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It is widely accepted that the immune system plays a critical 
role in controlling cancer. Immunotherapies exploit this 
complex interplay by activating the immune response to 
target and clear cancer cells. Chimeric antigen receptor 
(CAR) T cells are genetically engineered T cells that 
target and specifically recognise tumour antigens and 
have demonstrated curative responses in certain blood 
cancers (1,2). Currently CAR T cells have been approved 
by the Food and Drug for the treatment of certain B cell 
malignancies with rapidly increasing interest in solid 
tumours (3). This editorial will highlight CAR T cell 
design, therapeutic strategies and potential roadblocks to 
the application of CAR T cells for the treatment of thoracic 
cancers.

Adoptive cell transfer (ACT) based cancer 
therapy

Meta-analysis studies have demonstrated that elevated 
levels of tumour infiltrating lymphocytes (TILs) are often 
correlated with prolonged patient survival (4). Adoptive 
T cell transfer therapy (ACT) is a cell-based therapy that 
aims to increase the number of tumour specific immune T 
cells in cancer patients. Here, TILs are isolated, activated 
ex vivo, and adoptively transferred back into patients in 
order to facilitate improved patient outcomes (5). However, 
responses to TIL-based ACT have only demonstrated 
efficacy in certain cancers, such as melanoma, and can vary 
greatly between patients (6). Furthermore, it is not always 
possible to isolate and expand TILs from every patient (5).  
To circumvent these issues, methods for transducing the 

first CAR expressing T cells were developed in the early 
1990s (7,8).

CAR T cell therapy

CAR T cells are generated from peripheral blood 
lymphocytes. Patient T cells are transduced ex vivo to 
express CARs cognate for tumour antigens, thereby 
directing T cells to specifically kill tumour cells (5). A CAR 
is composed of an antigen-specific derived, single-chain 
variable fragment (scFv) linked to intracellular signalling 
domains (8) (Figure 1). Direct recognition of cancer 
antigens through the scFv facilitates T cell activation and 
tumour cell killing without the requirement for tumour 
antigen presentation through the major histocompatibility 
complex. The first developed CAR T cells were engineered 
to include a single intracellular signalling domain such as 
CD3-ζ (8) (Figure 1). Second- and third-generation CAR 
T cells introduced additional intracellular co-stimulation 
signalling domains to achieve more efficacious CAR T cell 
activation and greater in vivo persistence (9,10) (Figure 1).

The success of CAR T cell treatment has resulted in 
FDA approval for the use of two CD19-targeted CAR T 
cell therapies in 2017. These included tisagenlecleucel 
(KYMRIAH) for the treatment of children and adolescent’s 
acute lymphoblastic leukemia (ALL) and axicabtagene 
ciloleucel (YESCARTA) for adult relapsed-refractory large 
B-cell lymphoma (3). More recently, the FDA has provided 
its regenerative medicine advanced therapy designation to 
CAR T cell treatment of relapsed or refractory multiple 
myeloma also known as CT053. Favourable outcomes in 

Editorial on Immunotherapy and Tumor Microenvironment

Chimeric antigen receptor T cell therapies for thoracic cancers—
challenges and opportunities

Jack D. Chan1,2, Aaron J. Harrison1, Phillip K. Darcy1,2, Michael H. Kershaw1,2, Clare Y. Slaney1,2

1Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; 2Sir Peter MacCallum Department of Oncology, 

University of Melbourne, Parkville, Victoria, Australia

Correspondence to: Clare Y. Slaney. Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.  

Email: clare.slaney@petermac.org.

Submitted Dec 11, 2019. Accepted for publication Feb 04, 2020.

doi: 10.21037/jtd.2020.03.34

View this article at: http://dx.doi.org/10.21037/jtd.2020.03.34

4515

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd.2020.03.34


4511Journal of Thoracic Disease, Vol 12, No 8 August 2020

© Journal of Thoracic Disease. All rights reserved.   J Thorac Dis 2020;12(8):4510-4515 | http://dx.doi.org/10.21037/jtd.2020.03.34

these malignancies have led to the investigation of CAR T 
cell treatment in the context of a range of thoracic cancers. 

The challenges of CAR T cell therapy

Despite favourable outcomes in the treatment of 

haematological malignancies, CAR T-cells targeting 
solid tumours have demonstrated inadequate efficacy in 
thoracic cancers (10,11). This is believed largely attributed 
to poor trafficking of CAR T cells to the tumour site, the 
immunosuppressive tumour microenvironment (TME), 
poor activation and persistence of CAR T cells in vivo (12). 

Inadequate lymphocyte recruitment to the tumour 
may be due to various factors including aberrant tumour 
vasculature, endothelial anergy, and mismatch of the 
TME chemokine profile and CAR T cell chemokine 
receptors (13). CAR T cell exclusion can be overcome 
through transduction of T cells to overexpress the 
relevant chemokine receptors in addition to a CAR. This 
has been demonstrated in the treatment of malignant 
pleural mesothelioma (MPM), which has a high level of 
CCL2 chemokine secretion (14). The overexpression of 
chemokine receptor 2 (CCR2) by mesothelin (MSLN) 
specific CAR T cells improved pleural accumulation and 
anti-tumour activity of CAR T cells against MPM (15). 
Furthermore, chemokine exclusion of CAR T cells may 
be overcome through regional delivery of CAR T cells 
to appropriate sites, as opposed to intravenous infusion. 
Improved CAR T cell persistence and anti-tumour activity 
has been demonstrated in regional delivery to orthotopic 
MPM mouse tumours and is now being evaluated in phase I 
clinical trials (16).

In addition to inhibition of trafficking, CAR T cells must 
overcome a wide variety of secreted and cellular factors in 
the TME which further act to suppress T cell killing activity. 
These TME factors include immunosuppressive cells, 
inhibitory ligands and receptors, and immunosuppressive 
factors.  These chal lenges constitute some of  the 
biggest barriers to successful CAR T cell treatment of 
thoracic cancers. The generation and recruitment of 
immunosuppressive cells to the TME is a key characteristic 
of a developing tumour (17). Major immunosuppressive 
subsets associated with lung cancer and mesothelioma 
include myeloid derived suppressor cells (MDSCs), 
mesenchymal stromal cells (MSCs), tumour-associated 
macrophages (TAMs) and regulatory T cells (Tregs) (18). 
Whilst CAR T cells targeting immunosuppressive subsets 
have been generated and utilised in pre-clinical studies, such 
cells are yet to be tested in the clinical setting. 

Another strategy to target the TME is to block 
immune checkpoint receptor-ligand interactions. Immune 
checkpoint receptors are naturally expressed by activated 
T cells and function to minimise collateral host tissue 
damage during the immune response. Immunosuppressive 

Figure 1 Schematic of CAR T cell design. (A) First generation CAR 
T cells express a scFv conjugated to a single intracellular signalling 
domain (typically CD3-ζ). (B) Second- and (C) third-generation 
CAR T cells contain additional one or two co-stimulatory domains 
respectively such as CD28 or 4-1BB (CD137). CAR T cells may 
be modified to express (D) dominant negative receptors (DNRs) 
or (E) switch receptors that abrogate immune checkpoint receptor 
signalling or can activate CAR T cells respectively.
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myeloid populations and tumour cells may both aberrantly 
express ligands for immune checkpoint receptors expressed 
by endogenous and CAR T cells, particularly, ligands 
for programmed death-1 (PD-1). Ligation of immune 
checkpoint receptors suppresses CAR T cell anti-tumour 
function and polarises CAR T cells to a state of functional 
exhaustion (19). Disruption of immune checkpoint 
receptor-ligand interactions has been a successful treatment 
strategy for solid tumours. Antagonistic, monoclonal 
antibodies against CTLA-4, PD-1, and programmed 
death ligand 1 (PD-L1) have been FDA approved for the 
treatment of range of cancers, including non-small cell 
lung cancer (NSCLC) (20). Therefore, the combination of 
CAR T cells with checkpoint inhibitors has great potential 
in treating patients with thoracic cancers. In fact, in pre-
clinical studies, the combination of CAR T cell and immune 
checkpoint blockade therapies has demonstrated significant 
efficacy in syngeneic mouse models, driving significant 
tumour regression, improved survival and prevented CAR 
T cell exhaustion (21).

Another approach for immune checkpoint receptor 
inhibition is the modification of CAR T cells to express 
dominant negative receptors (DNRs) or switch receptors. 
DNRs are mutated receptors for immunosuppressive 
signals in the TME that abrogate signalling and negative 
regulation. DNRs generated for PD-1 have demonstrated 
increased CAR T cell resistance to immunosuppression 
and restored effector function (22). Moreover, CAR T cell 
DNRs can also can also compete with endogenous T cells 
expressing immune checkpoint receptors of endogenous T 
cells, reducing the inhibition of endogenous anti-tumour T 
cell responses. Conversely, switch receptors are composed 
of an extracellular antigen binding portion of an antibody 
specific for immunosuppressive molecules such as PD-1 or 
CTLA-4 conjugated to intracellular activation signalling 
domains (12). Expression of switch receptors against 
CTLA-4 has shown to increase T cell efficacy in mouse 
models (23). In summary, combination therapy of CAR 
T cells with different approaches to immune checkpoint 
receptor inhibition may prove to be a promising avenue for 
the treatment of a range of thoracic cancers.

As  CAR T ce l l s  a re  ant igen  spec i f i c ,  tumour 
heterogeneity has proven to be one the of the greatest 
hurdles for effective CAR T cell therapy in the solid 
tumour settings. It is considered that recruitment of the 
endogenous anti-tumour response following CAR T cell 
activity is required for broad protection against solid 
tumours (24). In addition to immune checkpoint blockade 

that may rescue previously inhibited endogenous immune 
cell types, modified ‘armoured’ CAR T cells can also 
recruit endogenous immune components. Armoured CAR 
T cells are engineered to express molecular factors that 
may facilitate immune cell activation and recruitment. 
For example, armoured CAR T cells modified to express 
single chain IL-12 have demonstrated elevated efficacy 
compared to conventional CAR T cell  therapy in 
xenograft models (25). The constitutive IL-12 signalling 
provided through armoured CAR T cells enhanced T cell 
cytotoxicity, cytokine secretion and resistance against Treg 
immunosuppression (25). However, armoured-CAR activity 
can cause severe cytokine release syndrome (CRS) and has 
yet to demonstrate safety and efficacy in clinical trials.

Clinical investigation of CAR T cell treatment for 
thoracic cancers

Whilst effective CAR T cell therapy requires an antigen 
target that has high tumour expression, solid tumour 
antigens targeted by CARs are often also expressed 
on normal, healthy tissue (26). This raises significant 
risks for off-target effects, where toxicity has been 
demonstrated in a number of CAR T cell clinical  
trials (26). A selection of clinical trials studying CAR T cells 
in thoracic cancer are listed in Table 1. 

The focus of research for the field remains in the 
discovery of tumour associated or tumour specific target 
antigens. Human epidermal growth factor receptor 2 
(Her2) and epidermal growth factor receptor (EGFR) have 
presented as popular solid tumour targets in both pre-
clinical and clinical CAR T cell investigations in thoracic 
cancers. Her2 and EGFR belong to the ErbB family of 
receptor tyrosine kinases and are often overexpressed in 
a range of thoracic tumour contexts (27). Phase I clinical 
trials of CAR T cells targeting EGFR in relapsed/refractory 
NSCLC demonstrated patient tolerance to therapy, CAR T 
cell tumour infiltration and depletion of EGFR expressing 
tumour cells in tumour biopsy samples (28).

MSLN is normally expressed by mesothelial cells of the 
pleura, peritoneum and pericardium, but can have increased 
expression in MPM and lung adenocarcinoma cases (29). 
Advanced MPM patients in a phase I clinical trial that 
received MSLN targeted CAR T cells demonstrated no 
obvious off-tumour on-target toxicity, and trafficking to 
primary and metastatic tumour sites. Moreover, tumour cell 
lysis and the decrease in tumour cell numbers in ascites was 
suggested to be caused by CAR T cell killing (11).
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Pre-clinical studies in mouse NSCLC xenograft models 
targeting prostate stem cell antigen (PSCA) and Mucin 
1 (MUC1) have shown that dual therapy of CAR T cells 
targeting PSCA and MUC1 can synergistically eliminate 
tumours co-expressing both target antigens (30). Of note, 
MUC1 is a glycoprotein expressed by epithelial cells on 
mucosal surfaces and is aberrantly expressed in NSCLC 
and lung adenocarcinomas. Currently there are a number of 
active clinical trials involving MUC1 directed CAR T cells 
for the treatment of thoracic cancers (NCT03706326 and 
NCT03525782).

C A R  T  c e l l s  t a r g e t i n g  P D - L 1  e x p r e s s e d  b y 
immunosuppressive cells and tumour cells present as an 
interesting opportunity to eliminate both tumour cells 
and mechanisms of immunosuppression. Although clinical 
and pre-clinical data supports the use of checkpoint 
blockade antibodies or the use of CAR T cells with intrinsic 
resistance to PD-1 checkpoint blockade, the benefit of CAR 
T cells specifically targeting PD-L1 has yet to be elucidated. 
There are currently a number of clinical trials studying the 
efficacy of PD-L1 targeting CAR T cells in thoracic cancers 
(NCT03198052, NCT03330834 and NCT03060343). 

Summary and future perspectives

With the clinical landscape for CAR T cell treatment of 
haematological malignancies becoming increasingly well 
defined, further understanding of the mechanisms by 
which the TME suppresses CAR T cells will be critical in 
shaping the success of CAR T cell treatment in thoracic 
malignancies. Moreover, immunosuppressive mechanisms, 
tumour antigen expression, metastasis and tumour cell 
metabolism can differ greatly between tumour types. As 
such, a modular system in which CAR T cells can be paired 
with the correct CAR, chemokine sensitivity and resistance 
to immunosuppression will be key in providing effective, 
patient specific care in thoracic cancers.
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