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Background: The study objective was to determine whether unlabeled datasets can be used to further train 
and improve the accuracy of a deep learning system (DLS) for the detection of tuberculosis (TB) on chest 
radiographs (CXRs) using a two-stage semi-supervised approach. 
Methods: A total of 111,622 CXRs from the National Institute of Health ChestX-ray14 database were 
collected. A cardiothoracic radiologist reviewed a subset of 11,000 CXRs and dichotomously labeled 
each for the presence or absence of potential TB findings; these interpretations were used to train a deep 
convolutional neural network (DCNN) to identify CXRs with possible TB (Phase I). The best performing 
algorithm was then used to label the remaining database consisting of 100,622 radiographs; subsequently, 
these newly-labeled images were used to train a second DCNN (phase II). The best-performing algorithm 
from phase II (TBNet) was then tested against CXRs obtained from 3 separate sites (2 from the USA, 1 from 
China) with clinically confirmed cases of TB. Receiver operating characteristic (ROC) curves were generated 
with area under the curve (AUC) calculated.
Results: The phase I algorithm trained using 11,000 expert-labelled radiographs achieved an AUC of 
0.88. The phase II algorithm trained on images labeled by the phase I algorithm achieved an AUC of 0.91 
testing against a TB dataset obtained from Shenzhen, China and Montgomery County, USA. The algorithm 
generalized well to radiographs obtained from a tertiary care hospital, achieving an AUC of 0.87; TBNet’s 
sensitivity, specificity, positive predictive value, and negative predictive value were 85%, 76%, 0.64, and 0.9, 
respectively. When TBNet was used to arbitrate discrepancies between 2 radiologists, the overall sensitivity 
reached 94% and negative predictive value reached 0.96, demonstrating a synergistic effect between the 
algorithm’s output and radiologists’ interpretations.
Conclusions: Using semi-supervised learning, we trained a deep learning algorithm that detected TB at a 
high accuracy and demonstrated value as a CAD tool by identifying relevant CXR findings, especially in cases 
that were misinterpreted by radiologists. When dataset labels are noisy or absent, the described methods can 
significantly reduce the required amount of curated data to build clinically-relevant deep learning models, 
which will play an important role in the era of precision medicine.
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Introduction

Tuberculosis (TB) is an infectious disease that affects 
nearly one-third of the world, largely in developing 
countries (1-3). TB is, in fact, the ninth-leading cause of 
death worldwide and the leading infectious cause of death 
globally (4). Current TB screening programs depend 
heavily on the chest radiograph (CXR) , which is relatively 
inexpensive and widely available in the United States (1-3,5). 
Nevertheless, consistent and comprehensive TB screening 
in the United States has been difficult to achieve, owing to 
federal gaps and state variation in TB screening policies, as 
well as limited resources at both levels for such screening 
programs (6,7). Furthermore, radiologists charged with 
interpreting TB screening CXRs can be overwhelmed by 
the high volume of studies that are a necessary consequence 
of widespread screening programs (8). Computer aided 
detection (CAD) of TB on screening CXR can prioritize 
review of likely positive cases and reduce the time to 
diagnosis, thereby facilitating more consistent TB screening 
initiatives worldwide.

Deep learning, an artificial intelligence (AI) technique, 
has shown great promise for automated medical image 
analysis and interpretation (8-10), and could be helpful in 
improving TB screening efforts. Deep learning systems 
(DLS) are actively studied for potential applications in 
various medical fields, from diabetic retinopathy screening 
in ophthalmology to drug discovery tools that predict 
molecular interactions (11-14). Specifically, Lakhani et al. 
recently described a promising DLS for detection of TB on 
CXRs, achieving AUC of 0.99 (8). This study, however, was 
limited by a small dataset (training set: 857 patients; testing 
set: 150 patients) and absence of an external test dataset 
that is completely separate from the training/validation 
dataset. Similarly, Hwang et al. developed a DLS for TB 
detection using a relatively homogeneous population of 
10,848 Korean patients, achieving an AUC of 0.88 to 
0.96 (15). However, to create a robust screening DLS that 
can be implemented globally, it is critical to utilize large 
diverse datasets and demonstrate generalizability to external 
populations (16). 

Performance of a DLS chiefly depends on two factors: 
the dataset quality in terms of size and diversity, and the 
accuracy of labels that correspond to the images. Training 
a clinically-relevant DLS requires a large dataset of 
radiographs, in the order of tens of thousands of images, 
with reliable ground truth labels indicating presence or 
absence of the disease of interest. However, confirming data 

label accuracy would require significant time investment by 
radiologists, which is often the rate-limiting step in DLS 
development. 

In this study, we utilized a novel two-stage semi-
supervised approach to develop a TB-detecting deep 
convolutional neural network (DCNN) by first using a 
small number of radiologist-reviewed radiographs, then 
incorporating semi-supervised learning to analyze a larger 
number of unlabeled radiographs. 

Methods

Datasets

This retrospective study was approved by the institutional 
research board. Publicly-available datasets did not contain 
patient-identifiers. Images obtained from our tertiary care 
center [Johns Hopkins Hospital (JHH), Baltimore, MD] 
were de-identified and compliant with the Health Insurance 
Portability and Accountability Act (HIPAA). 

We obtained CXRs from the publicly-available NIH 
chest X-ray 14 database (16), comprised of 112,120 frontal 
CXRs from 30,805 patients. NIH CXR14 database contains 
labels for 14 thoracic diseases, extracted from radiology 
reports using Natural Language Processing. Since TB is 
not included as one of the 14 labelled thoracic diseases, a 
fellowship-trained cardiothoracic radiologist with five years 
of post-graduate experience (C.L.) individually reviewed 
11,000 radiographs from the NIH database, determining 
whether each radiograph had an imaging appearance that 
could be present in pulmonary TB. Phase I training and 
validation were completed using the radiologist-labelled 
radiographs. A total of 498 radiographs from the entire 
database were excluded from analysis due to suboptimal quality 
of radiographs, which consisted of abdominal radiographs, 
radiographs with incomplete visualization of lung fields, blank 
radiographs, digital artifacts, inverted, and lateral CXRs. 

External datasets were used for testing of DCNN 
performance, comprised of 662 CXRs from Shenzhen, 
China [336 (50.8%) with TB, 326 (49.2%) without TB], 
138 CXRs from Montgomery County, USA [58 (42.0%) 
with TB, 80 (58.0%) without TB], and 100 CXRs from 
JHH [35 (35.0%) with TB, 65 (65.0%) without TB]  
(Table 1) (17). Radiographs from JHH were selected based 
on ICD code of TB, documented positive acid-fast bacillus 
stain on sputum results on electronic medical record, and 
availability of a contemporaneous CXR on our picture 
archiving and communication system (PACS). All images 
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were saved in lossless Portable Network Graphics (PNG) 
format and resized to a 224×224 matrix.

Phase I neural network training, validation, and testing

We randomly assigned 80% of 11,000 labelled NIH 
radiographs into the “training” dataset and 20% of the data 
into the “validation” dataset, ensuring no overlap in images 
between these datasets (Table 1). Briefly, the training phase 
utilizes the majority of the available data to train DCNNs 
to classify images into pre-defined categories by identifying 
image features specific to each category. The validation 
phase utilizes a smaller proportion of available data to test 
the DCNNs trained in the training phase and select the 
highest-performing algorithms. The final testing phase 
consists of assessing the diagnostic performance of the best-
performing algorithm(s) on a dataset that was not utilized in 
either the training or validation phase. 

We utilized the ResNet-50 (18) DCNN pretrained on 
1.2 million color images of everyday objects from ImageNet 
(http://www.image-net.org/) prior to training on the CXRs. 
This technique is known as transfer learning and allows for 
modification of pretrained neural network architectures 
to be used for classification of different datasets not used 
in training of the original network (8,19,20). The solver 
parameters used for our DCNN training were as follows: 50 
training epochs; stochastic gradient descent (SGD) with a 

learning rate of 0.001, momentum of 0.9, and weight decay 
of 1×10−5. During each training epoch, each image was 
augmented by a random rotation between −5 and 5 degrees, 
random cropping, and horizontal flipping. To identify 
the distinguishing image features used by the DCNN for 
classification, we created heat maps via Class Activation 
Mapping (CAM) (21). 

Phase II neural network training, validation, and testing

The best-performing algorithm from phase I development 
was used to generate its predictions on the remaining 
100,622 radiographs from the CXR14 database (Table 2). 
Resulting images were split 80% into training phase, and 
20% into validation phase following the same methodology 
described above. The best-performing algorithm in Phase 
II, given the name TBNet, was selected by testing the 
DCNNs using radiographs obtained from Asia (Shenzhen, 
China) and USA (Montgomery County, MD and JHH at 
Baltimore, MD). 

To assess TBNet’s efficacy as a CAD tool, majority 
vote analysis was performed. TBNet’s output was used to 
arbitrate any differences in radiologists’ interpretations. 

Statistical analysis

Receiver operating characteristic (ROC) curves with area 

Table 1 Datasets used for phase I deep convolutional neural network training and validation

Dataset Development phase
Total number of 

radiographs used
Number with 

suspected TB (%)
Number without 

suspected TB (%) 

NIH CXR Training/validation 11,000 5,381 (48.9)* 5619 (51.1)*

Montgomery County, USA Testing 138 58 (42.0) 80 (58.0)

Shenzhen, China Testing 662 336 (50.8) 326 (49.2)

Johns Hopkins Hospital, Baltimore, MD, USA Testing 100 35 (35.0) 65 (65.0)

*, ground truth determined by a cardiothoracic radiologist. CXR, chest radiograph; TB, tuberculosis.

Table 2 Datasets used for phase II deep convolutional neural network training and validation

Dataset Development phase
Total number of 

radiographs used
Number with 

suspected TB (%)
Number without 

suspected TB (%) 

NIH CXR Training/validation 100,622 44,521 (44.2)+ 56,101 (55.8)+

Montgomery County, USA Testing 138 58 (42.0) 80 (58.0)

Shenzhen, China Testing 662 336 (50.8) 326 (49.2)

Johns Hopkins Hospital, Baltimore, MD, USA Testing 100 35 (35.0) 65 (65.0)

+, ground truth determined by phase I deep learning system (DLS). CXR, chest radiograph; TB, tuberculosis.
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under the curve (AUC) were generated and statistically 
compared between DCNNs using the DeLong parametric 
method (22,23). Sensitivity, specificity, positive predictive 
value, and negative predictive value was calculated based on 
the algorithm’s performance against JHH radiographs. 

Computer hardware & software specifications

All DCNN development and testing was performed using 
PyTorch framework (https://pytorch.org) on a 2.5 GHz 
Intel Haswell dual socket (12-core processors) (Intel, Santa 
Clara, CA) with 128 GB of RAM and 2 NVIDIA K80 
GPUs (NVIDIA Corporation, Santa Clara, CA).

Radiologist interpretation

A board-certified cardiothoracic radiologist with 5 years 
of post-fellowship experience (C.L., Radiologist 1) and a 
PGY-4 diagnostic radiology resident (P.Y., Radiologist 2)  
interpreted the 100 CXRs obtained from JHH for 
potential TB. 

Results

Our highest-performing DCNN from Phase I, trained 
using 11,000 images curated by an expert radiologist, 
achieved AUC of 0.88 for detection of TB in patients with 
clinically and pathologically-confirmed TB. After Phase II 
training, TBNet achieved an improved AUC of 0.91 when 
tested against the same dataset (P<0.05). When tested using 
radiographs obtained from JHH, TBNet performed with an 
AUC of 0.87 (Figure 1). The algorithm reached a sensitivity 
of 85% and a specificity of 76%, with positive predictive 
value of 0.64 and negative predictive value of 0.9 (Table 3). 
These results were comparable to those of a cardiothoracic 
radiologist and superior to those of a PGY-4 radiology 
resident. In majority vote analysis, sensitivity reached 94% 
and negative predictive value reached 0.96, demonstrating 
a synergistic effect between the algorithm’s output and 
radiologists’ interpretations (Table 3). 

Heatmaps revealed that the DCNN appropriately 
emphasized the same regions of interest as the human 
radiologist, such as cavitary and non-cavitary parenchymal 
nodules/masses and hilar lymphadenopathy (Figure 2). 

ROC for JHH radiographs
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ROC for NIH China set
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Figure 1 Receiver operator curve of TBNet for detection of tuberculosis. Area under the ROC curve (AUC) is 0.91 for detection of 
tuberculosis when tested against dataset China, and 0.87 when tested against radiographs obtained from Johns Hopkins Hospital (JHH).  
ROC, receiver operating characteristic curve.

Table 3 Comparison of TBNet and radiologist performance on radiographs obtained from Johns Hopkins Hospital

Reader Sensitivity Specificity Positive predictive value (PPV) Negative predictive value (NPV)

TBNet 85% 76% 0.64 0.9

Radiologist 1 83% 81% 0.7 0.9

Radiologist 2 77% 75% 0.63 0.86

Majority vote 94% 85% 0.76 0.96
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Discussion

In this study we utilized a novel method of dataset curation 
and developed a reliable screening algorithm for TB 
detection. While 10% of the dataset required radiologist 

interpretation, the remaining 90% of the training dataset 
were analyzed using semi-supervised learning. Using 
this approach, we were able to develop a TB-screening 
algorithm that generalized well to radiographs obtained 
from diverse settings. None of the training cases had 

Figure 2 Three chest radiographs from the test sets (left images) showing findings of pulmonary tuberculosis with their corresponding 
prediction outputs using class activation mapping (right images), demonstrating concordance between radiographic findings and machine-
derived features. 
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clinical confirmation of TB, therefore the CXR findings 
detected by the DCNN are non-specific and mimicked the 
radiologist’s impression of what could be seen in TB. This 
may be a viable strategy when developing a DLS to detect 
diseases with a low prevalence. 

The preliminary algorithm developed from radiologist-
generated labels subsequently created meaningful labels 
from the unreviewed dataset, as evidenced by the improved 
performance of the deep learning algorithm that was trained 
using DCNN-generated labels. This highlights the concept 
of semi-supervised learning, where the DLS is capable of 
further discerning features particular to TB in a previously 
naïve training dataset, resulting in an overall positive effect 
on the performance. 

With increasing number of open-source algorithms, 
the majority of resources required for DLS development is 
spent on obtaining large datasets with accurate labels. PACS 
provides developers with no shortage of deidentified digital 
radiographs; however, annotating them with radiologist-
level accuracy is a time-consuming and expensive task. 
Utilizing a 2-tiered approach can save significant amount of 
time and resources in deep learning algorithm development. 
On average, a radiologist spends 1.4 minutes interpreting 
a plain-film radiograph, which would translated into  
2,348 hours interpreting 100,622 images that were used for 
phase II development (24). In comparison, we were able 
to generate machine-generated labels for 100,622 images 
within 5 minutes using our phase I algorithm. 

Furthermore, phase II training yielded a more predictive 
algorithm with a statistically significant increase in AUC 
from 0.88 to 0.91 when tested against the same testing 
dataset (Figure 1). Our algorithm was generalizable to 
radiographs obtained from diverse settings including a 
tertiary academic medical center in the US, demonstrating 
a slight drop in AUC from 0.91 to 0.87 when tested against 
radiographs obtained from JHH. 

Multiple prospective studies assessing clinical value of 
deep learning algorithms demonstrated significantly limited 
performance of algorithms compared to their original 
studies (25). Such findings raise concerns for overfitting 
in reporting outcomes for deep learning algorithms. Our 
algorithm has reached a clinically relevant AUC and is 
generalizable to radiographs obtained from very different 
population from Shenzhen, China and JHH (Baltimore, MD). 

TBNet demonstrated added value in cases that were 
misinterpreted by either radiologist, demonstrating the 
value of this algorithm as a CAD tool. In the majority vote 
analysis, TBNet was able to detect 6 additional positive 

radiographs from the radiographs that had disparate 
interpretations between the radiologists, increasing the 
overall sensitivity to 0.94 (Table 2). The algorithm’s high 
sensitivity and negative predictive value can significantly 
reduce radiologists’ workload in screening for TB by triaging 
radiographs with potential findings indicative of TB. 

One limitation of this study is that phase I algorithm 
outputs can be incorrect. However, AUC of the resulting 
algorithm increased from 0.88 to 0.91 after Phase II 
training, which validates the utility of sacrificing individual 
label accuracy for increased size of the training set. Another 
concern is the validity of publicly available datasets that 
were used for training, validation, and testing of our 
algorithms. To address this concern, we individually 
reviewed the entire CXR14 database and fi ltered  
498 radiographs that were suboptimal in quality. 

Our algorithm was not specific for TB, which has 
implications for clinical deployment. TBNet was designed 
to maximize sensitivity as a screening algorithm; however, 
in a population with a low prevalence of TB, our algorithm 
would likely have a low positive predictive rate. Operating 
threshold on the AUC curve should be adjusted for specific 
populations, and further prospective study is warranted to 
determine the ideal ROC threshold for maximizing the 
algorithm’s performance in target population. 

Conclusions

Using semi-supervised learning, we trained a deep 
learning algorithm that detected TB at a high accuracy and 
demonstrated value as a CAD tool by identifying relevant 
CXR findings, especially in cases that were misinterpreted 
by radiologists. When dataset labels are noisy or absent, 
the described methods can significantly reduce the required 
amount of curated data to build clinically-relevant deep 
learning models, which will play an important role in the 
era of precision medicine. 
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