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Introduction

Chronic obstructive pulmonary disease (COPD) is a 
chronic lung disease characterised by chronic airway 
inflammation, persistent respiratory symptoms and chronic 
airflow limitation, and is associated with exacerbations and 
comorbidities (1,2). It is estimated that 4–5% of the global 
population or 328 million people have COPD (3). Global 
Burden of Disease studies have estimated that COPD causes 
the death of at least 2.9 million annually and it is predicted 
to be third leading cause of death worldwide by 2020 (4,5). 
COPD also predisposes to lung cancer (6-8).

COPD management encompasses the treatment and 
stabilisation of disease symptoms, as well as secondary 
prevention strategies to manage lung function decline 

and the risk of exacerbation. This requires a stepwise, 
multidisciplinary approach. Current management 
strategies for COPD include both pharmacological 
and non-pharmacological strategies, which work to 
optimise lung function and prevent deterioration (1). 
Pharmacological interventions include short and long 
acting bronchodilators, anti-inflammatory agents (1) and 
antibiotics, particularly macrolides may be beneficial (9).  
Non-pharmacological interventions include smoking 
cessation, pulmonary rehabilitation and vaccination, among 
others (1). Current management strategies are effective at 
stabilizing the disease, yet there have been limited advances 
in targeted therapies to reverse the pathogenesis of COPD 
and the deterioration of lung function. A promising yet 
understudied area of COPD management is nutrition (10,11).
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Nutrition and COPD

Nutrition is defined as the utilization of digested food 
materials by living organisms, which enables them to grow, 
maintain themselves and reproduce. It is a modifiable 
lifestyle factor and the cornerstone of good health and 
well-being. Poor nutrition is associated with chronic 
diseases, many of which have an inflammatory nature 
(10,12-17). Nutrition is sourced through the diet, which is 
defined as the kinds of foods that a person habitually eats. 
The Western diet is characterised by frequent intakes of 
red/processed meat, saturated/trans-fat, refined grains, 
processed sugar, beer and spirits (18). The Western diet is 
often nutrient deficient (19) and has been associated with 
features of COPD including cough and sputum production, 
worsening airflow obstruction and systemic inflammation. 
Conversely, a more considered diet which includes the 
frequent intake of vegetables, fruit, cooking/dressing oil, 
cereals and legumes, whole-grains, rice/pasta, fish, low-fat 
dairy, poultry and water is considered a “Prudent diet” (20).  
Recent research has revealed an inverse relationship 
between dietary patterns consistent with a Prudent diet 
and the risk of COPD, and a direct association between a 
Western diet and increased COPD risk in both men and 
women (21-23). 

A series of studies by Kaluza et al. has investigated the 
relationship between fruits, vegetable and fibre consumption 
in men and women (24-26). In women, long-term 
consumption of fruits but not vegetables was associated with 
lower risk of COPD. In men, there was a strong association 
between total fruit and vegetable consumption in current 
and former smokers but not never smokers. For fibre 
specifically, there was a strong inverse association between 
total fibre intake and COPD. In agreement with this, 
Shaheen et al., found a positive association between fruit, 
vegetables, oily fish and wholemeal cereals with FEV1 and 
FVC in COPD patients (20). For males only, there was a 
positive association with FEV1/FVC and these associations 
were stronger in smokers than non-smokers (20). These 
findings highlight the importance of a healthy diet in multi-
interventional, multi-disciplinary programs to prevent and 
manage COPD.

The gut-lung axis, the gut microbiome and 
respiratory disease

The gut holds 99% of the commensal bacterial mass of the 
human microbiome, primarily involving the colonization of 

the small intestine (27). These bacteria produce metabolites 
and ligands, which directly aid in digestion, while indirectly 
regulating the immune system and inflammation (27). 
Absorption of these bacterial products into the circulation 
induces systemic effects on the host by the gut microbiome.

The gut-lung axis is the bi-directional crosstalk between 
the gut and the lungs (10). Disease in the lung affects the 
gut and vice versa (5,10,28-32). These links are facilitated 
by the gut microbiome (33). The gut microbiome 
produces a number of metabolites through fermentation, 
the most widely recognised being short-chain fatty acids 
(SCFAs). SCFAs are potent anti-inflammatory molecules, 
which reduce chemotaxis and adherence in immune 
cells, while increasing the release of anti-inflammatory 
cytokines and inducing apoptosis (34,35). The absorption 
of these molecules into the systemic circulation has 
anti-inflammatory effects in the host. Hence, the gut 
microbiome and SCFAs influence lung health, and vice 
versa, through systemic changes in the circulation induced 
by microbial metabolites.

Dysbiosis of the gut microbiome in respiratory 
disease and implications for COPD

One of the hallmarks of a ‘healthy’ gut microbiome is high 
bacterial diversity and richness (36). In a group of ‘healthy’ 
individuals, the abundance of bacterial species in the gut will 
differ depending on a number of personal factors, though 
a number of core bacterial phyla and species have been 
identified; Actinobacteria, Firmicutes, and Bacteroidetes are the 
most abundant phyla throughout the entire intestinal tract, 
with specific colonisation by Bifidobacterium, Lachnospiraceae, 
Streptococcus, Enterococcus, and Lactobacillus being regularly 
distinguished (37). In patients with chronic illnesses, there 
is a generalized perturbation of the microbiome toward 
increased levels of harmful bacteria, such as Clostridium and 
Escherichia, with reduced levels of the normal commensal 
bacteria (35). The mechanisms behind these changes are 
not well studied, though the shift in microbial profile with 
chronic lung diseases has been well established.

Gut microbiome in asthma

Recently, the metagenomic analysis of stool samples from 
36 patients with asthma identified that the gut microbiome 
of the cohort had a general decrease in diversity, compared 
to a healthy cohort (38). Additional findings suggested 
that butyrate-producing bacteria, such as Faecalibacterium 
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prausnitzii and Coprococcus eutactus, were depleted with direct 
correlation to increases in the abundance of Clostridium spp. 
and Eggerthella lenta (38). Functionally, the gut microbiome 
of the asthma patients shifted away from SCFA production 
and metabolism toward lipid, carbohydrate, and amino acid 
metabolism (38). Since asthma is characterized by abnormal 
Th2 cell responses, the altered SCFA production by the 
gut microbiome may contribute to pathogenesis through 
reduced anti-inflammatory butyrate activity on these cells 
(38,39). Furthermore, it was found that there are more 
active virulence factors in the gut microbiome of asthma 
patients perpetuating their overall inflammatory state. 
Despite these findings, it is unknown why such changes 
occur in this population or if the mechanisms involved 
promote the pathology of the disease or vice versa. 

Gut microbiome in CF

Cystic fibrosis (CF) is another chronic lung disease 
where alterations in the gut microbiome are observed. 
Compared to patients with asthma, CF patients often 
have chronic intestinal inflammation and are frequently 
prescribed regular antibiotic treatments from a young 
age (40). Both these factors can rapidly and potently 
disturb the gut microbiome. However, the importance 
of the gut-lung axis is also demonstrated in this disease 
with microbial richness being related to pathogenic lung 
colonisation. The metagenomic analysis of stool from 31 
children with CF found that gut microbiome was decreased 
in richness, compared to healthy children, with high 
abundance of Propionibacterium acnes, Staphylococcus spp., 
and Clostridiaceae-particularly C. difficile, which was only 
identified in CF patient samples. In conjunction, there 
was depleted colonization by Blautia, Pseudobutyrivibrio, 
Roseburia, Faecalibacterium, Anaerostipes, Subdoligranulum, 
Ruminococcus, Streptococcus, Dorea, and Coprococcus spp. (40). 
Additional studies identified that infants with CF that have 
a more diverse gut microbiome profile have delays in time 
until initial Pseudomonas aeruginosa colonisation and first 
pulmonary exacerbation event (41), highlighting the gut-
lung link in this chronic lung disease. 

Predicted gut microbiome in COPD

Currently, there are no published studies of the COPD gut 
microbiome. Several factors associated with COPD are 
known to cause dysbiosis of the gut microbiome. Thus, it 
is predicted that there is dysbiosis of the gut microbiome in 

COPD patients. Table 1 summarises the pattern of dysbiosis 
associated with risk factors (age, gender and tobacco 
smoking) and clinical factors (use of therapeutic drugs such 
as oral corticosteroids and antibiotics, BMI and diet) in 
COPD. Of these disease factors, diet is readily modifiable 
and can have a positive impact on COPD outcomes 
(15,20,23). Furthermore, specific nutritional components 
within diets are known to influence the gut microbiome. 
For instance, the Western diet, which is high in animal 
fats and proteins, promotes decreases in bacterial diversity, 
encouraging dominant colonization by Bacteroides spp. (57).  
Conversely, the Prudent diet, which is rich in fruits, 
vegetables, and legumes, increases diversity through the 
availability of indigestible fibre for utilization by bacteria 
as a source of energy. When comparing a Western and a 
Prudent diet, one of the most notable differences is the 
amount of dietary fibre. The Western diet is notoriously 
deficient in dietary fibre.

Dietary fibre as a therapeutic agent in COPD—
addressing the ‘fibre gap’

Chronic airway inflammation is one of the main drivers of 
COPD pathogenesis and is often attributed to perpetuated 
acute inflammation from long-term exposure to noxious 
inhalants such as biomass smoke or cigarette smoke (58). 
The understanding of COPD pathogenesis is focused on 
the pathological changes occurring the airways. However, 
the impact of these exposures can occur distally to the 
lungs. For instance, cigarette smoke exposure has been 
shown to increase systemic inflammation as well as perturb 
the gut microbiota (2,59). Cigarette smoking is the most 
significant risk factor for COPD and smoking cessation 
is the most effective intervention for the prevention and 
management of COPD (1). However, the condition of 
many patients continue to deteriorate even with smoking 
cessation. After smoking cessation, management strategies 
are focused on respiratory-based interventions. In a new 
approach, cigarette smoke has been shown to reduce 
the diversity of the microbes in the gut (59), which is a 
characteristic of the disease-associated microbiota (10). A 
diet lacking fermentable fibre can result in malnourishment 
of the microbiota, which can lead to gut dysbiosis and the 
promotion of local and systemic chronic inflammation (60). 
Thus, it is plausible that gut dysbiosis may well be another 
mediator in the pathogenesis of COPD attributed to 
cigarette smoking. Consequently, gut-based interventions 
that repair microbial dysbiosis by addressing dietary fibre 
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intake may have a strong impact in the prevention and 
management of COPD.

Dietary fibre intake has a significant impact on 
the diversity and abundance of microbiota in the gut 
microbiome, with different fibre sources having varied 
effects (61,62). Supplementation with fermentable fibres 
has positive impacts on individuals with chronic disease 
due to the capacity to promote the growth of a health gut 
microbiome and increase SCFA production by commensal 
bacteria (27). Unfortunately, the Western diet is deprived 
of microbiota-accessible fibre and contributes to reduced 
microbial diversity. Low fibre diet can promote chronic 
inflammatory diseases such as inflammatory bowel disease, 
cancer, allergies, autoimmune disease and obesity and 
its associated pathologies. Furthermore, a Western diet 
is high in saturated fat that may promote inflammation 
(14,17,63,64). There is the potential, at least in part, for 
these diseases to be prevented or delayed by addressing the 

‘fibre gap’ through adjustment of diet (65). In accordance 
with this, a high fibre diet has been shown to reduce the risk 
of COPD. Szmidt et al., (2019) investigated the association 
between baseline and long-term intake of dietary fibre 
and COPD risk in a population-based prospective cohort 
of 35,339 Swedish women (66). They found that long-
term high dietary fibre intake was associated with a 30% 
lower risk of COPD, which was specific to cereal and 
fruit fibres. This reduced risk was present in current and 
former smokers and absent in never smokers. Furthermore, 
a randomized controlled trial found that a dietary 
intervention to increase the consumption of fruits and 
vegetables, known to be high in fibre, was associated with 
improved lung function (67). 

The positive effects observed from high dietary fibre 
intake and the increase in fibrous foods is thought to be the 
result of the production of SCFAs from the digestion of fibre 
by commensal gut bacteria. SCFAs are organic products 

Table 1 Risk and clinical factors that may contribute to dysbiosis of the gut microbiome in COPD

Risk factor Characteristics of dysbiosis Reference

Age Decrease in α-diversity (42-44)

Decrease in species (taxa) within a single person

Reduction of Bacteroides, Bifidobacteria and Lactobacilli

Increase in Enterobacteria, C. perfringens and C. difficile

Lower SCFA levels

Cigarette smoking Decreased alpha diversity and richness (45)

Decreased Bifidobacteria

Increased Proteobacteria and Enterobacteria

Use of therapeutic drugs Corticosteroids (46-49)

Increased percent prevalence of Bifidobacterium and Lactobacillus

Antibiotics

Decrease in α-diversity and abundance

BMI Normal weight associated with Bifidobacterium and Lactobacillus (50-53)

Increased ration of Firmicutes/Bacteroidetes (F/B) in obesity

Obesity is strongly associated with the Firmicutes

Healthy weight is strongly associated with the Bacteroidetes phylum

Gender Increased abundance of Veillonella and Methanobrevibacter in men versus women (54)

Decreased abundance of Bilophila in men versus women

Diet Increase/decrease diversity, richness and abundance of most bacteria (55,56)

Depends on the caloric, macronutrient and micronutrient profile of the diet

COPD, chronic obstructive pulmonary disease; SCFA, short chain fatty acid.
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mainly composed of acetate, propionate and butyrate, 
which possess key roles in regulating host metabolism, 
immune system, and cell proliferation (34). SCFAs are 
found at high concentrations in the gut and are readily 
absorbed into the blood stream where they are transported 
to the peripheral circulation via the portal vein to act on 
the liver (68) and peripheral tissues (34). Though the levels 
of SCFAs are low in the peripheral circulation, they act 
as signalling molecules and regulate inflammation (34).  
Recent research in asthma has investigated the acute effect 
a single dose of dietary fibre in airway inflammation and 
expression of free fatty acids receptors in asthma. Adult 
asthmatics received either a soluble fibre meal (N=17) or a 
placebo meal (N=12) of simple carbohydrates. The study 
showed that a single dose of fermentable fibre effectively 
reduced airway inflammation, which coincided with 
increases in blood SCFA and the expression of GRP41 and 
GPR43 that regulate immune processes (69). Four hours 
after consumption, sputum total cell count, neutrophils, 
macrophages, lymphocytes and IL-8 were significantly 
reduced compared to the control group (69). 

Conclusions

The metabolism of dietary fibre can provide local and 
systemic anti-inflammatory effects. Recent research 
indicates that food and specific nutrients, such as dietary 
fibre, consumed in a balanced diet, are associated with 
better lung function and reduced COPD risk. Collectively, 
research supports the premise that increasing dietary fibre 
intake may be an effective therapeutic approach to treat 
chronic inflammation, the underlying cause of COPD 
pathogenesis. By addressing the ‘fibre gap’ in the diet of 
COPD patients, targeted dietary intervention may reduce 
inflammation through the repair of gut dysbiosis and 
increased SCFA production. Current management strategies 
are focused and effective in alleviating patient symptoms and 
preventing exacerbations of COPD. However, to progress 
and improve management, a paradigm shift from reactive 
to predictive, preventative, personalized and participatory 
medicine is needed (70). The continued improvement of our 
knowledge regarding the influence of diet on COPD will 
provide health professionals with evidence-based lifestyle 
interventions to improve patient outcomes. 
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