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Introduction

Melatonin is an ancient biological compound sharing 
amino acid sequence homology with the melatonin present 
in cyanobacteria (1). It has been suggested melatonin was 
sequestered by eukaryotes as part of the endosymbiotic 
theory of evolution and has acquired roles in immunity, 
as a free radical scavenger and as the master hormonal 
regulator of the circadian rhythm (2). The circadian rhythm 
is a ubiquitous evolutionary homeostatic mechanism which 
acts as a biological clock to guide the differential release and 
regulation of hormones and to rhythmically alter the expression 
and translation of thousands of genes (3). It is comprised of 
complex, interacting, intrinsic cellular circadian clocks, the 
extrinsic daylight and fasting-feeding cycles and the release 
of hormonal regulators such as melatonin (4). Melatonin is 
a polypeptide derived from tryptophan, the synthesis and 

release of which is primarily governed by the pineal gland. Its 
release shows marked intra individual stability, but significant 
interindividual variability (5). Melatonin displays, however, a 
range of actions in different organs of the body, through its 
anti-inflammatory properties, as an oxidant scavenger and 
as an enhancer of the immune system. With a profoundly 
safe side-effect profile, melatonin has become a promising 
focus for research in critically ill patients. Exogenous 
administration of melatonin has been evaluated for its 
immunostimulatory, antiinflammatory and antioxidant 
properties and well as its effects on improvement of sleep 
cycling and architecture.

Chemistry

Melatonin is mainly produced within the pineal gland, 
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but extrapineal  sources of  melatonin include the 
retina, platelets, skin, lymphocytes, bone marrow cells, 
cerebellum and the gastrointestinal tract (6,7). N-Acetyl-5-
methoxytryptamine is synthesized from L-tryptophan via 
hydroxylation of the indole ring by tryptophan hydroxylase 
to produce 5-hydroxytryptophan (5-HTP). 5-HTP is 

decarboxylated by aromatic-amino-acid decarboxylase to 
produce serotonin which is converted by arylalkylamine-N-
acetyltransferase (AA-NAT) to N-acetylserotonin and finally, 
through methylation of the hydroxyl group by hydroxyindole 
O-methyltransferase (HIOMT), converted in N-Acetyl-5-
methoxytryptamine (8,9). Melatonin is a potent scavenger of 
reactive oxygen and nitrogen species (ROS and RNS) (10,11). 
It also promotes the activity of enzymes which are able to 
neutralize oxidants (12,13). The melatonin biosynthetic 
pathway is illustrated in Figure 1 (14).

Physiology

Melatonin binds to two receptor subtypes: MT1 and 
MT2. These receptors show significant similar molecular 
characteristics with 55% overall amino acid homology (15). 
They are G-protein coupled receptors (GPCRs) which both 
activate and inhibit a constellation of intracellular signaling 
pathways including downstream gene transcription targets 
such as extracellular signal-regulated kinases 1/2 (ERK 1/2) 
and cAMP response element-binding protein (CREB) (16). 
MT1 and MT2 alter intracellular signaling via alterations 
in scaffolding proteins, g-protein subtype availability and 
dimer formation. MT1 and MT2 are primarily found 
as homodimers but they form heterodimers with both 
themselves and other GPCRs (17). Moreover, melatonin 
can act intracellularly binding both cytosolic calmodulin 
(18,19) and two receptors of the Z-retinoid nuclear 
receptors family (20).

The secretion of melatonin from the pineal gland is 
regulated by activation of the β-1-adrenergic receptors (21)  
which promotes its biosynthesis through AA-NAT 
expression. Its release is suppressed principally by blue light 
which is influenced by both light intensity and the duration 
of exposure (22). Melatonin is released into the systemic 
circulation achieving plasms concentration between 80 and 
120 pg/mL at night and 10–20 pg/mL during the day (23).  
The distribution of melatonin receptor subtypes is related 
to precise biologic functions within the complexity of 
central nervous system signaling (17,24). However, 
melatonin receptors have been found in peripheral tissues, 
including heart and arteries, adrenal gland, kidney, lung, 
liver and in B and T lymphocytes (25). Plasma melatonin 
redistributes rapidly after its release and is found within 
mitochondria, entering through oligopeptide transporters 
PEPT1 and PEPT2, where it acts as an antioxidant (26). 
There is emerging evidence that melatonin is produced 
within mitochondria (2,27,28), as evidenced by its lineage to 

Figure 1  Melatonin biosynthetic pathway. Created with 
ChemDoodle Web with permission (14).
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cyanobacteria, the very high mitochondrial concentration 
(26,29), the results of studies of pinealectomy (26), AANAT 
localization (30,31) and the observation of its synthesis in 
mammalian oocytes during maturation (32,33). Melatonin 
is metabolized by cytochrome P450 enzyme CYP1A2 to 
6-hydroxymelatonin, conjugated with sulfuric acid (90%) 
or glucuronic acid (10%) and finally secreted in the urine. 
Only 5% of the molecule is excreted unchanged (34).

Beneficial effect of melatonin in sepsis

Melatonin has been demonstrated to improve organ 
function and to increase survival in several models of sepsis 
(35-39). The beneficial effects of melatonin in these sepsis 
models are the result of its action on different pathways, 
some of which we have summarized in this review. There 
are few clinical trials, mainly on newborns and pediatric 
patients, that have shown promising results when melatonin 
is administered for the treatment of sepsis (40-42).

Antioxidant properties

Sepsis is characterized by an oxidative imbalance with oxidant 
and antioxidant levels related to illness severity (43-47).  
Free radicals can lead to the damage of protein, lipids, 
DNA (48) and affect the function of the glycocalyx (49). 
Melatonin and its metabolites can scavenge ROS/RNS 
and their action is referred to as the “free radical scavenging 
cascade” (50). Melatonin has additive advantages over 
other antioxidants in preventing oxidative damage (51,52).  
As melatonin reaches high concentrations within 
mitochondria (53), and together with its metabolites 
(11,54,55), it has powerful antioxidant action protecting 
mitochondria from oxidant injury. Melatonin is also 
involved in the intra-mitochondrial SIRT3 pathway; SIRT3 
is a class 3 histone deacetylase, which protects mitochondria 
from oxidative stress (56-58). In addition, melatonin 
stimulates the synthesis of other antioxidant enzymes, 
including glutathione peroxidase, glutathione reductase, 
y-glutamyl-cysteine synthetase, glucose-6 phosphate 
dehydrogenase and catalase (12,13). Experimental sepsis 
models have demonstrated that melatonin restores 
glutathione levels (59). Melatonin reduces the levels of 
malondialdehyde and myeloperoxidase expression in the 
liver, brain, lung and kidneys and has been demonstrated to 
reduce hepatic necrosis in septic animals (38). Melanotonin’ 
s favorable antioxidant properties have been reported in 
models of cecal ligation and puncture (CLP) induced septic 

shock and lipopolysaccharide (LPS) induced liver failure 
(35,39,59).

Anti-inflammatory properties

The initial phase of sepsis is characterized by an exaggerated 
pro-inflammatory response leading to organ dysfunction 
and ultimately death. Melatonin has significant anti-
inflammatory and anti-apoptotic properties (13,39,60-63)  
and in several rodent models has been demonstrated to 
reduce pro-inflammatory cytokines levels (35,38,64). In 
a rat model of LPS-induced acute lung injury, melatonin 
attenuated pulmonary inflammation; this was associated 
with a reduction of nuclear factor kappa-β p65 (NF-κB p65)  
and tumor necrosis factor-α (TNF-ɑ) expression with an 
increase of the anti-inflammatory cytokine interleukin 
10 (IL-10) (65). Melatonin dose-dependently reduced 
serum TNF-ɑ and interleukin-6 (IL-6) in a murine model 
of LPS-induced sepsis (66). Attenuation of the cytokine 
response was also demonstrated in a murine model of sepsis 
treated with intraperitoneal melatonin, where melatonin 
significantly improved the survival rate (39). Several  
in vitro models have demonstrated that melatonin switched-
off NF-κB expression (67,68). In a human umbilical vein 
endothelial cell (HUVEC-C) model of sepsis, melatonin 
dose-dependently inhibited NF-κB expression and 
modulated IL-6 and IL-8 expression (69). These anti-
inflammatory effects may be mediated by the modulation 
of the toll like receptor (TLR) inflammatory cascade (70), 
the reduction of oxidative stress, NF-κB inhibition or the 
prevention of apoptosis (71-74).

Prevention of mitochondrial dysfunction

Mitochondria play a key role in sepsis-related redox 
dysregulation. Sepsis may be characterized by a reversible 
bioenergetic failure due to mitochondrial dysfunction 
which leads to impairments in oxygen consumption and 
hyperlactatemia (75,76). The post-mortem evaluation 
of septic patients has indicated mitochondrial injury; 
cardiomyocytes show mitochondrial loss, collapse and 
vacuoles and renal cells demonstrate hyalinosis and tubular 
vacuolization (77). Mitochondrial dysfunction may be 
due to diminished activity of pyruvate decarboxylation 
due to thiamine deficiency (78-81), phosphorylation and 
inactivation of pyruvate dehydrogenase, impaired electron 
transport chain (ETC), microcirculatory shunting (82,83) 
and nitric oxide (84) and ROS (85) mediated mitochondrial 
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damage. The kidney, heart and brain are those organs with 
the greatest density of mitochondria and are most susceptible 
to sepsis-induced mitochondrial dysfunction (86).  
In a murine model of LPS-induced sepsis, melatonin 
prevented mitochondrial dysfunction through increasing 
the ATP:O ratio, augmenting complex IV activity and 
restoring the respiratory control index (RCI)—the ratio 
of the rate of mitochondrial oxygen consumption (37). 
Melatonin further proved to normalize the mitochondrial 
ATP production in septic mice (87), reversing the inhibitory 
action of LPS on complexes I and IV and restoring the 
mitochondrial membrane potential (51,69,88). The 
capacity of melatonin to reverse mitochondrial damage was 
further investigated by Zhang et al. in a murine model of  
sepsis (66). These authors demonstrated that melatonin 
restored the mitochondrial membrane potential, reduced the 
levels of endoplasmic reticulum (ER) stress and inhibited the 
pro-apoptotic activation of caspase 12. In their study inhibition 
of B-cell receptor associated protein 31 (BAP31) expression, a 
regulator of ER mediated cell apoptosis, was reestablished by 
melatonin, probably through the MAPK/ERK pathway (66). 
Lastly, melatonin protects mitochondria by blocking the 
overexpression of inducible nitric oxide synthase (iNOS) 
and the subsequent production of nitric oxide (NO) (89).

Prevention of hepatic injury

Acute hepatic dysfunction is a serious complication of 
sepsis leading to coagulopathy, dysregulated metabolic 
homeostasis, altered mental status and death. The beneficial 
effect of melatonin is well known in chronic liver disease 
(90-96). Melatonin has hepatoprotective properties though 
its widely distributed receptors within the liver and observed 
in melatonin receptor knockout mice (97). Melatonin 
protects the liver by reducing the production of NO in a 
model of endotoxemia (98). Its antioxidant properties reduce 
lipid peroxidation (38,59), malondialdehyde (MDA) levels 
and increases superoxide dismutase (SOD) in the liver of 
rats treated with LPS (99). Melatonin can restore the LPS-
induced hepatic downregulation of Pregnane X receptor -a 
regulator of gene transcription- and CYP3A (100), which 
similarly to CYP450 is reduced by LPS (101,102). A murine 
model of sepsis-related hepatic failure showed impaired 
glucose metabolism, increased transaminases, IL-1β, 
TNF-ɑ and IL-6 and inhibitions of silencing information 
regulator 1 (SIRT1)—a crucial enzyme involved in cell 
survival, inflammation and metabolism (103,104)—
and signal transducer and activator of transcription  

3 (STAT3) (105). When treated with melatonin, septic rats 
showed improvements in insulin resistance and hepatic 
gluconeogenesis, reduction of liver enzymes, modulation 
of inflammatory cytokines, increases in SIRT1 and STAT3 
and reduced mortality; effects that were antagonized with 
EX527 a SIRT1 specific inhibitor (105). Finally, melatonin 
can prevent hepatocyte apoptosis protecting mice from 
hepatic failure (106).

Preventing septic cardiomyopathy

Myocardial dysfunction in sepsis is closely tied to worse 
outcomes (107). Septic cardiomyopathy has been labeled 
a “junctionopathy” (77), characterized by mitochondrial 
damage, ER stress, impairment of actin-myosin coupling 
culminating in reduced ejection fractions, cardiac output 
and hemodynamic instability (108). Cardiac myocytes 
express melatonin receptors and melatonin has been 
tested in several murine models of LPS-related sepsis. 
When treated with melatonin, myocytes demonstrate 
improved mitochondrial membrane potential, reduced 
levels of ER stress and caspase-12 mediated apoptosis (66). 
Melatonin was further able to restore BAP31 expression, 
which can prevent mitochondrial DNA damage (109) and 
apoptosis through the MAPK/ERK pathway. The inhibition 
of ERK abolished melatonin mediated upregulation of 
BAP31, indicating a relationship in preserving mitochondrial  
function (66). Mitochondrial NO synthase, which leads 
to mitochondrial dysfunction is counteracted by the 
administration of melatonin (87,88,110-112). LPS induced 
septic cardiomyopathy in mice is characterized by reduction 
of SIRT1 expression, increased CK-MB and apoptosis via 
caspase-3 activation leading to reduced ejection fractions (113).  
Treatment with melatonin improved cardiac function, 
lowered CK-MB levels and restored SIRT1 expression, as 
seen in models of septic hepatic injury (105). Melatonin 
treated mice displayed increased autophagy, a mechanism 
that protects cardiomyocytes during stress (114,115) 
and improves contraction (116). LPS-induced septic 
cardiomyopathy studies have highlighted receptor-interacting 
protein kinase 3 (Ripk3) as a potential mediator of the 
aberrant inflammatory cascade responsible for the sepsis-
induced myocardial dysfunction (117). Melatonin appeared 
to suppress Ripk3 activity, optimizing mitochondrial 
bioenergetics, modulating ER oxidative stress, and 
normalizing cardio-protective signaling cascades (including 
AKT, AMPK, and ERK). Ripk3, when overexpressed, 
mitigates the cardioprotective action of melatonin (117). 
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In vitro cultures of cardiomyocytes exposed to hypoxia/
reoxygenation injury displayed inhibition of p21 activated 
kinase 2 (Pak2), a known primary mediator for ER stress 
and ERK involvement (118). Melatonin reversed the 
inverted the hypoxia/reoxygenation injury and through 
AMPK-Pak2 axis, inhibited caspase 12 and prevented cell 
death (118).

Inhibiting nitric oxide production

Sepsis results in the increased expression of inducible 
cytosolic and mitochondrial isoforms of nitric oxide 
synthase (mtNOS and iNOS) which increase levels of NO 
and the subsequent mitochondrial damage (88,119,120). 
In experimental models of sepsis, melatonin inhibits iNOS 
and mtNOS isoforms (51,88,98). Inhibition of iNOS 
lowers NO levels, preventing organ failure and death (98).  
Furthermore, melatonin can increase the activity of 
complexes I and IV preventing ROS and RNS production 
and enhancing the ETC (88,121). In addition, melatonin 
downregulate NOS activity through calmodulin (18,19,122), 
which impedes the activation of several calcium-dependent 
enzymes, such as mtNOS and iNOS (88). N-acetyl-5-
methoxy Kynurenamine (AMK), a melatonin metabolite, 
demonstrated an increased ability in binding calmodulin 
and reducing nNOS expression (123).

Preventing sepsis related brain dysfunction

Altered mental status is one of the cardinal features of  
sepsis (124). Sepsis associated encephalopathy has a 
prevalence of approximately 50% in critically ill patients 
(125,126). The brain’s high rate of oxygen consumption and 
relative antioxidant deficiency renders it disproportionately 
susceptible to oxidative stress (127). ROS damage disrupts 
the blood-brain-barrier, alters mitochondrial respiration and 
alters tubulin arrangements (128). Increased ROS production 
promotes the release of the excitatory neurotransmitter 
glutamate, which alters gene expression, accelerates the 
apoptotic cascade, and impairs neuronal viability (129).

Despite its common occurrence, there are no diagnostic 
tests or biomarkers which aid in the diagnosis and evaluation 
of this complication (130). Despite the absence of biomarkers 
of septic encephalopathy a few studies have evaluated 
the role of melatonin for limiting septic encephalopathy 
(36,130). In a CLP mouse model of sepsis, administration 
of melatonin attenuated blood brain barrier dysfunction and 
cerebral edema via the SIRT-1 pathway (130). Furthermore, 

administration of melatonin was shown to normalize 
neurobehavioral dysfunction through expression of 
brain derived neurotrophic factor glial cell-line derived 
neurotrophic factor within the hippocampus (36).

Immune enhancing properties

Wu and colleagues demonstrated melatonin modulates 
the immune response after CLP in rats, reducing IL-1β, 
diminishing polymorphonuclear infiltration, attenuating 
oxidative stress and reducing NO levels (35). Melatonin 
reduces IL-6 production in an LPS model of sepsis (37),  
switching off  inf lammasome-dependent cytokine 
production, preventing mitochondrial dysfunction and 
inhibiting NF-κB activation (69).

Regulating circadian rhythm

Sleep disturbances and delirium may complicate up to 60% 
of patients within the intensive care unit (131). Evidence 
suggests septic patients’ melatonin release is profoundly 
dysregulated (5) if not completely abolished with loss of the 
normal diurnal variation (132,133). The precise mechanisms 
behind these findings remain poorly understood with 
mRNA expression of circadian master genes Period 2 and 
cryochrome-1 being reduced in the early stages of sepsis (134). 
This may affect immune cells which are in part regulated 
by the circadian rhythm and display diurnal variation in 
activity (135,136). These cells display time-dependent gene 
expression which results in altered levels of transcription in a 
concept termed “circadian-gating” (137,138).

Levels of melatonin in the critically ill

The nocturnal peaks and daytime serum levels have been 
reported to be severely reduced in critically ill patients with 
loss of the normal diurnal variation (5,132,139-141).

Pharmacokinetic of melatonin

Oral melatonin is rapidly absorbed from the small intestine 
by first-order kinetics, with a tmax being achieved after 
approximately 30–45 minutes (142). The bioavailability of 
oral melatonin is generally low, ranging from 3% to 33%. 
The low bioavailability is caused by a considerable first-
pass metabolism in the liver. The t1/2 elimination is about 
54 minutes. The Cmax and area under the curve (AUC) 
are highly variable, likely attributable to inter-individual 



S59Journal of Thoracic Disease, Vol 12, Suppl 1 February 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(Suppl 1):S54-S65 | http://dx.doi.org/10.21037/jtd.2019.12.85

variations in the absorption, distribution, metabolism, 
and/or excretion of the drug. Patients with cirrhosis 
demonstrate reduced elimination rates and increased 
plasma melatonin levels. Healthy volunteers were treated 
with increasing oral doses of melatonin (20, 30, 50 or 
100 mg) without adverse effects (143). Elimination half-
life for all doses was 52 minutes. While there is limited 
pharmacokinetic data in critically ill patients (144,145), 
a 3 mg oral dose was reported to achieve a peak level at a 
mean of 16 minutes with a t1/2 elimination of 94 minutes. 
In this study the maximum serum level observed was  
11,040 pg/mL. Pharmacological levels were maintained up 
to 10 hr following administration and no excessive daytime 
sleepiness was reported in these patients.

Safety of orally administered melatonin

A review of 195 studies (146) evaluating the effects of 
melatonin supplementation suggested 11 reported adverse 
effects amongst study patients. These included subjective 
worsening of symptoms (asthma, headaches, seizures), 
transient dizziness and headaches, morning drowsiness and 
abdominal and back pain. In a meta-analysis of 50 studies 
evaluating the efficacy of oral melatonin supplementation  
(1 to 20 mg) (147), nearly half reported adverse effects, often 
transient, associated with daytime dosing and commonly as 
drowsiness and fatigue. One g/day of orally-administered 
melatonin over 30-day (148) noted “drowsiness” as a 
potential adverse effect, with no statistically significant 
impact on various clinical parameters (blood pressure, heart 
rate, ECG, serum chemistry, urine analysis). Three separate 
studies investigating the use of intravenously-administered 
melatonin (1.25 mg/kg in healthy, epileptic, and Parkinson’s 
patients (149), 10 mg/kg in preterm infants and septic 
neonates (150), and 100 mg in healthy subjects (151)  
did not report adverse side effects. A double-blind, placebo-
controlled study evaluating the utility of 5–20 mg of 
sublingual melatonin in patients undergoing gynecological 
surgical procedures likewise didn’t report either dose-
dependent or dose-independent symptom (152). The lethal 
dose 50 (LD 50) of melatonin is reported to be infinity; i.e., it 
is impossible to administer a large enough dose of melatonin 
to kill an animal. In summary, melatonin is extremely safe 
being devoid of clinically significant side effects.

Conclusions

Melatonin is a promising adjunctive therapy for sepsis and 

with several in vivo studies demonstrating the prevention 
of organ dysfunction and with improvement in outcomes 
(35-39). Its beneficial effects potentially derive from its 
free radical scavenging properties, anti-inflammatory 
action, plausible role in restoring mitochondrial function 
and protecting from delirium and brain dysfunction. 
Several clinical trials exploring the use of melatonin in 
the pediatric population have shown promising results  
(40-42,150). The safety profile and minimal side effects of 
oral melatonin should encourage clinicians to consider using 
melatonin as adjunctive therapy in patients with severe 
sepsis and septic shock. The optimal dose of melatonin in 
the treatment of patients with sepsis is unknown. Currently 
a clinical trial of antioxidant therapy in patients with septic 
shock is evaluating a 50 mg nighttime dose of melatonin 
(NCT03557229). Recently, we have included melatonin at 
a dose of 6 mg (at 9 pm) in our modified hydrocortisone, 
ascorbic acid and thiamine protocol (mHAT). Clearly, 
further clinical research is required to evaluate this safe 
and exceedingly cheap intervention in the management of 
sepsis.
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