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Escalation of drug resistance in Mycobacterium tuberculosis 
(MTB) furnishes a formidable challenge to the global 
control of tuberculosis (TB) (1). Delineation of the 
underlying mechanisms of anti-TB drug resistance is 
germane to the discovery of strategies in tackling this 
worldwide health care crisis. Aside from the development 
of new anti-TB drugs to circumvent the drug resistance 
scenarios to improve patient treatment outcomes, it appears 
pertinent to explore whether modulation of host factors or 
responses could help to ameliorate the probability of drug-
resistant TB.

There  i s  qui te  some ev idence  that  r i fampic in 
and isoniazid could produce oxidative burst in their 
antimicrobial mechanisms (2-4). Similarly, fluoroquinolones 
have also been shown to display such a phenomenon (5). In 
addition to the antioxidative capacity mounted by MTB to 
counteract the (bactericidal) oxidative burst associated with 
anti-TB drug challenge, development of a metabolically 
quiescent bacillary persister state also helps the challenged 
MTB to survive within host macrophages and tissue 
biofilms (6).

Bacterial persisters putatively arise in a stochastic 
manner, with influence from stress-inducible quorum 
sensing (7,8). MTB is well known to form persisters that 
play an important role in persistent infection requiring 
prolonged treatment (9). In recent years, there has been 
a surge in reports regarding the induction of bacterial 
persisters, including those of MTB by oxidative/nitrosative 
stress (or more broadly disturbance in redox homeostasis) 
(10-14). Upregulation or activation of efflux pump(s) that 

result in extrusion of substrates and drugs leading to low-
level resistance (often referred as phenotypic tolerance) 
against anti-TB agents can operate in MTB persisters  
(15-17). It is conceivable that phenotypic tolerance does 
not usually occur in isolation, as revealed by accumulating 
experimental evidence (16,18,19). This initiation step 
is apparently of crucial importance in the march of 
bacillary resistance against anti-TB drugs (Figure 1). 
Phenotypic tolerance facilitates the development of genetic 
resistance in MTB that generally results from spontaneous 
chromosomal mutations, eventually leading to higher levels 
of resistance to anti-TB agents. While the exact triggers 
for such facilitation do not appear to be totally clear (20), 
fluctuation in drug levels, especially in the presence of those 
comorbidities of TB with oxidative stress inherent to their 
disease pathogenesis, might contribute. Diabetes mellitus 
and HIV infection, the two major comorbidities to TB 
globally are noted to have poorer TB treatment outcomes, 
inclusive of lower success, higher relapse and increased 
propensity for development of drug resistance. The likely 
underlying mechanism has been hypothesized to be the 
induction of MTB persisters, as a core dormancy response 
to the oxidative stress furnished by the various players 
(Figure 1) (10,21). Importantly, both diabetes mellitus and 
HIV infection can be associated with malabsorption states 
with reduced drug bioavailability, resulting in erratic anti-
TB drug levels (10,21). The afore-mentioned conceptual 
model regarding the development of antituberculosis drug 
resistance is a simplistic one. Further research is required to 
understand the complex underlying mechanisms better.
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Clinically relevant drug-resistant TB adversely impacting 
treatment outcomes occur as a result of selection of 
the genetic mutants through man-made blunders that 
often exist in a poorly implemented TB programme, 
involving mainly doctors, administrators and patients (22). 
Suboptimal prescription (regarding drug dosage and drug 
scheduling) and inadequate drug supply, as well as poor 
treatment adherence are conducive to the drug resistance 
scenarios currently prevailing in many parts of the world.

The contributing role of oxidative stress, alongside 
its interaction with immunological dysfunction, to 
antituberculosis drug resistance merits further unravelling 
through translational research and clinical research. 
Amelioration of oxidative stress might conceivably help 
in preempting initiation of the march of drug resistance. 
Optimal metabolic control in diabetic patients can reduce 
oxidative stress, and so does better control of the viral load 
in HIV infection (10,21). Advancement in pharmacotherapy 
for HIV infection to circumvent inadvertent heightening of 
oxidative stress during antiviral therapy is likely beneficial 
(21,23). Furthermore, delineation of the role of antioxidants 
and other associated therapeutics as adjunctive strategy 
may be warranted (24). A potentially interesting example is 
vitamin C with both prooxidant and antioxidant activities 
that may help to enhance antituberculosis drug efficacy and 
reduce the risk of antituberculosis drug resistance (25,26). 
Last but not least, halting the march of anti-TB drug 
resistance mandates strengthening of the infrastructure of 
TB programmes to forestall the development of clinically 

relevant drug-resistant TB in many countries (27-29).
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Figure 1 Oxidative stress and evolution of antituberculosis drug resistance.
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