulated the development 
of novel tissue-engineered heart valves (TEHVs) (41). 
TEHVs can be obtained using synthetic or biological 
acellular scaffolds as well as scaffolds deriving from heart 
valves deprived of their resident cell population, all sharing 
the condition of being free of chemical treatments with any 
crosslinking agent. Such innovative bioengineered valves 
are being shown to permit both in vitro and in vivo cell 
repopulation, with good potential for tissue remodelling, 
adequate biocompatibility, proper mechanical behaviour 
and reduced propensity to mineralization (42-45), appearing 
as a promising alternative to the commercially available 
valve bioprostheses.

Ectopic calcification and cell death

Calcif ication is  a  widespread process that occurs 
physiologically in biological systems, from unicellular 
organisms to hard tissues belonging to Invertebrates and 
Vertebrates, besides involving soft tissues affected by 
various calcific diseases (46). In bones and teeth, major 
mineral nucleation sites are represented by cell-derived 
matrix vesicles, the production of which surely depends 
on distinct, active processes involving osteoblasts and 
odontoblasts, respectively (47-50). Release of analogous 
mineralizing matrix vesicles in association with apoptosis 

activation was also reported for hypertrophic chondrocytes 
in calcifying cartilages (51-53). In contrast, ectopic 
calcification in soft tissues is characterized by evident tissue 
alterations including different types of cell death, which 
have not yet been unequivocally identified. Despite a 
number of involved cell pathways having been highlighted, 
especially concerning apoptotic death, the major underlying 
problem is that a mare magnum exists of terms used to 
classify, more or less exhaustively, the various forms of cell 
death, with their mechanisms and pathogenetic factors 
still being far from a clear elucidation of their nature 
(54-56). It ensues that characterization of the upstream 
processes leading to the production of dying-cell-derived 
byproducts requires more knowledge to clearly distinguish 
how far and to what extent the so-called “matrix vesicles”, 
“apoptotic bodies”, “cell-derived bodies”, “membrane 
vesicle bodies”, “membrane blebs”, “exosomes” etc. are 
distinct structures or heteromorphic variants of the same 
form. In addition to these vesicular degenerative products, 
which are all cytoplasm-containing, membrane-bounded 
roundish bodies or polymorphic membranous debris 
derived from cells or cell organules, peculiar cell byproducts 
lined by alcianophilic thick walls were ultrastructurally 
identified in calcifying cardiovascular tissues (57,58). More 
recently, analogous peculiar structures named “PPL-
vesicles” were ultrastructurally found to originate from 
the surface of pre-calcific dying AVICs after formation 
of a thick phthalocyanin-positive-layer (PPL) at their 
edges, as described below (59-65). Since it resulted that 
the sequential degenerative steps leading to PPL-vesicle 
release were quite different from those shown by cells 
undergoing the conventional cell death forms involved in 
valve calcification onset, i.e., apoptosis (8-10), necrosis (8)  
or autophagocytosis (11), it was suggested that an 
additional type of cell death might be associated with valve 
mineralization, as mentioned below. Further cell byproducts 
identified in a lot of calcified soft tissues, including native 
and bioprosthetic heart valves, consist of concentrically 
arranged, multi-laminated vesicular bodies that were named 
spherulites or calcospherulae (8,66-69). These structures 
appeared to act as early hydroxyapatite (HA) nucleators, 
with their electrondense layers representing an optimum 
substrate for the paracrystallin precipitation of radially 
oriented crystallites, which, in their turn, may promote 
additional autocatalytic mineral deposition involving wider 
and wider tissue areas. It is also of interest that synthetic 
vesicles ultrastructurally showing multilamellar envelopes 
made of lipid (70,71) or protein (72) anionic molecules 
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were found to act as strong HA nucleators in in vitro 
environments.

Ectopic calcification, polyanions and cationic 
copper phthalocyanins

In the 1970s, lipid material accumulation was found to 
be strictly associated with increased precipitation of HA 
crystals in mineralizing hard and soft tissues in both 
physiological and pathological calcification processes. In 
particular, cell-membrane-derived acidic phospholipids 
forming the so-called “calcium-phospholipid-phosphate 
complexes” were originally identified in calcifying  
cartilage (73) and bone (74). Later, involvement of 
analogous anionic HA-nucleating complexes was found for 
pathological calcifications affecting soft tissues including 
vascular ones (75,76), in which additional identification 
of proteolipids suggested their contribution to ectopic 
mineralization (77,78). Moreover, Raman analysis of 
calcified human aortic valves and atherosclerotic plaques 
revealed carotenoids to be another lipid moiety that may 
play a role in pathological calcification of cardiovascular 
tissues (79-81). Consistently, lipid extraction from valve 
tissues before being subjected to experimental calcification 
was found to drastically reduce tissue mineralization 
(82,83). Similarly, lipid extraction from calcified valves 
was associated with complete removal of PPLs, revealing 
this lipid material to be the main substrate for HA crystal 
precipitation in aortic valves subjected to experimental 
calcification (59), as described below. Interestingly, lipid 
substances accumulating in calcified valve tissues were often 
found to undergo oxidation, so acquiring increased affinity 
for calcium ions (13,22,84). Consistently with their anionic 
nature, also ossification-related calcium-binding proteins, 
such as osteocalcin (16,23,85), osteopontin (16,23,86,87) 
and osteonectin (88), as well as proteoglycans rich in acidic 
glycosaminoglycan lateral chains (89-93) were reported 
to be involved in cardiovascular tissue calcification. In the 
past, copper phthalocyanins, such as alcian blue, cuprolinic 
blue (CB) and cupromeronic blue, proved to be the most 
effective histochemical reagents for the evidentiation 
of all  types of polyanions, including extracellular 
glycosaminoglycans/proteoglycans (Figure 2A,B) and 
intracellular nucleic acids, in both light (94,95) and 
electron (96-98) microscopy. In early ultrastructural studies 
on calcified aortic valves and aorta walls, these cationic 
reagents revealed the presence of alcianophilic material 
at the surface of cells and cell debris, which was assumed 

to be formed by proteoglycans mixed with membrane-
derived phospholipids (57,58). These fragmentary findings 
were later found to represent the latest intracellular stage 
of a multistep process, which was described after using 
phthalocyanins in ultrastructural studies on aortic valves 
or cultured AVICs subjected to experimental models of 
calcification (59-65). In particular, this procedural approach 
enabled an answer to be given to the following issues: (I) 
how the phthalocyanin-reactive acidic material is generated, 
(II) whether it actually represents a major HA nucleator and 
(III) what relationship exists between the phthalocyanin-
reactive material and the extracellular structures actively or 
passively involved in calcification, such as collagen fibrils, 
elastin fibers and cell-derived calcospherulae. As a first step, 
the standard phthalocyanin-based staining procedure was 
modified by dissolving CB dye in an acidulated buffer  
(pH 4.8) to enable gentle unmasking of the phthalocyanin-
positive material from superimposed HA crystallites 
concurrently with its in situ retention and staining. This 
modified histochemical technique was first applied on 
porcine aortic valves subjected to in vivo calcification 
induction using an animal model of xenogeneic valve 
subdermal implantation (59-62). In this context, peculiar 
PPLs were found to originate from colliquation of all cell 
membranous components, with intracellular release of 
an acidic amorphous material (PPM) and its subsequent 
centrifugal spreading and layering at the edges of dying 
AVICs (Figure 2C). Further release of PPL-vesicles 
due to blebbing of superficial PPLs was found to occur 
during later degenerative stages. Consistently with such a 
peculiar procalcific process, PPLs resulted as being formed 
mainly by acidic phospholipids, as revealed by different 
susceptibility to extraction and digestion procedures as well 
as positivity to suitably modified malachite-green-based 
histochemical techniques targeted at the identification of 
these lipids. Peripheral PPLs were found to play a major 
procalcific role, as revealed by massive clustering of HA 
crystals at the edges of cells and cell-derived debris in 
undecalcified samples as well as superimposed precipitation 
of silver particles onto surface PPLs in decalcified samples 
additionally subjected to a modified post-embedding von 
Kossa reaction suitably adapted for the ultrastructural 
evidencing of calcium-binding sites. Likewise, close 
association between PPL appearance and increases in 
calcium amounts estimated spectrophotometrically in 
parallel samples supported the evidence that a major 
procalcific role is played by PPLs during experimental valve 
calcification. The cell-derived PPL-vesicles observed were 
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barely reminiscent of matrix vesicles because they resulted 
from cell blebbing, showed vesicular features and played 
an analogous procalcific role. However, they also appeared 
to be quite different from matrix vesicles, since they were 
edged by 120- to 600-nm-thick multilamellar PPLs instead 
of the orthodox 7-nm-thick bileaflet cell membrane and 
seemed not to contain cytoplasmic material. Moreover, a 
relationship was found to exist between such PPL-vesicles 
and interstitial calcospherulae, with the former clearly 

showing further rearrangement of the PPL substance into 
two to four irregularly spaced, concentric rings sometimes 
encircling an electrondense core. It is of note that 
extracellular matrix calcification was found to occur once 
collagen fibrils and elastin fibers were embedded by PPL 
material spreading from adjacent dead cells or PPL-vesicles, 
suggesting that valve mineralization is mainly primed by 
the procalcific degeneration of resident cells with just a 
secondary involvement of degenerating extracellular matrix 

Figure 2 Ultrastructural visualization of polyanionic compounds after pre-embedding histochemical reaction with phthalocyanin cuprolinic 
blue (CB). (A) CB-positive interstitial leaf-like large proteoglycans (LPG) and (B) CB-positive rod-like small proteoglycans (SPG) 
interconnecting adjacent collagen fibrils, in native aortic valve cusps. (C) Phthalocyanin-positive layer (PPL) edging a calcifying interstitial 
cell in an aortic valve cusp subjected to in vivo experimental calcification. (D) Peripheral PPL showing superimposed silver particles (Ag) 
after additional post-embedding von Kossa reaction in a degenerating aortic valve interstitial cell (AVIC) subjected to in vitro calcification. 
(E) Peripheral precipitation of needle-like hydroxyapatite (HA) crystals at the level of underlying PPL in a degenerating AVIC subjected to  
in vitro calcification. (F) PPL-lined calcospherulae originated from vesicular remnants released by AVICs subjected to in vitro calcification. 
Bar: 0.5 µm (A); 0.25 µm (B); 25 µm (C); 0.5 µm (D); 0.5 µm (E); 1 µm (F). 
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components, as previously reported (99-101).

In vivo and in vitro experimental calcification of aortic valves

To shed light on the etiopathogenesis of heart valve 
calcification, procalcific animal models were developed, 
consisting of valve replacement in sheep and calves  
(102-105) or valve cusp subcutaneous implantation in 
rabbits or rats (104,106-108). Implanted valves and 
cusps were found to undergo mineralization showing 
histopathological features comparable to those of failed 
valve implants in humans, but with more accelerated 
kinetics (3 to 6 months for circulatory models and about 
8 weeks for subcutaneous models), making such animal 
models also suitable for investigating the feasibility and 
effectiveness of potential anti-calcification strategies  
(109-111). In particular, using in vivo models of xenogeneic 
implantation of porcine aortic valve cusps into subdermal 
pouches surgically prepared in young rats, the main event 
in valve mineralization consisted of HA crystal precipitation 
at the level of roundish structures released by non-viable 
cells, which were initially described as matrix-vesicle-like 
bodies (99,104,107,112). Devitalization of valvular cells due 
to cusp fixation with 0.6% GA resulted as a prerequisite 
for valve mineralization occurrence, supporting the idea 
that the use of this chemical treatment for manufacturing 
of valve bioprostheses may be the most relevant cause of 
their failure (113). Consistently, non-fixed or alternatively 
processed valve cusps subjected to in vivo implantation were 
found to be free of mineralization (114-117). After using 
the rat subcutaneous implantation model, ultrastructural 
examination of explanted valve cusps subjected to pre-
embedding CB-based histochemical reactions as described 
above revealed the presence of electrondense, lipid-
rich PPLs layered at the periphery of degenerating cells  
(Figure 2C), which showed blebbing features and were 
involved in the formation of roundish cell-derived PPL-
vesicles (59-61). Systematic ultrastructural studies on 
valve cusps explanted after increasing implantation 
times allowed the entire sequence of degenerative steps 
underlying the onset and progression of valve calcification 
to be defined (62), revealing the occurrence of a peculiar 
type of procalcific cell death characterized by a fast, 
dramatic breakdown of all cell membranous components, 
culminating with the detachment from dying AVICs of 
PPL-vesicles promoting subsequent calcification of the 
surrounding extracellular matrix, as described above. In 
the last two decades, several in vitro models were also 

developed to simulate etiopathogenetic environments 
promoting cell mineralization (118-122). Namely, smooth 
muscle cells or AVICs were cultured in media containing 
inorganic phosphate (Pi) at high concentrations (Pi 
≥2.0 mM) and/or proinflammatory mediators that were 
expected to increase cell susceptibility to calcification. 
More recently, analogous procalcific in vitro models were 
set up, in which primary cultures of bovine AVICs were 
treated with different combinations of hyperphosphatemic- 
or normophosphatemic-like Pi concentrations, bacterial 
lipopolysaccharide (LPS) and conditioned medium obtained 
from cultures of LPS-stimulated macrophages (63-65). 
Despite identification of AVIC subtypes particularly 
prone to mineralization having been reported (122-124), 
entire AVIC populations were stimulated in these in vitro 
models in order to achieve a more faithful reproduction 
of native conditions. Ultrastructural analyses paralleled 
by spectrophotometric measurements of calcium amounts 
and alkaline phosphate activity supported the concept that 
cell exposure to high Pi concentrations is a prerequisite 
for priming AVIC mineralization, which was exacerbated 
by cell superstimulation with proinflammatory mediators 
(63,65). Using the CB-based histochemical procedures 
as above, also cultured AVICs appeared to undergo the 
same procalcific degeneration as that previously described 
for AVICs populating aortic valves subjected to in vivo 
calcification induction (Table 1), including accumulation 
of intracellular PPM, appearance of surface pro-calcific 
PPLs (Figure 2D and 2E), release of PPL-vesicles and their 
subsequent transformation into calcospherulae (Figure 2F). 
More information on cell response to non-calcific or sub-
calcific environments was achieved by treating AVICs with 
different Pi concentrations like those spanning the normal 
range in organisms (65). Interestingly, two opposing Pi-
dose-dependent cell responses were found to be evoked, i.e., 
cell survival versus procalcific cell death (Figure 3). Namely, 
AVICs exposed to low/medium Pi concentrations (0.8 and 
1.3 mM) were found to undergo atypical autophagic activity 
in which a particularly hypertrophic endoplasmic reticulum 
appeared to be directly engaged in organelle sequestration 
and digestion, consistently with parallel time-dependent 
decreasing expression of autophagocytosis-related 
lysosomal markers. Since neither cells immunopositive for 
apoptosis markers nor cells showing degenerative features 
at ultrastructural level were encountered, the concept was 
supported that the observed non-lysosomal autophagic 
activity may correlate with AVIC survival. Conversely, 
AVICs treated with the highest Pi concentration (2.0 
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mM) were found to undergo mineralization following the 
same steps as those in the above-described lipid-release-
associated procalcific cell death, supporting the concept 
that individuals with high normophosphatemic values are 
at increased risk of valve dystrophic mineralization. Since 
the in vitro models used allowed a reliable reproduction of 
AVIC calcification, including the genesis of calcospherulae 
as those observed in pathologically calcified heart valves 
(8,66,68), they could be usefully exploited on the one hand 
to find the molecular mechanisms associated with this type 
of cell death and on the other to assay the pro- or anti-
calcific effects exerted on AVICs by putative stimulating or 
inhibitory agents, respectively.

Tissue-engineered heart valves

To date, surgical substitution of failed heart valves remains 

the leading therapeutic option for patients affected by 
valvular diseases (2,125). In the 1960s, mechanical valves 
were the first substitutes to be introduced in clinical practice, 
the Starr-Edwards caged-ball valve, Bjork-Shiley and Hall-
Medtronic tilting-disk valves and St. Jude Medical bileaflet 
tilting-disk valve being the most widely used (29). Being 
prepared using synthetic materials such as titanium, cobalt-
chromium alloy or pyrolytic carbon, mechanical implants 
have proven to be highly thrombogenic (126-133), requiring 
chronic anticoagulation therapies for transplanted patients 
and thus excluding their use in women of childbearing 
age (134-137). A further disadvantage is that implantation 
of mechanical valves in children requires reoperation in 
the medium term because these substitutes are unable 
to increase in size with the patient’s growth (138,139). 
Despite having shorter durability than mechanical devices, 
valve bioprostheses rapidly became widespread substitutes 
because of their native-like valve shape enabling better graft 
thromboresistance and adaptation to the hemodynamic 
flux (140-143). Bioprosthetic valves include (I) xenografts, 
which are usually fabricated using porcine valve cusps or 
bovine pericardium-derived limbs mounted (stent) or not 
(stentless) on a prosthetic metal frame and (II) allografts 
manufactured using human pericardium limbs or consisting 
of cryopreserved aortic valves harvested from human 
cadavers or “fresh” aortic valves excised from beating donor 
hearts at transplantation (29). Valve xenografts, such as the 
Hancock valve and Carpentier-Edwards valve, are prepared 
using animal tissues conventionally subjected to chemical 
crosslinking with GA, so allowing tissue sterilization and 
suppression of tissue immunogenicity due to retention of 
resident cells. Regrettably, such chemical fixation proved 
to be the major cause of xenograft failure because of GA-
dependent cytotoxic effects and concurrent defective graft 
immunosuppression. Indeed, valve xenografts were found 

Table 1 Progressive stages of AVIC deterioration in in vitro calcification as revealed by transmission electron microscopy

Degenerative features 3 days 9 days 15 days 21 days 28 days

Organelle disappearance − ± +/++ ++ +++

PPM appearance − − ++ + −

PPL appearance − − ± ++ +++

EB-CS appearance − − − + ++

HA appearance − − − + +++

AVIC, aortic valve interstitial cell; PPM, intracellular degradation-derived phthalocyanin-positive material; PPL, PPM-derived 
pericellular phthalocyanin-positive layers; EB-CS, PPL-derived extracellular blebs plus their subsequent byproducts identifiable as real 
calcospherulae; HA, needle-like hydroxyapatite crystals.

Figure 3 Critical inorganic phosphate (Pi) concentrations driving 
the fate of cultured aortic valve interstitial cells (AVICs).

AVIC survival

Pi ≤1.3 mM

AVIC calcification

Pi ≥2.0 mM
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to be characterized by an absence of viable cells, besides 
showing calcific foci mainly at the level of the tunica 
spongiosa and cuspal commissures (31-33,107,144-146),  
with calcific deposits co-localizing with cell remnants, 
including interstitial calcospherulae, and collagen fibrils, as 
revealed ultrastructurally (66,68,69,147-152). Compared to 
xenografts, both cryopreserved and “fresh” valve allografts 
are expected to be better devices and, indeed, their slightly 
longer durability has been reported (153-159). However, 
these valve substitutes also showed some inconveniences 
such as (I) limited availability, (II) poor suitability for 
transplantation in pediatric patients (160-162) and, above 
all, (III) propensity to mineralization (35-37,163-168). 
Although no treatments with crosslinking agents are 
applied, sterilization procedures, cryopreservation-related 
damage and graft-versus-host rejection are suspected 
to contribute, alone or together, to allograft procalcific 
degeneration (34,169-174). Despite improvements 
being reported introducing alternative GA-free tissue 
treatments for xenografts (114-117,175-179) or less harmful 
cryopreservation and thawing procedures for allografts 
(180,181), tissue decellularization seems to be the most 
promising procedure to obtain biocompatible TEHVs 
free of adverse immune responses and calcification, being 
concurrently permissive of suitable cell repopulation, 
capable of tissue growth and remodelling and having 
adequate hemodynamic properties. In particular, detergent-
based protocols utilizing SDS or sodium deoxycholate, also 
combined with Triton X-100, were found to be particularly 
suitable for tissue decellularization, providing acellular 
scaffolds with a well-preserved extracellular matrix texture 
and proper biomechanical behaviour, besides showing 
reduced susceptibility to tissue mineralization (182-187).  
Removal of resident cells with such decellularizing 
procedures offered the additional advantage of eliminating 
cell-associated antigens, which are responsible for the 
immunogenicity of valve bioprostheses including xenografts 
despite their chemical treatment with GA (188-190). 
Consistently, early failure of commercially available 
decellularized xenografts (SynerGraft, Matrix P) implanted 
in patients seemed to be ascribable to the use of defective 
cell removal procedures with persistence of cell remnants 
within valvular tissues (191,192). Conversely, clinical 
implantation of commercial decellularized-cryopreserved 
allografts (SynerGraft, CryoValve) gave very encouraging 
outcomes in terms of reduced antigenicity, retained 
structural integrity and long-term durability (193-199), 
although their clinical application is still hampered by 

their limited availability. First attempts to attain functional 
TEHVs were performed in vitro by statically seeding 
autologous or heterologous stem cells or differentiated 
cells on acellular synthetic or biological scaffolds as well 
as decellularized valve cusps. These constructs were found 
to undergo an almost complete re-endothelialization 
as well as side-by-side repopulation by seeded cells that 
acquired phenotypical features like those in native aortic 
valves (185,200-211). Subsequent use of bioreactors to test 
the resistance and hemodynamic behavior of repopulated 
scaffolds provided evidence that mechanical stresses 
stimulate the metabolic activity of entered cells with 
enhanced extracellular matrix remodelling (212-220). More 
recently, circulatory animal models have been preferred 
to dynamic bioreactors because they allow more reliable 
functional properties of implanted valve scaffolds to be 
obtained (221-226). Apart from non-human primates, pigs, 
rather than calves, dogs and the most often used sheep, have 
proved to be the animals that better replicate the anatomical 
and physiological features of human cardiovascular 
apparatus (227), including coagulation mechanisms 
and inflammatory system response (228). In particular, 
Vietnamese pigs appear to be an optimal choice to test the 
long-term follow up of implanted TEHVs because these 
miniature swine provide the additional advantages of (I) 
heart rate, cardiac stroke volume, mean arterial pressure and 
myocardial blood flow that almost coincide with those in 
humans (229) and (II) growth rates that are comparable to 
those of pediatric patients (230). Indeed, TEHVs implanted 
in mini-pigs were found to be suitably repopulated 
by native-like cells, with associated tissue growth and 
remodelling, besides showing good hemodynamic 
performances and limited tissue alterations even in the 
long-term follow up (231-234). The Vietnamese pig model 
was also used to test valve implants after cryopreservation 
and thawing, prefiguring a hypothetical scenario where 
cell removal from heart valves could become a standard 
procedure before their storage in valve cryobanks. Although 
these decellularized and cryopreserved porcine valves 
showed an acceptable functional activity, their structural 
features fell below expectations when histological and 
ultrastructural examinations revealed valve implants to be 
suitably covered by monolayered endothelium-like cells 
and populated by entered interstitial cells only in restricted 
cusp areas (235). These undesirable defects were reasonably 
ascribed to a sub-optimal preservation of graft extracellular 
matrix, with reduced propensity by host cells to enter, 
survive and properly differentiate. Once pre-implant 



2134

© Journal of Thoracic Disease. All rights reserved.   J Thorac Dis 2019;11(5):2126-2143 | http://dx.doi.org/10.21037/jtd.2019.04.78

Bonetti et al. Heart valves: calcific models and bioprostheses

valve scaffold cryopreservation procedures have been 
improved, cryobanks could be created of readily available, 
decellularized valve scaffolds capable of proper post-implant 
regeneration in order to meet the clinical demand for 
revitalizable pseudo-autologous valve substitutes.

Concluding remarks

Thanks to their morpho-functional features, heart valves 
enable a proper incessant cardiac cycle over an entire 
lifetime, withstanding the intermittent mechanical stresses 
due to hemodynamic pressure changes and blood flow 
friction. Accordingly, their malfunctions or breakdown 
relentlessly lead to life-threatening conditions. Of these 
anatomical elements, the aortic valves are the most 
commonly affected by calcification-associated disorders, 
with substantial improvements still being needed in 
predicting propensity to mineralization, providing effective 
drug therapies or designing surgical approaches to valve 
transplantation. The concept that calcific events affecting 
both native valves and bioprosthetic substitutes result 
from stress-dependent passive valve deterioration is being 
increasingly overtaken by an antithetical view that such a 
pathology depends on active processes involving valvular 
cells. Indeed, new findings are continually shedding light 
on possible mechanisms leading to valve mineralization 
even if its etiological triggers are still far from being 
exhaustively elucidated. Similarly, how much the calcific 
disease may be regarded as an intra-valve osteogenic 
process or rather a result of diffuse valve cell suffering 
compromising survival programs and/or leading to certain 
types of procalcific death has not yet been defined. Hence, 
additional investigation is required to shed light on inherent 
upstream regulatory mechanisms leading to ectopic 
mineralization. The existence of a specific sequence of 
procalcific intracellular and extracellular events underlying 
the calcific phenomenology was revealed ultrastructurally 
using adapted CB-based techniques in in vivo and in vitro 
models of valve calcification, as emphasized above, which 
may represent a trailblazer for better understanding 
this type of ectopic mineralization. Concerning surgical 
valve transplants, the most promising substitutes seem 
to be TEHVs because of their propensity to suitable cell 
repopulation, being free of undesirable calcific effects. In 
order to adopt personalized therapeutic approaches, proper 
pre-implant in vitro colonization of decellularized xenografts 
or, even better, allografts by seeded host-derived cells 
would be a time-consuming and complicated procedure. 

Instead, post-implant spontaneous in vivo cell repopulation 
of acellular scaffolds could be viewed as the best procedural 
choice also for their availability, once decellularized aortic 
valves can be methodically stored in cryobanks. Envisaging 
such a situation, preliminary investigation yielded results 
which, although not being entirely favourable, surely 
proved that decellularized and cryopreserved TEHVs do 
not oppose coating by endothelium-like cells and entering 
valve scaffolds by interstitial-like cells. In the light of such 
results, ongoing investigations providing concrete outcomes 
can be predicted with a certain optimism. In conclusion, 
although more than a few unresolved issues still persist, 
increased understanding on pathogenesis, onset and 
progression of valve calcification seems to be imminent 
as well as substantial improvements in the achievement 
of noncalcifiable pseudo-autologous TEHVs capable of 
the best functional performances in addition to longer 
durability and, possibly, post-operative growth.
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