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Introduction

Calcific aortic valve disease (CAVD) is the most common 
type of valvular heart disease in the elderly (1). Calcific 
aortic valve stenosis occurred in 2% of people above  
65 years old; while the incidence of aortic valve sclerosis, the 
early stage of CAVD without hemodynamic consequence, 

was as high as 26% (2). Even without hemodynamically 
significant obstruction of left ventricular outflow, CAVD 
still can be an independent risk factor for cardiovascular 
mortality, all-cause mortality and myocardial infarction (1,3). 
Currently, the only effective therapeutic option to improve 
clinical outcomes in CAVD patients is early surgery (4). 
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Histological studies suggested that the early lesion of 
CAVD was an active inflammatory process shared some 
similarities with atherosclerosis, such as lipid deposition, 
macrophage and T-cell infiltration, and basement 
membrane disruption (5). While the end-stage of CAVD 
usually involved heterotopic ossification consisting 
of mature lamellar bone formation and active bone  
remodeling (6). Several serum biomarkers such as 
lipoprotein(a) (2,7), LDL-C (2), and serum phosphate (8) 
had been found to be associated with the prevalence of 
CAVD. Various molecular, cellular, and biomechanical 
mechanisms had been found involved in the progression 
of CAVD, such as bicuspid aortic valve, osteogenic 
mechanisms, endocrine mechanisms, dysregulated mineral 
metabolism, osteoclast deficiency, and developmental 
signaling (9). Growing evidences suggested that the 
progression of CAVD was a actively regulated process, 
which might be suspended or reversed via potential 
pharmacologic intervention (10). However, thus far, there 
have been no identified pharmacologic interventions or 
presumably underlying pathways that affect the CAVD 
progression process. Besides, the key genes and signaling 
pathways underlying the progression of CAVD remain 
poorly understood.

Gene expression microarrays have been widely used to 
study gene expression profiles in many human diseases, 
which provide an effective way for studying disease-
associated genes and discovering novel therapeutic targets 
and biomarkers (11). Recently, several studies had compared 
the mRNA expression profile of CAVD (12,13). However, 
the results were inconsistent due to small sample size, 
different technological platforms, different data processing 
and sample heterogeneity. The disadvantage of these single 
studies can be overcome by integrated bioinformatics 
analysis, which combines different microarray dataset 
to obtain a more steady result (14). MetaDE package 
developed by Wang et al. contains more than 12 popular 
genomic meta-analysis methods, which is an effective 
integrative analysis solution (15).

In the present study, we applied integrated bioinformatics 
methods to identify key genes and pathways in CAVD.  
Two microarray profile datasets [GSE51472 (12) and 
GSE83453 (13)] were downloaded from the Gene 
Expression Omnibus (GEO) database. Differentially 
expressed genes (DEGs) were screened using the MetaDE 
package in R software. Gene ontology (GO) and pathway 
enrichment analysis of DEGs were then performed. A 
protein-protein interaction (PPI) network was established, 

and key genes and pathways associated with CAVD were 
analyzed. 

Methods

Microarray data

The present study was a bioinformatics study based on 
publicly accessible microarray datasets. Thus, an ethics 
approval was not required. The gene expression profiles of 
GSE51472 (12) and GSE83453 (13) were downloaded from 
the GEO database (http://www.ncbi.nlm.nih.gov/geo). The 
platform for GSE51472 is GPL570, Affymetrix Human 
Genome U133 Plus 2.0 Array, which includes 5 normal 
aortic valve samples, 5 fibrotic aortic valve samples and 5 
calcified aortic valve samples. The control group contained 
aortic valves from patients underwent surgery due to 
ascending aortic aneurysm or dissection, while the valves 
were macroscopically smooth, pliable and opalescent, and 
without visible calcifications. The fibrotic group contained 
valves that were macroscopically thickened and stiff, while 
the patients had no significant transvalvular pressure 
gradient. The calcified group contained aortic valves from 
patients with severe aortic valve stenosis, and the valves 
were presented with varying degrees of calcification. Only 
the normal and calcified aortic valve samples were used for 
our bioinformatics analysis. The platform for GSE83453 
is GPL10558, Illumina HumanHT-12 V4.0 expression 
beadchip, which consists of 8 normal tricuspid aortic valve 
samples, 10 calcified bicuspid aortic valve samples and 
9 calcified tricuspid aortic valve samples. The calcified 
bicuspid and tricuspid aortic valve samples were merged to 
build the calcified aortic valve group in our bioinformatics 
analysis. The dataset information is shown in Table 1. The 
data were normalized and log2 transformed.

Data preprocessing

The probe IDs was converted into international standard 
names for genes (gene symbol). For multiple probes that 
mapped to a single gene, interquartile range (IQR) of each 
probe was calculated with MetaDE.match package in R 
software, and the probe with largest IQR was selected to 
represent the expression level of the gene. Next, MetaDE.
merge package was used to merge the gene expression 
profiles to obtain the commonly profiles genes between 
the two datasets. Finally, either 30% un-expressed genes 
(small mean intensity) or 30% un-informative genes (small 
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standard deviation) were filtered out by MetaDE.filtering 
package, and the remaining 7,946 genes were remained for 
further analysis. 

Integration of microarray data

MetaDE package was used to perform the integrate  
analysis (15). Moderate t test was used to determine 
the gene expression difference in each dataset, and the 
maximum P value method (maxP) was used to combine 
the P values from moderate t test. An adjusted P value of 
<0.0001, based on the false discovery rate (FDR) using 
Benjamini-Hochberg method was used to select DEGs.

GO and pathway enrichment analysis of DEGs

GO annotations were performed using DAVID database 
(https://david.ncifcrf.gov/) (16). KEGG (17) pathway 
enrichment analysis was performed using the KOBAS 
online analysis database (http://kobas.cbi.pku.edu.cn/). 

Up- and down-regulated DEGs were subjected to GO and 
pathway enrichment analysis separately. P value <0.05 was 
used as threshold value.

PPI network analysis

The STRING database (http://string-db.org/) (18) was 
used to identify the interactions between proteins encoded 
by DEGs based on experimental data, databases, text 
mining, and predictive bioinformatics data. A combined 
score of >0.4 was set as threshold value. PPI networks were 
constructed with Cytoscape software (19). The genes with 
higher degrees of interaction were considered as hub genes, 
and pathway enrichment analysis was performed for these 
hub genes. The plug-in Molecular Complex Detection 
(MCODE) was used to screen the modules of PPI network 
in Cytoscape software. MCODE score >3 and number 
of nodes >4 were considered as threshold value. Pathway 
enrichment analysis were performed for genes in the 
modules.

Results

Identification of DEGs 

Three method were used to detect common DEGs between 
the two microarray datasets: the maximum P value method 
(maxP), the Fisher’s method (Fisher), and the adaptive 
weight method (AW). The detection competency curves 
(Figure 1) suggested all the three methods were useful to 
detect common DEGs between the two datasets. The maxP 
method was chosen in this study. Under the threshold of 
adjusted P value of <0.0001, 107 DEGs were identified in 
CAVD. Among the 107 DEGs, 53 were up-regulated genes, 
and 54 were down-regulated genes (Table 2). Heatmap 
showed the expression pattern of these DEGs (Figure 2), 
suggesting the consistency of the 107 DEGs in each dataset.

GO analysis

GO terms were divided into three functional groups: 

Figure 1 Detection competency curves of individual and integrated 
analysis. In each individual dataset, moderated-t statistics was 
used to generate P values while AW, maxP, and Fisher’s methods 
were utilized to combine these P values for integrated analysis. 
This figure was generated using the MetaDE package in R. AW, 
adaptive weight; maxP, maximum P value method; FDR, false 
discovery rate.
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Table 1 Details of GEO datasets

GEO accession Platform Reference Sample Normal Calcified

GSE51472 GPL570 Ohukainen et al. [2015] Aortic valve 5 5

GSE83453 GPL10558 Guauque-Olarte et al. [2016] Aortic valve 8 19

GEO, Gene Expression Omnibus.
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Table 2 Screening DEGs in CAVD by integrated analysis of microarray

DEGs Gene names

Up-regulated TAGLN, SMOC2, A2M, VCAM1, MFAP5, TNFRSF11B, SH3KBP1, MMP9, IBSP, STMN2, IL7R, HTRA1, THBS2, 
THY1, CTHRC1, SCG2, CCL19, PLOD2, SLC20A1, ARL4C, VWF, IGJ, SYTL2, PTGER4, FCGR1B, SERPINA1, ITGB2, 
SLAMF8, CA12, CD53, PLAUR, FCGR2A, CD93, ENPP2, HLA-DPA1, HLA-DRA, HLA-DMB, CD14, HLA-DMA, RGS19, 
PLAU, SPP1, RAC2, CD74, CYBA, WAS, ARHGAP30, CXCL16, C5AR1, LAPTM5, CORO1A, TYROBP, NCF4

Down-regulated F5, AFF1, KLF4, TMEM100, RHOU, HIBCH, CDH19, FOXO1, LIMCH1, MEIS3P1, SNX1, MEIS2, TMOD1, LPAR1, 
IL17D, SPON1, IGSF10, ECHDC2, MXI1, TSPAN8, SCARA5, EHBP1, PRTFDC1, LOC729680, CLDN11, MASP1, 
MAOA, ALDH2, TCEAL2, PLCE1, PTGDS, SHC4, VAT1L, GPR83, DCLK1, ITM2A, PGM5, ABCA8, PPAP2B, ABLIM1, 
NFIA, ANGPTL7, COL6A6, COL4A3, RHOB, PMP22, NTRK2, GPM6B, RBMS3, SESTD1, GSN, SPTBN1, FEZ1,  
ACADVL

DEGs, differentially expressed genes; CAVD, calcific aortic valve disease.

Figure 2 The heatmap of the actual expression profiles for the 53 up- and 54 down-regulated DEGs. The heatmap was generated using 
MetaDE package in R. The expression profiles greater than the mean are colored in red and those below the mean are colored in green. 0, 
normal aortic valve; 1, calcified aortic valve; DEG, differentially expressed gene.
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Dataset 2

biological processes (BP), cellular component (CC), and 
molecular function (MF). The top 5 enriched GO terms 
in each category were listed in Table 3. For BP, the up-
regulated DEGs were mainly enriched in GO terms of 
immune response, extracellular matrix organization, antigen 

processing and presentation via MHC class II, positive 
regulation of T cell proliferation, and chemotaxis; while the 
down-regulated DEGs were mainly enriched in GO terms 
of fatty acid beta-oxidation, cell adhesion, cytoskeleton 
organization, cellular response to hydrogen peroxide. For 
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CC, the up-regulated DEGs were mainly enriched in GO 
terms of MHC class II protein complex, plasma membrane, 
cell surface, extracellular exosome, and extracellular 
space; while no GO-CC term was enriched from down-
regulated DEGs. For MF, the up-regulated DEGs were 
mainly enriched in GO terms of MHC class II binding and 
receptor activity. 

Pathway enrichment analysis

The most significantly enriched pathways of DEGs 
analyzed by KEGG analysis were listed in Table 4. The up-
regulated DEGs were enriched in phagosome, complement 
and coagulation cascades, leukocyte transendothelial 
migration, cell adhesion molecules (CAMs), and antigen 

Table 3 GO analysis of DEGs

GO ID Term No. of genes P value

Up-regulated

GO-BP terms

GO:0006955 Immune response 14 1.97×10-10

GO:0030198 Extracellular matrix organization 8 1.73×10-6

GO:0002504 Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 4 1.64×10-5

GO:0042102 Positive regulation of T cell proliferation 5 3.00×10-5

GO:0006935 Chemotaxis 6 3.04×10-5

GO-CC terms

GO:0042613 MHC class II protein complex 5 3.83×10-7

GO:0005886 Plasma membrane 29 5.61×10-7

GO:0009986 Cell surface 11 2.13×10-6

GO:0070062 Extracellular exosome 21 3.29×10-5

GO:0005615 Extracellular space 14 6.22×10-5

GO-MF terms

GO:0023026 MHC class II protein complex binding 4 1.25×10-5

GO:0032395 MHC class II receptor activity 3 8.46×10-4

GO:0004872 Receptor activity 5 0.004

GO:0001948 Glycoprotein binding 3 0.015

GO:0019864 IgG binding 2 0.031

Down-regulated

GO-BP terms

GO:0006635 Fatty acid beta-oxidation 3 0.007

GO:0007155 Cell adhesion 6 0.011

GO:0007010 Cytoskeleton organization 4 0.012

GO:0070301 Cellular response to hydrogen peroxide 3 0.012

GO:0032060 Bleb assembly 2 0.029

GO-MF terms

GO:0003779 Actin binding 5 0.007

GO, gene ontology; DEGs, differentially expressed genes; BP, biological process; CC, cellular component; MF, molecular function.
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Table 4 KEGG pathway enrichment analysis of DEGs

ID Description No. of genes P value Genes

Up-regulated

hsa04145 Phagosome 11 2.47×10-16 FCGR2A, THBS2, CORO1A, HLA-DMB, HLA-DRA, 
HLA-DPA1, ITGB2, NCF4, CD14, CYBA, HLA-DMA

hsa04610 Complement and coagulation cascades 7 2.11×10-11 SERPINA1, VWF, ITGB2, A2M, PLAU, C5AR1, 
PLAUR

hsa04670 Leukocyte transendothelial migration 7 3.02×10-10 ITGB2, MMP9, THY1, NCF4, VCAM1, CYBA, RAC2

hsa04514 CAMs 6 4.94×10-8 ITGB2, HLA-DMA, HLA-DMB, HLA-DRA,  
HLA-DPA1, VCAM1

hsa04612 Antigen processing and presentation 5 8.39×10-8 HLA-DRA, HLA-DMA, HLA-DPA1, CD74, HLA-DMB

Down-regulated

hsa04933 AGE-RAGE signaling pathway in diabetic 
complications

3 0.003 COL4A3, FOXO1, PLCE1

hsa00340 Histidine metabolism 2 0.0005 ALDH2, MAOA

hsa00410 beta-Alanine metabolism 2 0.0009 ALDH2, HIBCH

hsa00380 Tryptophan metabolism 2 0.0014 ALDH2, MAOA

hsa00071 Fatty acid degradation 2 0.0017 ALDH2, ACADVL

DEGs, differentially expressed genes; CAMs, cell adhesion molecules.

processing and presentation. It was noteworthy that four 
HLA molecules (HLA-DRA, HLA-DMA, HLA-DPA1, 
HLA-DMB) presented in three pathways associated with 
immune response, while ITGB2 and VCAM1 presented in 
two pathways associated with cell adhesion and migration. 
The down-regulated DEGs were enriched in AGE-RAGE 
signaling pathway, metabolism of amino acid (histidine, 
beta-Alanine, tryptophan) and fatty acid. ALDH2 presented 
in metabolism of amino acids and fatty acid.

PPI network analysis

A total of 61 nodes and 143 protein pairs were obtained with 
a combined score of >0.4 based on the STRING database 
(Figure 3A). The top 5 hub genes a degree of interaction 
≥10 were VCAM1 (degree =16), MMP9 (degree =14), 
ITGB2 (degree =14), RAC2 (degree =13), and vWF (degree 
=10). Pathway enrichment analysis suggested that these 
hub genes mainly involved in leukocyte transendothelial 
migration and cell adhesion (Figure 3B). MCODE detected 
a significant protein cluster containing HLA-DPA1, HLA-
DRA, HLA-DMA, HLA-DMB, and CD74 (Figure 4A). 
Pathway enrichment analysis showed that these genes 
mainly involved in antigen processing and presentation and 

CAMs (Figure 4B). We also conducted pathway enrichment 
analysis to the independently down-regulated protein 
cluster containing ALDH2, HIBCH, ACADVL, ECHDC2, 
VAT1L, and MAOA (Figure 4C), which suggested that 
these genes mainly involved in metabolism of fatty acid and 
various amino acids (Figure 4D).

Discussion

In the present study, a total of 107 DEGs (53 up and 
54 down-regulated genes) were identified in CAVD by 
integrated analysis of microarray datasets (GSE51472 and 
GSE83453). Further bioinformatics analysis suggested 
that VCAM1, MMP9, ITGB2, RAC2, and vWF had a 
high degree of interaction in the PPI network and were 
key genes in CAVD. These key genes were significantly 
enriched in pathway of leukocyte transendothelial 
migration. The gene cluster containing HLA-DPA1, HLA-
DRA, HLA-DMA, HLA-DMB, and CD74 detected by 
MCODE also suggested the role of immune response in 
CAVD. Moreover, the down-regulated gene ALDH2 might 
play a protective role in CAVD.

Inflammation is involved in the development and 
progression of CAVD (20), and calcification of the aortic valve 
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was considered an inflammation-dependent process (21).  
T lymphocytes (22) and macrophages (5) had been 
identified in early aortic valve lesions. In the present study, 
4 hub genes (VCAM1, MMP9, ITGB2, and RAC2) involved 
in leukocyte transendothelial migration, which was the first 
step of the immune cells infiltration. Aortic valve endothelial 
cells cover the surface of the aortic valve, and provide a 
protective function on aortic valve (23,24). High expression 
of VCAM1 had been found in the endothelium of calcified 
human aortic valves (24). VCAM1 on the endothelial cells 
are involved in the firm adhesion of leukocytes (25), and 
it also activates intracellular calcium release and NADPH 
oxidase Nox2, which further promotes the migration of 
leukocytes (26). Increase in MMP-9 had been found in 
aortic stenosis (27). MMP9 is synthesized by macrophages, 
which regulates the activation of T lymphocytes (28). 
MMP9 also can regulate leukocyte migration by processing 
chemokines and cytokines (29). ITGB2 normally expressed 
only in leukocytes, which promote leukocyte adhesion to 
endothelium (30). RAC2 is a member of GTPase signaling, 
which had been proven involved in regulation of leukocyte 
transendothelial migration (31). However, the role of 

ITGB2 and RAC2 in CAVD has not been illuminated 
yet. HLA-DPA1, HLA-DRA, HLA-DMA, HLA-DMB, 
and CD74 are MHC class II molecules, which mainly 
expressed in antigen presenting cells such as macrophages 
and dendritic cells (32). It had been previously reported 
that the proportion of circulating CD8+ T cell expressing 
HLA-DR was elevated during CAVD, which suggested that 
besides leukocytes infiltration of the aortic valve, a systemic 
adaptive immunity also play a role during CAVD (33).

vWF plays a major role in platelet adhesion and 
hemostasis (34). An in vitro study conducted by Balaoing  
et al. showed that vWF stimulated by histamine from porcine 
aortic valve endothelial cells significantly increased valvular 
interstitial cell calcification in vitro, which suggested a 
possible role of vWF in progression of CAVD (35). 

ALDH2 is a detoxifying enzyme for the removal of 
toxic acetaldehyde such as malondialdehyde (MDA) and 
4-hydroxynonenal (4-HNE) (36). More than 40% of 
the East Asians population carries a common ALDH2*2 
mutant allele (Glu504Lys), which results in reduction 
of the enzymatic activity (37). Recently, various studies 
had highlighted the relationship between ALDH2 and 

Figure 3 PPI network analysis. (A) Protein-protein interaction network of DEGs. Red nodes represent up-regulated genes and green nodes 
represent down-regulated genes. The size of each node is positively correlated with the degree of interaction. The width of each edge is 
positively correlated with the combined score; (B) pathway enrichment analysis of the top 5 hub genes. DEG, differentially expressed gene; 

PPI, protein-protein interaction.
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Figure 4 Modules from the protein-protein interaction network. The significant up-regulated gene cluster (A), and pathway enrichment 
analysis of this cluster (B); the significant down-regulated gene cluster (C), and pathway enrichment analysis of this cluster (D).

cardiovascular disease. Epidemiological studies suggested 
that the inactive East-Asian variant of ALDH2 (ALDH2*2) 
increased the risk of coronary artery disease (38). Animal 
study suggested that Alda-1, an activator of ALDH2, 
inhibited atherosclerosis in apolipoprotein E-knockout 
mice (39). In vitro study also suggested that activation of 
ALDH2 significantly attenuated the oxygenized LDL 
induced endoplasmic reticulum stress and apoptosis in 
smooth muscle cells (40). The present study suggested that 
the expression of ALDH2 was down-regulated in CAVD, 
however, the role of ALDH2 in CAVD had not been 
reported yet. It has been demonstrated that dysregulation 
of antioxidant mechanisms led to increased oxidative stress, 
which contributed to the progression of CAVD (41). We 
speculated that ALDH2-mediated detoxification effect 
reduced the oxidative stress in aortic valve, which might 
play a protective role in CAVD.

There are several limitations of the present study. 
The sample sizes of the microarray datasets used in the 
integrated analysis were relatively small. Besides, due to 
the very small sample sizes, subgroup analysis was not 
able to be performed to distinguish the possible different 

mechanisms involved between bicuspid and tricuspid 
valves. Although the integrated bioinformatics approach 
obtained a steadier result than single microarray, further 
studies with larger sample sizes covering wider range of 
races are still needed. 

In conclusion, the present study identified VCAM1, 
MMP9, ITGB2, RAC2, vWF and ALDH2 as key genes 
in the progression of CAVD by integrated analysis of 
microarray datasets. Further bioinformatics analysis 
suggested that immune cells infiltration might play a key 
role in the progression of CAVD, while ALDH2-mediated 
detoxification effect might play a protective role in CAVD. 
The study provides a set of useful targets for further 
investigation into the molecular mechanisms, biomarkers 
and treatment targets of CAVD. Further molecular 
biological experiments are needed to confirm the function 
of the identified genes associated with CAVD.
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