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Introduction

Lung cancer remains the deadliest malignancy in the 
United States (US) and globally. Non-screen detected cases 
continue to be most commonly diagnosed at advanced, 
inherently difficult to treat disease stages. In contrast, the 

increased utilization of advanced cross-sectional high-
resolution CT (HRCT) imaging has resulted in the 
increased incidental detection of indolent lesions of the lung 
adenocarcinoma spectrum and the more frequent diagnosis 
of multifocal lung cancer (1,2). 

Over the last decades, there has been considerable 
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emphasis on the development of effective lung cancer 
screening to facilitate the early diagnosis and treatment of 
lung cancer. In 2011, the National Lung Cancer Screening 
Trial (NLST) demonstrated a 20% reduction in lung cancer 
related mortality, resulting in the implementation of low-
dose HRCT based lung cancer screening throughout 
the US (1). The NLST results were confirmed by the 
more recently reported Nederlands-Leuvens Longkanker 
Screenings Onderzoek (NELSON) study, and the long-
term follow-up of the Multicentric Italian Lung Detection 
(MILD) study (3,4).

However, there are several remaining challenges. 
The NLST demonstrated a very high false positive rate, 
with most (>95%) of the detected pulmonary nodules 
being benign (1). While false positive rates are lower 
for larger nodules, increasing the nodule diameter also 
decreases the sensitivity of lung cancer screening (5). In 
addition, a significant subgroup (10–60%) of the screen 
or incidentally detected lung cancers represent indolent 
lesions and overdiagnosed lung cancers, of unknown clinical 
significance (3,6,7). Invasive diagnosis and treatment of 
overdiagnosed lung cancers are associated with preventable 
mortality, morbidity and substantial health care costs. 
Similar challenges also apply to the rapidly increasing 
numbers of incidentally detected lung nodules diagnosed 

by the ever-increasing number of cross-sectional imaging 
studies obtained for different indications (8). Ideally 
these challenges would be addressed using non-invasive 
biomarkers, including imaging biomarkers, to facilitate 
the accurate diagnosis, classification and risk-stratification 
of screen and incidentally detected lung cancers. In this 
context, most recent imaging biomarker research has 
focused on various “radiomics” approaches. 

Radiomics refers to the process of identification, 
extraction, quantification and analysis of imaging 
features from radiologic images with the goal of better 
characterizing the phenotype of a given lung nodule in 
a way not otherwise possible with the naked eye. This 
approach is particularly attractive because rather than 
requiring the acquisition of additional diagnostic imaging, 
it can be applied to standard or already existing HRCT and 
positron emission tomography (PET) images, the two of the 
most commonly used imaging modalities in the diagnosis of 
lung cancer.  

The goal of this review is to discuss the concept 
of radiomics, provide an update on its advancement 
and its application in the clinical setting to answer the 
most common questions associated with diagnosis, risk 
stratification, treatment response and prognosis of patients 
with screen and incidentally detected pulmonary nodules 
and lung cancer.

Workflow of radiomics for the analysis of 
pulmonary nodules and lung cancer (Figure 1)

Patient care in oncology is becoming increasingly 
personalized. Even though radiomics is still in its infancy, 
it has already demonstrated great promise by extracting 
additional important information from conventional 
radiological images. Moreover, by being reproducible and 
quantifiable, radiomics eliminates intra and inter-observer 
variability and facilitates the consistent, quantitative 
comparison between different patients. It not only focuses 
on the location, shape, size and density of the lesion, which 
represent the most readily evaluated lesion characteristics 
by a radiologist, but also extracts features such as volume, 
textural, surface characteristics and subtle changes in the 
surrounding lung parenchyma as well as other features that 
are beyond the capability of the eye of the human reader (9).  
The development of all radiomics approaches for the 
analysis of lung nodules requires a series of coordinated 
steps with input from a multidisciplinary team including the 
clinician, radiologist and the bioimaging developer/scientist.
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Figure 1 Workflow of radiomics for the analysis of pulmonary 
nodules and lung cancer.
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Image acquisition

Image acquisition refers to obtaining the image of interest, 
most commonly from CT or PET images for patients with 
pulmonary nodules and lung cancer. However, radiomics 
approaches can be applied to other imaging modalities as 
well. The biggest challenge is the heterogeneity of image 
acquisition across different institutions. Chest CT scans 
are characterized by a wide variety of variables including 
scanner manufacturer, radiation dose, acquisition protocol, 
pixel size, slice thickness, intravenous contrast and the 
depth of the breath hold among others. In addition, post 
image acquisition processing requires data reconstruction 
which also has varying parameters (9,10). Currently, there 
are no accepted standards for chest CT acquisition and 
post-acquisition processing across different institutions 
which results in significant variability among clinical chest 
CT scans acquired during routine clinical practice. While 
this phenomenon represents a challenge for human readers, 
its impact is particularly challenging in radiomics which 
has resulted in difficulties in interpretation, validation and 
generalization of the results of radiomics studies using 
otherwise homogeneous datasets. The clinical applicability 
of radiomics models increases significantly if the findings 
can be replicated in heterogeneous “real life” datasets. 

Image segmentation

Once the image has been acquired, a region of interest 
containing the lung nodule or lung cancer is isolated from 
the surrounding normal parenchyma with a process called 
segmentation. This is performed by outlining the margins 
of the lesion which is relatively simple in solid nodules 
but becomes more complex in sub-solid and ground glass 
opacities (9,10). Segmentation can be performed using 
three different approaches: manual, semi-automated or 
automated. Manual segmentation is labor intensive, subject 
to intra- and inter-reader variability and time consuming. 
Semi-automated and automated segmentations can be 
extremely accurate; however, it can be complicated in 
nodules in close proximity to adjacent structures such as 
hilum, pleura or adjacent vessel where a lesion may need to 
be outlined manually for accurate segmentation. Despite 
this, due to lack of standardization in semi-automated and 
automated segmentation, manual segmentation is still 
heavily relied upon across different studies. Machine and 
deep-learning approaches have also been used to automate 
manual lesion segmentation (11). While many radiomics 

approaches rely on segmentation of the lesion, others 
have focused on analyzing larger lung volumes, regions of 
interest, including the lesion circumventing some of the 
challenges of segmentation.  

Feature extraction, selection and modeling

Following image acquisition, lesion segmentation or 
selection of a region of interest, a vast amount of phenotypic 
features are extracted. These can be broadly divided into 
semantics; those that are visible to the eye such as location, 
shape, size, presence of pleural effusion or lymph node 
involvement, and agnostics; those that are not obviously 
visible to the eye such as tumor heterogeneity, volume, 
skewness, degree of asymmetry and other features (12).  
Radiomics feature extraction is most commonly achieved 
using a variety of commercial or open source software 
packages. Semantics and agnostic features are usually 
unrelated and provide complementary information 
regarding the region of interest. Among these features, 
through data analysis, the features that are most clinically 
relevant to the set outcome are selected and integrated into 
a model to evaluate the desired clinical outcome. Artificial 
intelligence and deep learning are frequently used to 
generate, process and analyze the massive amounts of data 
related to radiomics projects. Deep learning approaches 
such as convolutional neuronal networks represent a subset 
of machine learning algorithms. The purpose of machine 
learning is to identify and classify radiomics features to 
facilitate lung nodule/mass segmentation or diagnostic/
prognostic classification. Machine learning algorithms can 
be either supervised or unsupervised and linear or non-
linear in nature. In contrast, deep learning algorithms do 
not require a separate feature extraction or engineering step 
in order to learn the relationship between the radiomics 
input and the corresponding clinical variable (13,14).

To ensure clinical applicability, it is crucial that the model 
is trained using cases with verified clinical outcomes and 
tested and validated in order to assess clinical application. 
Again, the differences in the radiomics programs, extracted 
features and analysis approaches and uncertainties about the 
clinical gold standard continue to be potential barriers to 
the clinical implementation of radiomics models. 

Clinical application of radiomics for pulmonary 
nodules and lung cancer

The successful clinical application of radiomics in 
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the clinical setting provides clinician with additional 
information regarding patient’s disease process which 
can assist in decision making along with reducing cost 
and overall morbidity of the patient. This information is 
typically extracted from already existing imaging studies 
which is non-invasive and cost effective. Radiomics can be 
applied during several stages of the evaluation of patients 
with pulmonary nodules and lung cancer (Figure 2).

Radiomics classification of pulmonary nodules

Once an indeterminate pulmonary nodule has been 
identified, the next step is to determine its probability 
of malignancy. Several clinical calculators are currently 
available (15-17). These models use clinical variables and 
imaging features to classify pulmonary nodules as low 
(<5%), intermediate (10–65%) and high (>65%) probability 
of lung cancer. However, these models remain suboptimal 
and do not correlate well with each other. Consequently, 
there continues to be an urgent need for better biomarkers. 
Several recent studies have explored the potential role 
of radiomics in the classification and risk stratification of 
indeterminate pulmonary nodules (Table 1). While many 
of these studies have reported very promising results, the 
extracted radiomics features included in these models vary 
significantly between the different studies. Many of these 
studies are also limited by variability in image acquisition, 
lack of stability of the imaging features, small numbers of 
scans in relationship to the extracted imaging features (type 
I error) and a lack of external validation. In models using 

larger heterogenous datasets such as the NLST dataset, the 
inclusion of temporal changes (delta-radiomics) and model 
validation in true external datasets will likely be needed to 
successfully translate this approach into the clinic. We have 
recently identified a model using 8 among 57 pre-defined 
semantic imaging features, representative of nodule shape, 
surface characteristics, texture and location, to successfully 
differentiate benign from malignant lung nodules in a 
subset of the 726 NLST screen-detected malignant and 
benign pulmonary nodules. Interestingly, our model was 
independent of nodule size, which frequently represents 
one of the major features in other models. The AUC of our 
model was excellent at 0.94. We have applied our model 
in a blinded fashion to an independent external dataset of 
170 consecutive incidentally detected benign (n=78) and 
malignant (n=92) lung nodules at Vanderbilt University. 
The AUC was 0.90 and the model outperformed the Brock 
University model in this dataset (AUC 0.87). The clinical 
use of our Mayo Clinic Radiomics model would result in 
11% and 16% benign resections rates if applied to nodules 
with an intermediate probability of lung cancer (10–60%) 
by the Brock University model in the NLST and Vanderbilt 
datasets, respectively (28).

A Google group in collaboration with clinical investigators 
also recently proposed a deep learning algorithm using 
patients’ current and prior CT images to calculate volumes 
and assess the malignancy risk. They created this model on a 
large cohort of 6,716 patients from NLST achieving a similar 
impressive AUC of 0.94. This was validated on 1,139 other 
cases with similar results. This model also outperformed the 

Figure 2 Utility of radiomics at different stages of patient evaluation for pulmonary nodules and lung cancer.

Nodule Detection

Classification

Virtual Biopsy

Risk Stratification

“Radiogenomics”

“Radioimmunomics”

Treatment planning
- Surgical planning
- Stereotactic radiation therapy (SBRT)
- Ablation
- Molecular characterization (EGFR)
- Immunological characterization

Nodule Segmentation/Volumetric assessment

Benign

Malignant



3307Journal of Thoracic Disease, Vol 12, No 6 June 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(6):3303-3316 | http://dx.doi.org/10.21037/jtd.2020.03.105

Table 1 Summary of recent studies with radiomic models to identify benign vs. malignant pulmonary nodules

Study
Number of scans 
(benign vs. 
malignant)

Conventional 
radiomics vs. 
deep learning

Number of features/model description
Internal vs. 
external 
validation

Model’s performance

Chen  
et al. (18)

33 benign 
42 malignant

Conventional 
radiomics

- Support vector machine (SVM) was used as 
the classifier 
- 76 out of 750 features were significantly 
different between benign and malignant nodules 
- Accuracy for the selected 4-feature signature 
(SFS) was the highest 

Internal For SFS: 
Accuracy: 84% 
Sensitivity: 92.85% 
Specificity: 72.73%

Ardila  
et al. (19)

Training dataset 
from NLST: 
6,630 benign 
86 malignant 
 
Independent 
validation set: 
1,112 benign 
27 malignant

Deep 
convolutional 
neural network

-1,024 radiomics features 
- compared to expert radiologists

External AUC of training dataset: 
0.944 
 
AUC of validation 
dataset: 0.955

Delzell  
et al. (20)

90 benign 
110 malignant

Conventional 
radiomics

- 416 radiomic features 
- Combinations of the six feature selection 
methods and twelve classifiers were 
investigated by implementing a 10-fold repeated 
cross-validation framework with five repeats

Internal Values for the best 
selection method and 
classifier combination:  
 
AUC: 0.747 
Sensitivity: 61.6% 
Specificity: 72.9%

Hawkins  
et al. (21)

NLST dataset: 
328 benign 
170 malignant

Conventional 
radiomics

- 219 radiomic features with best model 
identifying 23 stable features 
- J48, JRIP (RIPPER), Naïve Bayes, support 
vector machines (SVMs), and random forest(s) 
classifiers tested 

Internal Best models used 
random forests classifier 
with accuracy of 
predicting nodules 
becoming cancerous 
in 1 and 2 years: 80% 
(AUC 0.83) and 79% 
(AUC 0.75), respectively.

He  
et al. (22)

60 benign 
180 malignant 
Total: 240 (120 in 
primary cohort, 120 
in validation cohort)

Conventional 
radiomics

- 150 radiomic features 
- Least Absolute Shrinkage and 
Selection Operator Method (LASSO) logistic 
regression model used 
- Divided into four groups: 
Group 1 = non-contrast + 1.25 mm + standard 
convolution kernel; Group 2 = contrast 
enhancement + 1.25 mm + standard 
convolution kernel; Group 3 = non-contrast + 5 
mm + standard convolution kernel; Group 4 = 
non-contrast + 5 mm + lung convolution kernel

Internal Group 1 had best 
performance: 
AUC: 0.862 
Primary cohort: 
Sensitivity: 94.4% 
Specificity: 63.3% 
Accuracy: 85.8% 
 
Validation cohort: 
Sensitivity: 92.2% 
Specificity: 56.7% 
Accuracy: 83.3%

Peikert  
et al. (23)

NLST dataset 
318 benign 
408 malignant

Conventional 
radiomics

- LASSO logistic regression model used 
- 8 out of 57 features selected

Internal AUC: 0.939

Table 1 (Continued)
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Table 1 (Continued)

Study
Number of scans 
(benign vs. 
malignant)

Conventional 
radiomics vs. 
deep learning

Number of features/model description
Internal vs. 
external 
validation

Model’s performance

Uthoff  
et al. (24)

Training cohort: 
289 benign 
74 malignant 
 
Validation cohort: 
50 benign 
50 malignant

Machine 
learning/
Artificial neural 
network

- Features of parenchyma surrounding the 
nodule were included

Internal 
and 
External

Best performing 
tool’s performance on 
validation cohort: 
 
AUC: 0.965 
Accuracy: 98% 
Sensitivity: 100% 
Specificity: 96%

Xu  
et al. (25)

192 benign 
181 malignant

Conventional 
radiomics

- 1160 radiomic features 
- Lesions classified in 3 groups based on size: 
T1a, T1b and T1c 
- Developed 3 radiomic models to predict 
malignancy in each group 
- Fivefold cross-validation was used

Internal Model 1 for T1a: 
AUC: 0.84 
Accuracy: 77% 
Sensitivity: 89% 
Specificity: 74% 
 
Model 2 for T1b: 
AUC: 0.78 
Accuracy: 73% 
Sensitivity: 74% 
Specificity: 71% 
 
Model 3 for T1c: 
AUC: 0.79 
Accuracy: 76% 
Sensitivity: 77% 
Specificity: 73%

Mao  
et al. (26)

Training cohort: 
156 benign 
40 malignant 
 
Validation cohort:  
75 benign 
23 malignant

Conventional 
radiomics

- 11 out of 385 radiomic features identified 
- LASSO logistic regression model used

Internal Training cohort: 
AUC: 0.953 
 
Validation cohort: 
AUC: 0.97 
Accuracy: 89.8% 
Sensitivity: 81% 
Specificity: 92.2%

Choi  
et al. (27)

31 benign 
41 malignant

Conventional 
radiomics

- 103 radiomic features 
- SVM-LASSO model with ten-fold cross 
validation 
- Best model had 2 radiomic features

Internal AUC: 0.89 
Accuracy: 84.6%

radiologists when prior CT images were not available and 
reduced the false positive and false negative risk to 11% and 
5%, respectively (19). 

Virtual biopsy and non-invasive risk stratification 
of malignant pulmonary nodules

In malignant pulmonary nodules of the lung adenocarcinoma 
spectrum, the degree of histopathological invasion is closely 

correlated with patient outcomes and facilitates patient 
management and prognostication. Adenocarcinomas present 
a clinical and histological spectrum ranging from indolent 
(non-invasive) to aggressive (invasive) lesions. Histologically, 
these lesions can be divided into three groups based on 
invasiveness: adenocarcinoma in situ (AIS) with no invasion, 
minimally invasive adenocarcinoma (MIA, ≤5 mm invasive 
focus) and invasive adenocarcinoma (IA, ≥5 mm invasive 
focus). Unfortunately, this histological classification entails 
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surgical resection of the lesion and is not feasible based on 
small needle and/or core biopsies which limits its use for 
patient management. While indolent lesions would lend 
themselves to continued surveillance, limited resection, 
ablation or stereotactic body radiation therapy (SBRT), 
aggressive lesions should be treated with a standard surgical 
approach (lobectomy) if feasible. Consequently, non-invasive 
virtual biopsy tools and risk-stratification approaches are 
urgently needed. Several investigators have used radiomics 
approaches to address these issues (Table 2).  

To address this problem, we developed a machine 
learning tool: Computer Aided Nodule Analysis and 
Risk Yield (CANARY), at Mayo Clinic, Rochester, MN, 
USA. CANARY identified 9 unique exemplars (radiomic 
fingerprints) that characterize the lung adenocarcinoma 
spectrum. As a virtual biopsy tool, CANARY has shown to 
correlate directly with invasion of adenocarcinoma (34).  
Adenocarcinoma lesions naturally cluster into three 
separate CANARY groups. These three clusters directly 
correlated with the disease-free survival with cluster 1 (good) 
having a 5-year survival of 100%, cluster 2 (intermediate) 
of 72.7% and cluster 3 (poor) of 51.4%. Moreover, this 
outcome prediction was shown to be better as compared 
to the pathologic TNM staging system (P<0.0001 vs. 0.55, 
respectively) (35). This approach was validated in the real-
life clinical NLST dataset (36) (Figure 3). 

To further improve CANARY as a virtual biopsy tool, 
we developed a computerized scoring system named Score 
Indicative of Lung Cancer Aggression (SILA), a cumulative 
aggregate of normalized distributions of the CANARY 
exemplars. SILA was able to differentiate between indolent 
and invasive adenocarcinoma (P<0.0001). But even 
beyond that SILA achieved a greater level of granularity, 
discriminating between different histopathological 
invasion depths in invasive adenocarcinoma (37). Such 
a discriminating ability also proved to be beneficial in 
predicting long-term patient outcomes. 

In addition to CT, multiple groups have also looked at 
the utility of radiomics in PET scans for risk stratification. 
Arshad et al. identified a radiomics feature predictor FVX 
which was directly associated with overall survival in a 
multi-center study evaluating pre-treatment (radiation and 
chemotherapy) PET scans (38). Ahn et al., on the other 
hand evaluated pre-treatment PET scans of patients who 
underwent curative resection and identified contrast and 
busyness texture features to be the best two predictors 
of disease recurrence (39). We predict that virtual biopsy 
tools and non-invasive risk-stratification model supporting 

the personalized management of lung adenocarcinoma 
spectrum lesions will be implemented into clinical practice 
in the near future.  

Role of radiomics in identifying mutations 
associated with lung cancer “Radiogenomics”

Once the patient suspected to have malignancy undergoes 
a biopsy, the treatment plan is largely dependent on 
two characteristics: histological subtype of malignancy 
and molecular analysis or mutations associated with the 
malignancy. There have been studies showing radiomics can 
predict both non-invasively.

Patients with lung adenocarcinoma frequently harbor 
driver mutations with epithelial growth factor receptor 
(EGFR) and Kristen rat sarcoma (KRAS) mutations being 
the most frequently identified abnormalities. Mutations 
are typically identified using tissue biopsies and hence, 
require an invasive procedure. The identification of these 
mutations is highly clinically significant as patients with 
EGFR mutations, ALK- and ROS1 translocations can be 
primarily treated with an EGFR inhibitor (TKI) and/or 
ALK-inhibitor, respectively. KRAS inhibitors are currently 
being evaluated in clinical trials. In contrast, tumors driven 
by these mutations appear to be less likely to respond to 
immunotherapy which has become an integral part of 
advanced stage lung cancer therapy. 

Several studies have highlighted the utility of radiomics 
in trying to identify the presence of driver mutations non-
invasively. We have demonstrated that the presence of the 
CANARY exemplars Yellow (Y) and green (G) were more 
likely in the presence of EGFR mutations (AUC of 0.77). 
These patients also tend to have significantly less fibrosis and 
low attenuation areas in the surrounding tumor free lung 
parenchyma. Combining these imaging features with the 
smoking status, we were able to achieve an AUC of 0.87 to 
identify EGFR mutations. Conversely, none of the CANARY 
exemplars or imaging features were found to be significantly 
associated with KRAS mutation (40). Digumarthy et al. 
showed that there were significant differences in 2 out of 
11 radiomic features between EGFR mutant and wild type 
adenocarcinoma with AUC of 0.656–0.713 (30). Grossman et 
al. also reported several features in their radiomics model to 
be suggestive of EGFR and KRAS mutations along with one 
feature suggestive of TP53 mutation (41).

Li et al. evaluated a total of 51 patients (23 EGFR 
mutated, 28 wild type) with adenocarcinoma and classified 
them into four groups based on slice thickness (thin: 1 mm 
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Table 2 Summary of recent studies with radiomics model that can be used as ‘virtual biopsy’ tools. MIA: minimally invasive adenocarcinoma; IA: 
invasive adenocarcinoma, AAH: atypical adenomatous hyperplasia, AIS: adenocarcinoma insitu

Study Dataset Model description Model performance

Wu et al. (29) Training set: 
152 adenocarcinoma 
51 squamous cell carcinoma 
 
Validation set: 
62 adenocarcinoma 
90 squamous cell carcinoma

- Three classifiers: random Forests, 
Naive Baye’s, and K-nearest 
neighbors were evaluated. 
- 67 out of 440 features selected in 
multivariate analysis

Naive Baye’s classifier performed the best 
with AUC 0.72 in identifying adenocarcinoma 
and squamous cell carcinoma

Digumarthy  
et al. (30)

69 adenocarcinoma 
25 squamous cell carcinoma

- 11 radiomic features 
- Radiomic analysis comprised an 
initial image filtration step followed 
by quantification of texture within 
the lesion

- 3/11 radiomic features were significantly 
different between adenocarcinoma and 
squamous cell carcinoma (AUC 0.686–0.744) 
- For probability variables, ROC analysis 
showed higher AUC value for radiomics (AUC 
0.800) than clinical (AUC 0.780) and imaging 
(AUC 0.694) for differentiating 
adenocarcinomas and squamous cell 
carcinomas

Chae  
et al. (31)

58 invasive pulmonary 
adenocarcinoma (7 MIA and 51 IA) 
 
28 pre-invasive pulmonary 
adenocarcinoma (4 AAH and 24 AIS)

- Investigate the value of 
computerized three-dimensional 
texture analysis for differentiation 
of preinvasive lesions from invasive 
pulmonary adenocarcinomas 
- Three-layered artificial neural 
networks (ANNs) with a back-
propagation algorithm used

- Smaller mass (adjusted OR: 0.092) and 
higher kurtosis (adjusted OR: 3.319) were 
significant differentiators of preinvasive 
lesions from invasive lesions (P<0.05).  
- ANNs model showed excellent accuracy 
in differentiation of preinvasive lesions from 
invasive lesions (AUC 0.981).

Li  
et al. (32)

77 invasive pulmonary 
adenocarcinoma (37 MIA and 
40 IA) 
32 pre-invasive pulmonary 
adenocarcinoma (22 AAH and 10 AIS)

- Stepwise model selection that 
mixed both forward and backward 
methods of variable selection 
using Akaike’s information criterion 
(AIC) was used to select the final 
predictive model

- Voxel count feature was significantly different 
between the invasive and preinvasive 
Lesions (82.5% sensitivity and 62.5% 
specificity) 
 
- Correlation feature 
predicted preinvasive lesions and MIAs better 
(sensitivity 81.1% and specificity 53.1%)

Son  
et al. (33)

26 IA 
9 MIA 
4 AIS

- Looked into utility of iodine 
enhanced imaging and virtual 
non-contrast (VNC) imaging in 
differentiating histologic subtypes of 
adenocarcinoma

The power of diagnosing IA improved after 
adding the iodine-enhanced imaging 
parameters compared to VNC imaging alone 
(AUC 0.959 vs. 0.888)

Maldonado 
et al. (34)

Training set:  
2 AIS 
20 MIA 
32 IA 
Validation set:  
1 AIS 
10 MIA 
75 IA

- Development of computer-aided 
nodule assessment and risk yield 
(CANARY) software 
- Nonparametric Spearman 
correlation was used to analyze 
the relationship between 
histopathologic and radiologic 
invasion as determined by CANARY

- Identified nine unique exemplars 
- Spearman R =0.87, 
P<0.0001 and 0.89 and P<0.0001 for the 
training and the validation set, respectively
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Figure 3 Computer Aided Nodule Analysis and Risk Yield (CANARY) of lung adenocarcinomas. (A) Representative axial CT scan showing 
the nodule of interest; (B) through CANARY, 9 natural clusters have been identified using automated clustering representing the basic 
radiologic building blocks of these lesions. The most central Region of Interest (ROI) of each cluster was selected as the cluster’s texture 
exemplar and the exemplars were color coded as Indigo, Green, Red, Pink, Yellow, Cyan, Blue, Orange and Violet; (C) when processing a 
new nodule, each voxel and its surrounding ROI is compared with the 9 exemplars and the voxel is color coded to the nearest exemplar. The 
relative distribution of these exemplars is displayed in a glyph.

B CA

and thick: 5 mm) and two convolution kernels (smooth 
and sharp) yielding four groups: (I) Thin-Sharp, (II) Thin-
Smooth, (III) Thick-Sharp, and (IV) Thick-Smooth. 
Prediction models were built using machine learning 
algorithms. Thin-Smooth model was the best predictive 
model for EGFR mutation with AUC of 0.83. The models 
using thick slices underperformed significantly while the 
effect of convolution kernel overall was insignificant. They 
concluded that high-resolution CT images could help to 
predict the EGFR mutational status (42). Rios Velazquez 
et al. also created a radiomics model based on a discovery 
cohort of 353 and training cohort of 352 patients with 
adenocarcinoma. They found sixteen radiomic features to be 
significantly associated with presence of EGFR mutation and 
ten features that were significantly associated with presence 
of KRAS mutation. They then developed radiomic signatures 
to identify patients with (I) EGFR+ and EGFR−, (II) KRAS+ 
and KRAS− and (III) EGFR+ and KRAS+ mutations. Clinical 
models comprising age, gender, smoking status, race, and 
clinical stage were also created to classify between these three 
groups. The radiomic signature was able to differentiate 
between EGFR+ and EGFR− cases with AUC of 0.69. This 
was similar to the performance of the clinical model of EGFR 
status which achieved AUC of 0.70. Combining the two 
signatures, an improved AUC of 0.75 was obtained which 
was significantly better than radiomic or clinical signatures 
alone. A KRAS+/KRAS− radiomic signature underperformed 
when compared to the clinical signature (AUC 0.63 vs. 0.75, 

respectively). The radiomic signature to discriminate between 
EGFR+ and KRAS+ tumors performed the best with AUC of 
0.80 which further improved to 0.86 after combining it with 
the clinical signature (43). Weiss et al. showed that positive 
skewness and lower kurtosis was significantly associated with 
positive K-ras mutation (44).

A group from Shanghai Chest Hospital in China created 
two models to evaluate the ability of detecting EGFR 
mutation on CT chest images; (I) radiomics based model 
(MRadiomics) and (II) multi-level residual convolutional neural 
networks (MCNNs) based model (MMCNNS). They had 
810 patients in the training set and 200 patients in the 
validation set with a total of 510 patients having EGFR 
mutation while the remaining 500 patients had wild type 
adenocarcinoma. The performance of MMCNNS was found 
to be better than MRadiomics with AUC of 0.810 as compared 
to 0.740, respectively (P=0.0255). This suggests that the 
performance of radiomics models can be heterogenous and 
further work to better understand the potential limitations 
of this technology is needed (45). 

Other studies have similarly shown the usefulness of 
identifying genetic mutations in lung cancers via radiomics 
including from PET scans (46,47).

The role of radiomics in predicting treatment 
responses in lung cancer

Once a patient has been committed for treatment, it is 
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challenging to predict how the tumor will respond to it. It 
is also difficult to predict the likelihood of recurrence or 
distant metastasis. The current standard of assessing tumor 
response is based on Response Evaluation on Criteria in 
Solid Tumors (RECIST) which is limited in its ability 
to monitor the treatment response accurately. There 
are several studies that support the notion of radiomics 
contributing to bridging this gap. These can be applied 
to patients undergoing various modalities of treatment 
including surgery, radiation, chemotherapy, targeted 
therapies and immunotherapy.

As mentioned earlier, CANARY has been shown to 
predict post-resection outcomes in early stage cancer 
by classifying the patients into Good, Intermediate and 
Poor categories (36). Aerts et al. evaluated 47 patients 
with early NSCLC before and 3 weeks post treatment 
with geftinib to analyze whether radiomics can identify 
a geftinib-responsive phenotype. On baseline scan, 
the radiomic feature Laws-Energy was significantly 
predict ive of  EGFR mutat ion status  (AUC 0.67, 
P=0.03). Although no features were strongly predictive, 
particularly on post treatment scans, the change in 
features between the two scans (delta-radiomics) were 
strongly predictive particularly delta volume and delta 
maximum diameter (AUC range, 0.74–0.91) (48).  
Mattonen et al. looked into the effectiveness of radiomics 
in assessing the detection of local recurrence after 
stereotactic ablative radiation therapy (SABR) as compared 
to physicians. There were 15 patients with local recurrence 
matched with 30 patients without recurrence. The 
radiomic signature comprising 5 image-appearing features 
demonstrated high accuracy in discriminating the two 
groups with AUC of 0.85, classification error of 24%, false 
positive rate of 24% and false negative rate of 23%. This 
was in contrast to the physicians’ performance particularly 
when assessing likelihood of recurrence in <6 months  
post SABR where they called most of the changes as 
benign/no recurrence with mean error of 35% and high 
false negative rate of 99% (49). Coroller et al. looked to 
assess whether pre-treatment CT scan radiomics data was 
able to predict pathological response after neoadjuvant 
chemoradiation in patients with locally advanced NSCLC. 
There were seven features predictive of pathologic gross 
residual disease and one feature for complete pathological 
response. In contrast, no conventional imaging features 
were predictive (50). Similarly, Fave et al. also reported 
changes in radiomics textural and intensity features (delta 
radiomics) to be strongly predictive of tumor response to 

radiation therapy (51).
Dou et al. hypothesized that normal appearing peri-

tumoral parenchyma may harbor microscopic tumor cells 
leading to distant metastases. They identified a peri-tumor 
3 mm rim radiomic structure which correlated with risk of 
distant metastasis with moderate accuracy (CI =0.64, P value 
=2.4×10−5). This, however, was still better than a multivariable 
clinical model (CI =0.53), a visible tumor radiomics model (CI 
=0.59), or an exterior tissue model (CI =0.55) (52).

Immunotherapy has revolutionized the treatment of lung 
cancer, to the extent that it was recently approved for the 
management of small cell carcinoma as well (53). There 
is supporting evidence in the literature that radiomics can 
be used to predict and/or identify therapeutic response to 
immunotherapy. Khorrami et al. through machine learning, 
created a model comparing changes in the radiomic texture 
(DelRADx) of CT patterns both within the nodule and 
the parenchyma surrounding it before and after immune 
checkpoint inhibitor therapy. They divided 139 patients 
into a discovery set (D1, n=50) and two independent 
validation sets (D2, n=62; D3, n=27). A linear discriminant 
analysis (LDA) classifier achieved an AUC of 0.88, 0.85 
and 0.81 in differentiating between responders and non-
responders in D1, D2 and D3, respectively (54). A group 
from France developed a radiomic signature by combining 
contrast enhanced CT images with RNA-seq genomic data 
from tumor biopsies to assess CD8 cell tumor infiltration 
to identify the patients who are more likely to respond 
to anti-programmed cell death protein (PD)-1 or anti-
programmed cell death ligand 1 (PD-L1) therapy. They 
reported higher baseline radiomics score for patients who 
responded to immunotherapy which was in turn associated 
with a higher survival rate (55). Along similar lines, Tang  
et al. created an immune pathology-informed model (IPIM) 
based on the quantitative parameters from pre-resection 
CT chest along with percent tumor PDL1 expression and 
density of tumor-infiltrating lymphocyte (via CD3 count) 
obtained through immunohistochemistry.  Based on IPIM, 
4 clusters (designated A-D) utilizing 4 radiomics features 
were identified. The IPIM designation was significantly 
associated with overall survival in both training (5-year OS: 
61%, 41%, 50%, and 91%, for clusters A-D, respectively, 
P=0.04) and validation (5-year OS: 55%, 72%, 75%, and 
86%, for clusters A-D, respectively, P=0.002) cohorts 
and immune pathology (all P<0.05) (56). Trebeschi  
et al. evaluated 1,055 primary and metastatic lesions from 
203 patients with advanced melanoma and non-small cell 
lung cancer receiving anti PD-1 therapy. Based on their 
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radiomics signature, immunotherapy response could be 
predicted with an AUC of up to 0.76 for both cancer types. 
They also reported significant associations with pathways 
involved in mitosis, suggesting that a favorable response 
to immunotherapy is directly related to the proliferative 
potential of the tumor (57). 

Future directions and challenges for the clinical 
application of radiomics to pulmonary nodules 
and lung cancer

While radiomics approaches to the management of 
pulmonary nodules and lung cancer are extremely promising, 
it is very important to highlight some of the potential 
challenges related to the currently available data and the 
clinical implementation of radiomics. Many radiomics models 
are sensitive to variations in image acquisition protocols 
and efforts to standardize these protocols between different 
institutions remain very challenging limiting the clinical 
applicability of these radiomics models. In this context, 
radiomics approaches that are developed and independently 
validated in more heterogenous imaging datasets appear to 
be much more likely to be successfully implemented into 
clinical practice. Furthermore, many radiomics models use 
a large number of imaging features; however, are based 
on relatively small datasets raising the possibility of type I 
errors. Large, well curated imaging datasets of patients with 
well-defined clinical outcomes are urgently needed. This 
will most likely require national and international multi-
institutional efforts. One way to accomplish this goal would 
be to develop shared imaging repositories of de-identified 
imaging datasets with associated clinical information using 
cloud based platforms. In addition, it would be very helpful 
to continue to try to understand the biological meaning of 
the identified radiomics features in different models. This 
approach may help to reconcile some of the differences 
between various radiomics models, lead to the development 
of more robust models and enhance our understanding of 
tumor biology. In summary, the initial data for radiomics in 
the evaluation and management of pulmonary nodules and 
lung cancer is extremely promising and continued efforts, 
in particular solving the challenges of image acquisition 
and the establishment of large imaging repositories for the 
development and validation of these models will likely result 
in the clinical implementation of these models for many 
aspects of the evaluation and management of pulmonary 
nodules and lung cancer in the near future.  
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