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Introduction

Esophageal cancer is the eighth most common cancer and 
the sixth most common cause of cancer-related deaths 
worldwide (1) with approximately 17,000 new cases 
diagnosed every year in the United States (2-4). The 
two major histologic subgroups diagnosed in esophageal 
cancer are squamous cell carcinoma and adenocarcinoma. 
Esophageal squamous cell carcinoma (ESCC) typically 
arises in the middle and lower thirds of the esophagus, with 
only 10–15% occurring in the upper one-third segment, 
whereas esophageal adenocarcinoma (EAC) typically 
develops from the metaplastic columnar epithelium in the 
lower third of the esophagus (5).

The survival rate of patients with esophageal cancer is 
inversely related to tumor invasiveness and the presence of 
nodal and distant disease (6). The 5-year overall survival 
(OS) for patients with early-stage disease after treatment 
exceeds 90%, whereas the 5-year OS is less than 40% for 

advanced-stage disease (6). Therefore, earlier detection 
allows for a better prognosis (6). However, because 
approximately 60–70% of patients who receive neoadjuvant 
chemoradiotherapy (nCRT) do not respond optimally, 
risk stratification and imaging biomarkers are used to 
dramatically improve the outcomes of treatment (6). 

In the paradigm of precision medicine, diagnostic 
testing and targeted therapies are based on whole 
genome sequencing, as well as other clinical assessments 
and can have a significant clinical impact on the disease 
prognosis (7). In this review, we aim to assess the role of 
precision imaging in esophageal cancer, in terms of staging, 
restaging, biomarkers and radiomics, and its implications on 
disease prognosis.

Pathogenesis and clinical picture 

The major risk factors of ESCC include tobacco and alcohol 
abuse, N-Nitrosamines, alkali burn, history of aerodigestive 
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cancers,  caustic ingestion and achalasia.  The risk 
factors for EAC include chronic gastroesophageal reflux 
disease (GERD), smoking (2.18-fold increase), male sex  
(6-fold increase), obesity (2.39-increase), advancing age 
and Caucasian race (4,8,9). Weekly GERD symptoms 
increase the risk of EAC by about 5-fold with the risk 
increasing further in patients with chronic, nocturnal 
or more frequent symptoms (9). EAC can develop from 
progressive dysplastic changes within Barrett’s esophagus. 
Barrett’s esophagus develops secondary to reflux-induced 
metaplasia of the native squamous epithelium into 
intestinal epithelium (8). About 0.5% of patients with 
non-dysplastic Barrett’s esophagus and 7% of patients 
with high-grade dysplasia will eventually progress to 
EAC (4). 

Esophageal cancer is commonly diagnosed at an 
early stage incidentally during routine endoscopy or by 
surveillance of known Barrett’s esophagus (15% of EAC). 
However, most esophageal cancers are discovered when they 
have become locally advanced and are due to a non-specific 
initial presentation like heartburn or abdominal bloating. 
Therefore, as few as one out of eight esophageal cancers 
are detected at an early stage (T1) (8,9). Esophageal cancer 
can present with dysphagia, vomiting, loss of body weight, 
fatigue and gastrointestinal bleeding (8,9). Less commonly, 
it presents with oropharyngeal dysphagia or iron-deficiency 
anemia (9). Supra-clavicular lymph node (SCLN) metastasis 
can be diagnosed on clinical examination in approximately 
8–20% of esophageal cancer cases (10).

Genetics 

Esophageal cancer is associated with genetic mutations 
of the following genes: TP53, NOTCH, and MTOR; 
and amplification of the following genes: AKT2, EGFR, 
ERBB2 (HER2), FGFR1, KRAS, MDM2, and PIK3CA 
(11,12). EAC is more commonly associated with HER2-
neu gene amplification and overexpression compared to 
ESCC (5). VEGFR expression is observed in 54% of EAC 
patients and is correlated with poor survival (13). The 
wild-type p53 is a tumor suppressor in normal tissues that 
inhibits cell proliferation, whereas p53 overexpression 
is considered a potential tumor prognosticator (14,15). 
Overexpression of p53 is seen in esophageal precancerous 
lesions and is involved in the stepwise progression of these 
lesions into esophageal cancer (14). 

Screening and diagnosis

Upper endoscopy with biopsy and histopathological 
confirmation is the benchmark for diagnosis. Esophageal 
cancer can appear on endoscopy as a stricture, mass, 
raised nodule, ulceration, or a subtle irregularity in the 
mucosa (9). 

Most observational studies have shown a survival 
benefit in the detection of EAC through Barrett’s 
esophagus surveillance because increasing the possibility 
of identifying the disease in its early stages allows for 
the utilization of curative therapies. Multiple societies 
currently recommend regular endoscopic surveillance in 
Barrett’s esophagus (16). Zhang and colleagues (14) found 
an increasing trend of the expression of carcinoembryonic 
antigen (CEA) and cancer antigen 19-9 (CA19-9) proteins 
with the progression from basal cell hyperplasia and 
esophageal dysplasia to invasive ESCC. A screening 
program to detect p53, CEA and CA19-9 proteins can 
help identify high-risk individuals with ESCC as they have 
a combined 84% specificity and 73% sensitivity for the 
diagnosis of ESCC (14).

Radiological staging of esophageal cancer

The 8th edition of the American Joint Committee 
on Cancer (AJCC) staging of epithelial cancers of the 
esophagus and esophagogastric junction (EGJ) is widely 
used today for initial staging (Table 1) (17). In order to 
ensure the best outcome and to determine the most 
suitable therapy, accurate radiologic staging between T1 
and T2−4 is necessary. In addition, the large submucosal 
lymphatic network of the esophageal wall permits early 
regional nodal spread in esophageal cancer (18). A pilot 
study comparing the performance of different imaging 
modalities showed that for T staging, EUS had the best 
sensitivity and NPV (100%), compared to magnetic 
resonance imaging (MRI) and MDCT (19). In addition, 
MRI also had the highest overall accuracy for T stage 
(83%) (19). For nodal (N) staging, MRI and EUS had 
the highest sensitivity and NPV (100%), however, MRI, 
EUS and MDCT did not show acceptable results for 
specificity and PPV (19) (Figure 1). For distant metastases 
(M) staging, Computed tomography (CT) and positron 
emission tomography/computed tomography (PET/CT) 
are the modalities of choice (4).
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Endoscopic ultrasonography

EUS can provide an accurate treatment assignment based 
on TNM staging in 75% of cases as compared to 65% 
with CT and 70% with PET/CT (20). EUS can help to 
determine the T stage by assessing the depth of invasion 
of the esophageal wall with 60-97% reported accuracy 
(3,5). EUS also has better diagnostic performance in T4 
disease (92% sensitivity and 97% specificity) than T1 
disease (82% sensitivity and 99% specificity) (21). The 
addition of EUS-guided fine needle aspiration biopsy to 
CT increases the sensitivity of N-staging to 85–97% (5). 
EUS rarely identifies M in remote sites because of its 
small field of view (9,22), however, EUS combined with 
fine needle aspiration biopsy are very reliable in detecting 
M in non-regional nodes with 53%-98% sensitivity and 
77–100% specificity (9). The limitations of EUS include 

invasiveness, operator dependency, difficulty with stenotic 
tumors, and risk of post-therapeutic inflammation and 
perforation (3,5) (Figures 2,3).

Multidetector CT

MDCT plays an important role in the staging of esophageal 
cancer (22) with a reported accuracy of 43–92% in 
T-staging (23-26). MDCT cannot differentiate between 
the different layers of the esophageal wall and therefore, 
cannot readily distinguish between T1 and T2 tumors (22).  
T3 stage is detected on MDCT as periesophageal fat 
infiltration with 75% sensitivity and 78% specificity. T4 
stage is identified with loss of fat planes between the tumor 
and adjacent mediastinal structure with 75% sensitivity 
and 86% specificity (5,27). The diagnosis of T4 stage 

Table 1 8th edition of the American Joint Committee on Cancer (AJCC) staging of cancers of the esophagus and esophagogastric junction (EGJ)

Category Criteria

T Category

TX Tumor cannot be assessed

T0 No evidence of primary tumor

Tis High-grade dysplasia, defined as malignant cells confined to the epithelium by the basement membrane

T1 Tumor invades the lamina propria, muscularis mucosae, or submucosa

T1a Tumor invades the lamina propria or muscularis mucosae

T1b Tumor invades the submucosa

T2 Tumor invades the muscularis propria

T3 Tumor invades adventitia

T4 Tumor invades adjacent structures

T4a Tumor invades the pleura, pericardium, azygos vein, diaphragm, or peritoneum.

T4b Tumor invades other adjacent structures, such as the aorta, vertebral body, or airway

N category

NX Regional lymph nodes cannot be assessed

N0 No regional lymph node metastasis

N1 Metastasis in one or two regional lymph nodes

N2 Metastasis in three to six regional lymph nodes

N3 Metastasis in seven or more regional lymph nodes

M category

M0 No distant metastasis

M1 Distant metastasis
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Figure 1 A 63-year-old male with squamous cell carcinoma of distal esophageal mass. (A) Axial contrast CT, (B) axial FDG PET/CT images 
show large necrotic FDG avid tumor at the lower esophagus (black arrow) invading the stomach, pancreas and liver. (C) EGD shows a 
circumferential partial obstructive ulcerative esophageal mass (black arrow). (D,F) Axial contrast CT and (E,G) axial FDG PET/CT images 
show FDG avid enlarged necrotic cervical (thick white arrows) (D,F) and retroperitoneal metastatic lymphadenopathy (black arrowheads) 
(E,G). (H) Coronal MIP image shows cervical (white arrow), mediastinal (white arrowhead) and retroperitoneal (black arrowhead) metastatic 
lymphadenopathy and distal esophageal carcinoma with metastatic lymphadenopathy (black arrow). PET, positron emission tomography; 
CT, computed tomography; EGD, esophagogastroduodenoscopy; MIP, Maximum Intensity Projection.
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can be challenging in patients who received surgery or 
radiotherapy and in cachectic patients secondary to the 
loss of fat planes (22). CT helps to detect aortic and 
tracheobronchial invasion with almost 100% sensitivity, 
albeit the specificity ranges from 52–97% (22).

The diagnostic role of CT in preoperative N-staging in 
esophageal cancer is limited (18), with a reported 30–60% 
sensitivity, 60–80% specificity and 27–86% accuracy for 
nodes >10 mm (5,23-26). It is difficult to establish a specific 
size threshold value to differentiate benign from malignant 
lymph nodes with high sensitivity and specificity at the 
same time. For example, Lie and colleagues (18) reported 
that lymph nodes >10 mm could predict metastatic lymph 
nodes with a high PPV of 79%, but only 28% sensitivity. By 
lowering the size diagnostic criterion the sensitivity improved 
to 37%, but 63% of the metastatic nodes went undetected. 
In addition, normal-sized lymph nodes (<10 mm)  

could have microscopic metastatic foci that are usually 
undetected in CT resulting in understaging of the tumor 
(18,28). Using criteria including size, shape and location of 
regional lymph nodes in esophageal cancer on CT could 
improve the staging sensitivity to 67% and the PPV of 
64% compared with only short axis measurement in cT1 
esophageal cancer (18,28).

Contrast-enhanced CT (CECT) is the most commonly 
used modality for detecting M in distant sites, particularly 
hepatic (Figure 4) and lung (Figure 5) metastases (29).

PET/CT

The PET/CT has a limited role in T staging of esophageal 
cancer other than affirming mediastinal organ invasion. 
However, it can help identify an occult primary neoplasm in 
patients presenting with metastatic disease (5). Fluorine-18 

A B C D

Figure 2 A 76-year-old female with adenocarcinoma of the gastroesophageal junction (GEJ). (A) Axial non-contrast CT and (B) axial 
FDG PET/CT images show asymmetrical irregular thickening FDG avid tumor (white arrow) at the GEJ invading the stomach, pancreas 
and liver. (C) EGD shows a single 2 cm mucosal nodule (yellow arrows) at GEJ. (D) EUS shows 2.0 cm × 10 cm poorly defined one-
third circumferential hypoechoic nodule/mass (white arrow) at the GEJ with likely invasion of muscularis propria. PET, positron emission 
tomography; CT, computed tomography; EGD, esophagogastroduodenoscopy; EUS, endoscopic ultrasound.

Figure 3 A 76-year-old female with squamous cell carcinoma at the mid esophagus. (A) Axial non-contrast CT and (B) axial FDG PET/
CT images show an FDG avid thickening at the mid esophagus (white arrow) abutting the posterior wall of the left mainstem bronchus. (C) 
EGD shows a friable exophytic mass in the mid esophagus (white arrow) with significant stenosis. (D,E) EUS shows near circumferential 
hypoechoic nodule/mass (white arrow) at the mid esophagus level with significant stenosis and penetration into the adventitia. A 0.7 cm 
× 0.5 cm hypoechoic peritumoral node (yellow arrowhead) consistent with metastatic invasion. PET, positron emission tomography; CT, 
computed tomography; EGD, esophagogastroduodenoscopy; EUS, endoscopic ultrasound.
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Figure 4 A 70-year-old female with squamous cell carcinoma at the proximal esophagus. (A,C,E) Axial non-contrast CT and (B,D,F) axial 
FDG PET/CT images shows FDG avid proximal esophageal mass (thin white arrows) (A,B) and right side displacement of the trachea 
(C,D) (white arrowheads) with FDG avid metastatic subcarinal lymph node and FDG avid liver metastasis (thick white arrows) (E,F). PET, 
positron emission tomography; CT, computed tomography.
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fluorodeoxyglucose PET/CT (18F-FDG PET/CT) can 
assess the length and the volume of tumor in esophageal 
cancer patients who either cannot tolerate EUS or have 
impassable strictures (20–30% of cases) (30). 

The 18F-FDG PET/CT cannot accurately reflect 
the N status since the nodes are often obscured by the 
metabolic activity of the primary tumor or background 
activity (5,31). A meta-analysis by Shi and colleagues (32) 
reported a pooled sensitivity and specificity of 62% and 
96%, per-station analysis, for 18F-FDG PET/CT in the 
detection of nodal involvement (32). The high specificity of 
PET/CT allows nodal disease to be ruled out, preventing 
unnecessary surgeries (31). However, 18F-FDG PET/CT 
is unable to detect microscopic metastasis and distinguish 

nodal metastatic disease from other benign conditions like 
reactive hyperplasia or granulomatous inflammation (28).

PET/CT is the modality of choice for detection of 
metastasis (M) with 71% sensitivity and 93% specificity (33). 
PET/CT has higher accuracy than either PET or CT 
alone in the diagnosis of M (9). In a prospective trial of 
129 patients, PET identified 41% additional metastatic 
sites, 38% had a shift in management and 8% detected 
synchronous malignancy (34). 

MRI

In MRI, high-resolution T2-weighted imaging (T2WI) 
provides meticulous imaging of the anatomical layers of 

Figure 5 A 71-year-old male with squamous cell carcinoma at the mid esophagus. (A) Axial non-contrast CT soft tissue window, (C) axial 
FDG PET/CT and (E) axial non-contrast CT lung window shows mid esophageal mass (thick white arrow) and lung metastases (thin white 
arrows) and all are FDG avid in the FDG PET/CT image (C). (B,D) EGD shows nodular irregular mass at the mid esophagus (black arrow). 
(F) EUS shows an irregular hypoechoic ill thickening at the site of esophageal mass (white arrowhead) and it extends into submucosa with 
focal disruption of muscularis layer. PET, positron emission tomography; CT, computed tomography; EGD, esophagogastroduodenoscopy; 
EUS, endoscopic ultrasound.
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the esophageal wall and surrounding tissues with an 81% 
accuracy for T-staging, but with a 16% understaging and 
3% overstaging shortfall (35) (Figure 6). EAC appears 
isointense or slightly hyperintense on fat-suppression 
T2WI (FS-T2WI) and significantly hyperintense on 
diffusion-weighted-MRI (DW-MRI) (36). T2WI combined 
with DW-MRI can diagnose esophageal cancer with the 
detection rate of 33% for T1 stage, 58% for T2 stage, 
96% for T3 stage and 100% for T4 stage (35). MRI 
showed comparable accuracy (75–87%) to CT in assessing 
operability of esophageal cancer (35). The combination of 
DW-MRI and 18F-FDG PET/CT provide complementary 
diagnostic and prognostic information in esophageal cancer 
since both increased metabolic activity and restricted water 
diffusion are independent parameters that reflect different 
aspects of tumor pathophysiology (37).

Conventional MRI shows moderately poor diagnostic 
performance for N-staging in esophageal cancer with 
25–62% sensitivity and 67-88% specificity (38). However, 
the use of a gadolinium contrast agent can improve the 
sensitivity and specificity of 1.5T MRI scan up to 100% 
and 78%, respectively, in the diagnosis of N-staging (39). 
Also, Alper and colleagues (40) reported that MR imaging 
with STIR turbo spin-echo sequence predicted malignant 
lymph nodes in esophageal cancer with 81% sensitivity and 
98% specificity. The increase in gross tumor volume of 
EAC acquired on FS-T2WI and DW-MRI with b-values 
of 500 and 800 s/mm2 sequences is associated with a 
significant increase in the tumor N-stage (36). FS-T2WI is 
the best sequence for gross tumor volume measurement to 
differentiate stage N0 from stage N1-3 [0.806 area under 

the receiver operating curve (AUC), 74% sensitivity and 
92% specificity] (36) 

The investigation of whole-body MRI (WBMRI) in 
esophageal cancer is still limited, however, WBMRI has an 
equivalent accuracy to 18F-FDG-PET/CT in T-, N- and 
M-staging of esophageal cancer (39,41). WBMRI also has 
the advantage of being used for serial follow-ups without 
the risk of overradiation that is encountered in PET/CT. 
In addition, SUV and ADC are entirely different tumor 
metrics that can complement each other (41). 

Positron emission tomography/magnetic resonance 
imaging (PET/MRI) shows acceptable accuracy for T 
staging (67%) compared with EUS (87%) in esophageal 
cancer (42). In regards to N-staging, A higher sensitivity 
was noted in PET/MRI (83%) compared to EUS (75%), 
PET/CT (67%), and CT (50%) (42). PET-MRI is 
also able to detect M disease (29). PET/MRI has the 
advantage of superior soft tissue resolution and time-
saving with the acquisition of both PET and MRI images 
simultaneously (29). 

Treatment

The standard treatment for superficial T1 tumors is 
esophagectomy with endoscopic mucosal resection or ablation 
for mucosal tumors (5,22). Concurrent chemoradiotherapy 
(CRT) should be considered for cervical and upper thoracic 
esophageal cancer (5). Locally advanced esophageal cancer is 
managed with nCRT, definitive chemoradiotherapy (dCRT), 
perioperative chemotherapy (for EAC), or esophagectomy 
(5,43). The use of nCRT in locally advanced esophageal 

Figure 6 A 60-year-old male with adenocarcinoma of the GEJ. (A) Axial contrast CT, (B) axial FDG PET/CT, (C) axial T2WI and (D) 
coronal T2WI images show T2 isointense FDG avid irregular thickening (white arrows) at the GEJ. GEJ, gastroesophageal junction; PET, 
positron emission tomography; CT, computed tomography; T2WI, T2-weighted imaging.
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Figure 7 A 59-year-old female with squamous cell carcinoma at the proximal esophagus. (A) Axial contrast CT and (B) axial FDG PET/
CT images show an FDG avid 3.7 cm thickening in the proximal esophagus (thin white arrows) and tracheoesophageal fistula. (C) Axial and 
(D) coronal non-contrast CT shows an esophageal stent (white arrowheads) extending from thoracic inlet up to the subcarinal level. PET, 
positron emission tomography; CT, computed tomography; T, trachea; E, esophagus.

cancer is associated with improved OS and pathological 
complete response (pCR) (44). The most commonly used 
two-drug chemotherapy is 5-FU and cisplatin with the 
addition of docetaxel or epirubicin reserved for good 
responders (5). The decision as what which adjuvant 
treatment to use following nCRT or dCRT is based on 
response assessment on imaging, usually PET/CT, or 
endoscopy; esophagectomy or observation for patients 
with complete response (CR); salvage esophagectomy or 
palliative therapy for non-responders (5) (Figure 7). 

Stage IV disease is treated with palliative radiotherapy 
and chemotherapy (22). Anti-HER2 monoclonal antibodies 
(Trastuzumab) are recommended in advanced or metastatic 
EAC overexpressing HER2-neu receptors (5). Multiple 
targeted therapies including VEGF/VEGFR inhibitors 
(such as Bevacizumab and Ramucirumab) and EGFR 
tyrosine kinase inhibitors (such as erlotinib and gefitinib) 
are under research for advanced and metastatic esophageal 
cancer (5,12,13). The genetic profile of ESCC provides 
a foundation for potential novel targeted therapies and 
precision medicine (11).

Restaging and the role of imaging in the assessment 
of treatment response

The local recurrence in ESCC patients is the primary 
reason for failure after CRT and is associated with poor 
prognosis. Hence, the accurate assessment of the tumor 
response to CRT is crucial for predicting survival and 
guiding the management (43) (Figure 8). Currently, there is 

no optimum guideline available to inform practice (45). The 
National Comprehensive Cancer Network (NCCN) advises 
restaging for all patients who receive nCRT (46), whereas 
the European Society for Medical Oncology (ESMO) 
recommends restaging of patients with cT3-4 or cN1-3 
tumors (47).

CT

CT has 33–55% sensitivity and 50–71% specificity in the 
assessment of tumor response after nCRT (43,48). The 
change in tumor volume calculated on CT scans has a 
limited role in predicting pathological response to nCRT 
in esophageal cancer patients (0.742 AUC, 56% sensitivity, 
93% specificity, P=0.005) (49). The CT number of a tumor 
may be useful to assess treatment response in advanced 
esophageal cancer. A threshold value for tumor CT number 
of >40 Hounsfield Units can predict encouraging response 
to chemotherapy with 0.73 AUC (50).

CT perfusion parameters in the esophageal wall affected 
by the tumor display a strong positive correlation with 
the histopathologic tumor regression grade according to 
Mandard’s criteria (51). The median blood flow and blood 
volume are gradually increased, while the mean transit 
time is decreased as tumor regression grade is increased 
secondary to an increase in the neovascularization with 
higher tumor grades (51). Also, CT perfusion values can 
detect the hypervascularized residual viable tumor in 
the esophageal wall in incomplete or non-responders to 
nCRT (51). 

A B C D
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Using dual-source dual-energy CT (DECT) iodine 
map, the changes of normalized iodine concentration 
(NIC) before and after CRT in esophageal cancer patients 
can monitor the response to CRT. The responders have 
significantly lower NIC in both hepatic arterial and portal 
venous phases compared to the non-responders (52). The 
reduced tumor iodine intake is due to the reduced vascular 
proliferation and supply of esophageal cancer secondary to 
CRT treatment (52). 

PET/CT

A recent meta-analysis that included 13 studies (697 
patients) to determine the role of 18F-FDG-PET/CT 
(PETper) in the assessment of the response to CRT in 
esophageal cancer concluded that the role of PETper 
in esophageal cancer patients is controversial and its 
predictive and prognostic value cannot be definitively 
established (53). In particular, 8 studies supported 
the predictivity of PETper, whereas 5 did not find any 
correlation between PETper parameters, the pCR and/or 

the clinical outcome. PETper predicted pCR with 63–100% 
sensitivity, 50–76% specificity and 51–89% AUC; OS with 
49–94% sensitivity, 36–82% specificity and 61–93% AUC 
and the DMFS/progression-free survival (PFS) with 77–
94% sensitivity, 79–82% specificity and 57–93% AUC (53).

One study reported that pCR in primary tumors 
was associated with post-treatment maximum standard 
uptake value (SUVmax) values (P=0.016) and percent 
change in intratumoral SUVmax (P=0.006) (44). Post-
treatment SUVmax cutoff value of ≤3.25 predicted pCR 
with 0.752 AUC, 67% sensitivity and 67% specificity; 
and post-treatment percent change in SUVmax cut-
off value of >72.32% predicted pCR with 0.705 AUC, 
71% sensitivity and 67% specificity (44). Another study 
by Zschaeck and colleagues (54) in locally advanced 
esophageal cancer reported an increase in SUVmax and 
SUVmean in the non-tumor-affected esophagus on 
restaging PET was significantly associated with improved 
OS, better local control, and a lower rate of treatment 
failure or the development of distant metastases (54). 
Findlay and colleagues (55) found that the composite 

Figure 8 A 57-year-old male with squamous cell carcinoma at the proximal esophagus. (A) Axial contrast CT and (B) axial FDG PET/
CT images show an FDG avid proximal esophageal mass (thin white arrow); (C) EGD shows a large ulcerative partially obstructive non-
circumferential mass (thick white arrow) in the upper one-third of the esophagus; (D,E) EUS shows a 3 cm thickness of the wall of the 
esophagus (white arrowhead) and a 1 cm oval hypoechoic well defined right paraesophageal lymph node (thick yellow arrow). He underwent 
3 months of chemoradiation. (F) Axial contrast CT and (G) axial FDG PET/CT images show interval decrease in the size and FDG activity 
of the proximal esophageal mass (thick black arrow). (H) EGD shows mild residual thickening in the upper one-third of the esophagus (thick 
black arrow) with surrounding normal esophageal mucosa (thin yellow arrows). (I,J) EUS shows a mild residual thickening thickness of the 
wall of the esophagus (black arrowhead) and reduction in 0.5 cm oval hypoechoic right paraesophageal lymph node (thin yellow arrows). 
PET, positron emission tomography; CT, computed tomography; EGD, esophagogastroduodenoscopy; EUS, endoscopic ultrasound.
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measurement of FDG-avidity and volume metrics can 
improve the prediction of treatment response, as ∆SUVmax 
and ∆length of the tumor are independent predictors of 
pCR (55). In addition, metabolic nodal response, which 
is often discordant with the primary tumor response, 
can specifically assess metastatic deposits that are likely 
responsible for recurrence (55). Distant interval metastases 
have been reported to be detected on 0–26% of esophageal 
cancer patients on presurgical restaging after nCRT. It is 
crucial to identify these patients prior to surgery because 
esophagectomy carries a high morbidity rate; additional 
systemic therapy could be considered in these patients (56) 
However, 18F-FDG PET/CT can result in false positive 
results in 5% of patients, indicating the necessity for the 
histopathological confirmation of suspected lesions (56).

Tamandl and colleagues (3) proposed an algorithm of 
combined CECT and 18F-FDG PET/CT for locoregional 
restaging of esophageal cancer after nCRT and it was able 
to determine post-therapeutic T stage with a sensitivity, 
PPV, and accuracy of 83%, 91%, and 76% compared to 
79%, 70%, and 59% in CECT, and 81%, 81%, and 68% 
in visual 18F-FDG PET/CT, respectively. The combined 
CECT and MTV had the highest diagnostic accuracy to 
predict CR (0.82 AUC, P<0.001). 

MRI

In regards to DW-MRI in esophageal cancer, responders 
to nCRT have a lower baseline and higher post-treatment 
ADC values compared to non-responders (19,57). One 
could speculate that the non-responders have necrotic areas 
within the tumor accounting for the higher pre-treatment 
ADC values and decreasing the response to nCRT (19). 
Conversely, an alternate study reported that high baseline 
ADC values correlated well with better response to CRT 
and higher survival rates in esophageal cancer patients (58).  
A low percent change in tumor ADC during the first  
2–3 weeks of nCRT (∆ADCper) indicates a low rate of cell 
membrane integrity loss during treatment and ∆ADCper of 
<29% was predictive of residual cancer with 100% sensitivity, 
75% specificity, 94% PPV, and 100% NPV (59). Also, a 
low ∆ADCper of <21% was predictive of no-pCR with 82% 
sensitivity, 100% specificity, 100% PPV, and 80% NPV 
and these findings can guide the early management (59). 
One of the drawbacks of DW-MRI is being insensitive to 
inflammation early during treatment, however, this might be 
overcome by the addition of 18F-FDG-PET/CT (59).

The DCE-MRI parameters can also help predict 

and monitor response to concurrent CRT for advanced 
esophageal cancer since the Ktrans and Kep values are closely 
correlated with the degree of tumor microcirculation 
and angiogenesis (60). The CR is associated with higher 
baseline Ktrans and Kep values; lower posttreatment Ktrans and 
Kep values; and higher absolute change and ratio of change 
of both Ktrans and Kep. Among the pre-CRT parameters, 
high pre-Ktrans value is the best parameter because it is 
associated with excellent treatment response, due to better 
blood perfusion, delivery of chemotherapy and higher 
radiosensitivity. For post-CRT measurements, post-Kep 
is the best parameter to assess treatment response with a 
threshold value of <1.031 predicts CR with 95% sensitivity, 
57% specificity and 0.817 AUC (60). In terms of change of 
the DCE-MRI parameters, the ΔKtrans is the best parameter 
to assess treatment response with an optimal threshold of 
>−0.206 predicts CR with 53% sensitivity, 95% specificity 
and 0.816 AUC (60). The best parameter to assess the 
ratio of change of DCE-MRI is the ratio of ΔKtrans with 
an optimal threshold of >−0.144 predicts CR with 90% 
sensitivity, 62% specificity and 0.840 AUC (60).

Heethuis and colleagues reported that the combination of 
both DW-MRI and DCE-MRI can provide complementary 
information in predicting the response to nCRT in 
esophageal cancer, resulting in a high predictive value, that 
is higher than 18F-FDG PET(/CT) (c-index =0.89) (61).

Radiogenomics and radiomics

The differences in genetic drivers between tumors can be 
assessed by their FDG avidity. FDG uptake is a surrogate 
for glucose metabolism in the tumor. Elevated FDG-
uptake in operable EAC correlates with multiple oncogenic 
processes with potential therapeutic targets (62). For 
instance, Heiden and colleagues (62) reported that FDG-
avid tumors were associated with increased expression of 
multiple matrix metalloproteinases, extracellular matrix 
components, members of oncogenic signaling pathways, 
and PD-L1 proteins (fold change >2.0, P<0.05). In addition, 
FDG-avid tumors had significant upregulation of specific 
gene sets associated with extracellular matrix organization 
(metastasis) and vascular development (angiogenesis) 
(P<0.005) (62). FDG-avid tumors are associated with 
the signaling pathways of hypoxia, angiogenesis, KRAS 
signaling, and epithelial-to-mesenchymal transition; 
and tumors with low FDG uptake were associated with 
increased gene sets of oxidative phosphorylation and MYC 
signaling (62).
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KRAS plays an important role in the PI3K and Raf/
MEK/ERK signaling pathways regulating cell metabolism 
and subsequently esophageal cancer tumorigenesis. These 
aforementioned oncogenic pathways represent aggressive 
tumor phenotypes, and thus esophageal cancer might 
benefit from neoadjuvant treatments targeting these 
pathways (62). Surprisingly, KRAS expression was not 
associated with a worse prognosis overall (P=0.64) (62). 
Development of a predictive imaging model based on these 
molecular factors may establish a relationship between 
KRAS and the other molecular alterations of esophageal 
cancer, allowing for enhanced precision management of 
esophageal cancer.

Tan and colleagues found that a CT-based radiomic 
model can predict LN metastasis in ESCC patients and 
outperforms size criteria with 0.758 AUC in a training set, 
and 0.773 AUC in the validation set (63). CT radiomic 
signature extracted from baseline CT scans might aid in 
distinguishing CR from partial response in liver metastases 
from esophageal cancer (64-68). Hou and colleagues (65) 
found that a radiomic prediction model including histogram 
skewness, histogram kurtosis, gray-level size-zone matrix 
(GLSZM) long-zone emphasis, and 2 Gabor transformed 
parameters MSA-54 and MSE-54, differentiated non-
responders from responders to nCRT in esophageal 
cancer (65). A retrospective study of 18 patients reported 
that a CT based radiomic model can predict a significant 
decrease in volume of liver metastases to chemotherapy 
with 0.64 AUC for partial response lesions and 0.79 AUC 
for CR lesions (64). Larue and colleagues (69) proposed a 
pretreatment CT-based radiomic model that was able to 
stratify patients into statistically significant risk groups and 
also predicted a 3-year OS in esophageal cancer patients 
with better prognostic performance compared to the 
clinical model (69). In addition, lower baseline histogram 
uniformity on unenhanced CT images and higher post-
therapeutic entropy on CECT were associated with poor 
OS (66,67).

Multiple 18F-FDG PET studies found that various first, 
second and high-order features differentiated responders 
and non-responders to nCRT and also predicted pCR in 
esophageal cancer (68,70-77). Tixier and colleagues (70) 
showed that, in 41 patients, gray-level co-occurrence matrix 
(GLCM) homogeneity, GLCM entropy, GLSZM size-
zone variability, and run length matrix intensity variability 
differentiated non-responders, partial response, and CR 
with 76–92% sensitivity (70). Another study reported that 
the 18F-FDG PET-derived textural feature ‘long run low 

gray level emphasis’ and CT-derived textural feature ‘run 
percentage’ were more accurate in assessing the response 
of esophageal cancer to nCRT than SUVmax (71). Foley 
and colleagues (74) proposed a prognostic model of 
three PET texture metrics, log(TLG), log(histogram 
energy) and histogram kurtosis, which are significantly 
and independently associated with OS (P<0.001) (74). 
According to the model, tumors with increased log(TLG) 
and histogram kurtosis, and reduced log(histogram energy) 
have an increased likelihood of mortality (74).

In addition, MRI radiomic features might be able to 
predict metastatic nodal disease in esophageal cancer 
patients. One study identified a radiomic MR model of nine 
radiomic features extracted from MR images (T2-TSE-
BLADE and contrast-enhanced StarVIBE) and this model 
was significantly associated with LN metastasis (P<0.001) 
and differentiated metastatic and non-metastatic lymph 
nodes with 0.821 AUC in the primary cohort and 0.762 
AUC in the validation cohort (78). 

Recurrent disease

There is a high incidence of post-therapeutic recurrence of 
45–53% in esophageal cancer and most recurrences occur 
within the first two years after surgery with a median time 
to recurrence of 10–12 months (79,80). Routine imaging 
with CT and PET/CT has been effective in the systematic 
follow-up of asymptomatic patients and early detection of 
recurrence (81-84) (Figure 9). However, there has been no 
established protocol for a follow-up yet (84).

A meta-analysis by Goense and colleagues (81) showed 
that 18F-FDG PET and PET/CT have pooled estimates 
of sensitivity and specificity of 89–100% and 55–94%, 
respectively, in the diagnosis of recurrent esophageal 
cancer after treatment with curative intent. There was no 
significant difference in diagnostic accuracy between PET 
and integrated PET/CT (P=0.213) (81). In the diagnosis 
of recurrent esophageal cancer, compared to 18F-FDG 
PET and PET/CT, CT has a lower sensitivity (65–89%) 
secondary to the misdiagnosis of postoperative changes and 
scarring; and higher specificity (79–91%) because of the 
false-positive FDG avidity in the gastric tube and thoracic 
lymph nodes (35,82,83). Therefore, integrated PET/CT 
seems to be the most accurate modality for the detection 
of recurrent esophageal cancer (35). PET/CT has the 
advantage of scanning the whole body and the ability to 
detect small lymph node metastases up to 0.9 mm diameter 
as well as recurrent tumors outside the body (84,85).
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The available literature on the role of MRI for the 
detection of recurrent esophageal cancer is scarce. 
However, Kantarci and colleagues (86) reported that 
T2WI MRI has higher diagnostic accuracy than CT in 
the evaluation of wall thickening and the diagnosis of 

osseous metastases. Another study reported that recurrent 
nodal disease shows evident diffusion restriction with 81% 
accuracy and that a cut-off apparent diffusion coefficient 
(ADC) value of <1.5 diagnoses recurrent nodal disease 
with 100% overall accuracy (87).

Figure 9 A 63-year-old male with adenocarcinoma of a distal esophageal mass. (A) Axial non-contrast CT and (B) axial FDG PET/CT 
images show an FDG avid thickening of the distal esophagus (white arrow). (C) EGD shows a ulcerative distal esophageal mass (thick 
white arrow). After chemoradiation, (D) axial contrast CT and (E) axial FDG PET/CT images show interval decrease in FDG avidity and 
thickening at the distal esophagus (black arrows). (F) Axial CT image with oral contrast shows the gastric conduit (thick short white arrow) 
after the patient underwent Ivor-Lewis esophagectomy. A follow-up CT after 1 year (G) axial non-contrast CT and (H) axial FDG PET/
CT images show focal FDG uptake with a circumferential thickening at the anastomosis the native esophagus and interposed conduit (white 
arrowheads). (I) EGD shows a non-obstructing non-circumferential fungating mass in the upper esophagus (thin yellow arrow). (J) EUS 
shows a 1.3 cm localized wall thickening in the upper esophagus (thick yellow arrow) with focal disruption of muscularis propria without 
lymphadenopathy. PET, positron emission tomography; CT, computed tomography.
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Prognosis

The overall 5-year survival rates of patients with esophageal 
cancer who are treated with curative intent are relatively 
poor (34–47%) (81). EAC has a better overall 5-year 
survival rate (47%) than ESCC (37%) (22). Esophageal 
cancer with NOTCH1 mutation and EGFR genetic 
mutations are associated with larger tumor size (P=0.019) 
and lesser invasion depth (P=0.005) (11) and EGFR gene 
may be used as a clinically valuable biomarker to predict 
the prognosis of ESCC patients (12). Okumura and 
colleagues (88) reported statistically significant correlations 
between p53 expression and a favorable response to CRT.

Sequential 18F-FDG PET/CT metabolic parameters of 
the primary tumor can monitor the response to CRT and 
reflect the OS and recurrence-free survival of esophageal 
cancer patients and thus guide clinical decisions in patient 
management (89,90). Lymph node involvement bears 
an important prognostic value for survival in esophageal 
cancer (31,91). Xu and colleagues (10) reported that 
pat ients  with SCLN metastas is  had a  worse OS, 
DMFS and PFS (P<0.001) than those without SCLN  
metastasis (10). Baseline TLG (P=0.002) and SUVmax 
(P=0.003) of nodal metastasis at PET/CT can independently 
predict OS and recurrence-free survival (89). Increased 
recurrence in ESCC was independently associated with the 
presence of extracapsular extension (24% vs. 69%, P<0.001), 
lymphovascular invasion (18% vs. 69%, P=0.006) and nodal 
positivity (41% vs. 71%, P=0.041) (44).

Conclusions

Imaging plays a pivotal role in staging, risk stratification and 
selection of therapeutic strategies. The imaging modalities- 
CT, EUS, PET/CT and MRI, are usually complementary 
in the staging of esophageal cancer. EUS is the modality 
of choice for T staging, while CT and PET/CT are most 
effective at detecting metastasis. For N staging, MRI and 
EUS have the highest sensitivity, while all the other imaging 
modalities have comparable specificity. The assessment of 
treatment response with different imaging modalities in 
esophageal cancer provides significant prognostic information 
necessary to construct a treatment plan consisting of effective 
and efficient therapeutic measures.
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