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Introduction

The treatment of lung cancer has evolved beyond the 
simple histologic distinction of small cell and non-small 
cell lung cancer (NSCLC). Novel treatments for NSCLC 
target specific gene alterations. Trials have demonstrated 
the significant benefit of such targeted therapies over 
standard cytotoxic chemotherapy. Patients with epidermal 
growth factor receptor (EGFR) mutations, typically on 
exons 19 and 21, exhibit dramatic responses to specific 
tyrosine kinase inhibitors (TKI) such as gefitinib, erlotinib, 
afatinib and osimertinib (10–15% of NSCLC) (1,2). 
Rearrangement of the anaplastic lymphoma kinase (ALK) 
gene (5% of NSCLC) predicts response to treatment with 
ALK inhibitors such as crizotinib, ceritinib, alectinib, and 
brigatinib (3). ROS-1 rearrangement (1–2% of NSCLC) 

also predicts response to crizotinib (4). KRAS mutations, 
detected predominately in smokers with adenocarcinoma, 
are associated with brain metastas is  and a worse  
prognosis (5). KRAS inhibitors are currently undergoing 
early phase clinical trials. 

Over the past decade, the understanding of anti-tumor 
immunity has remarkably improved. Interaction of the 
programmed death-ligand 1 (PD-L1) with its receptor 
(PD-1), has been recognized as an essential immune 
escape mechanism for tumor cells, and is now targeted 
in lung cancer treatment. The level of PD-L1 expression 
on tumor cells, as evaluated by immunohistochemistry 
(IHC), currently guides immunotherapy treatment 
decisions. Several immune checkpoint inhibitors are used 
in the treatment of advanced NSCLC (6). Patients with 
advanced NSCLC and PD-L1 expression on at least 50% 
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of tumor cells (a.k.a. tumor proportion score or TPS 50%) 
benefit from first-line treatment with the anti-PD-1 agent 
pembrolizumab, with improved survival and reduced 
adverse effects compared to standard chemotherapy (7).  
Pembrolizumab and platinum based chemotherapy is 
indicated as first-line treatment in patients with PD-L1 
1–49% (8,9). Pembrolizumab can also be administered as 
second-line treatment in the presence of PD-L1 expression 
on at least 1% of tumor cells (10).

Advanced molecular testing, to identify targetable 
mutations and quantify PD-L1 expression, thus guides 
the personalized treatment of lung cancer. The majority 
of patients with advanced lung cancer are diagnosed 
and staged with minimally invasive techniques, and the 
resultant small biopsy and cytological samples must be 
judiciously processed for molecular testing. Small biopsy 
and cytopathology specimens also play a central role in 
the context of disease progression after treatment (11).  
The selection of a biopsy site is based on review of 
available CT and/or PET imaging, keeping in mind that 
invasive sampling should target the site associated with 
the highest suspected disease stage, whenever feasible 
(12,13). Bronchoscopic procedures must successfully 
sample target lesions (node, nodule or mass) and provide 
sufficient tissue for both histological characterization, and 
molecular analysis. This narrative review summarizes the 
available evidence with regards to the role and limitations 
of various conventional and advanced flexible bronchoscopy 
techniques in acquiring sufficient tissue for mutation 
analysis and PD-L1 testing.

Molecular testing of small biopsy and cytology 
specimens

The increasing role of small biopsy and cytology specimens 
was recognized in the 2015 World Health Organization 
Classification of Lung Tumors (14). The most recent 
guidelines from the College of American Pathologists 
(CAP), the International Association for the Study of 
Lung Cancer (IASLC), and the Association for Molecular 
Pathology (AMP) recommend molecular testing at the 
time of initial diagnosis in patients with advanced lung 
adenocarcinoma regardless of clinical characteristics (15). 
The NCCN has expanded the indication for EGFR and 
ALK testing to non-squamous NSCLC and NSCLC 
not otherwise specified (NOS), as well as patients with 
metastatic squamous cell lung carcinoma who are non-
smokers (6). A basic panel, including EGFR mutation, ALK 

rearrangement, mutations in V-raf murine sarcoma viral 
oncogene homolog B (BRAF), and ROS-1 mutation, is 
recommended for routine testing in lung adenocarcinomas. 
An expanded panel with RET, ERBB2 (HER2), KRAS, and 
MET can be tested in the context of clinical trials (15).

The accuracy of molecular profiling depends on the 
quality of tissue samples, both in terms of the quantity 
and quality of tumor cells acquired. Adequate technique 
for both specimen collection and processing are essential, 
and collaboration between proceduralists and pathologists 
is required (16). The required number of tumor cells 
for molecular analysis has not been clearly established, 
although studies have suggested a range of 100–400 tumor 
cells (17,18). Sun et al. reported that cytological specimens 
are comparable to histological samples, as long as they 
provide DNA concentrations >25 ng·mL-1, >30 tumor cells, 
or >30% tumor cellularity (19). Cytology cell blocks are 
preferred to simple smears for the purpose of molecular 
analysis (20). Small biopsy and cytological samples generally 
provide lower amounts of DNA, so that sensitive methods 
are required to detect targetable mutations.

The CAP/IASLC/AMP guideline recommends using 
sensitive analytical assays that can detect mutations with 
tumor cell proportions as low as 20% of the test sample (15).  
The NCCN guideline lists a range of methods for 
tissue genotyping including next-generation sequencing 
(NGS), real-time polymerase chain reaction (PCR) for 
specific targetable mutations, Sanger sequencing, other 
multiplex approaches (e.g., SNaPshot, MassARRAY), 
fluorescence in situ hybridization (FISH) for detecting gene 
rearrangements, and immunohistochemistry (IHC) for 
certain analyses or (mutation) screening. Sanger sequencing, 
the first generation of DNA sequencing, examines one or 
a few genes at a time, and requires more than 25–30% of 
tumor cells (6). In contrast, NGS allows the detection of 
numerous mutations at the same time, making it particularly 
advantageous when limited tissue samples are available. The 
interested reader is referred to the website of the American 
Association for Clinical Chemistry for a user-friendly 
description of these techniques (https://labtestsonline.org/
genetic-testing-techniques).

There is limited data on the molecular testing of samples 
acquired with conventional diagnostic bronchoscopy. 
Many studies have combined bronchoscopy samples with 
other small biopsy or cytology specimens, making specific 
evaluation more difficult. The percentage of malignant 
cells from bronchoscopic biopsies [endobronchial biopsy 
or radial-endobronchial ultrasound (R-EBUS) guided 
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transbronchial lung biopsy (TBB)], endobronchial 
ultrasound with transbronchial needle aspiration (EBUS-
TBNA), and surgical biopsies was examined by Dooms et 
al: 57% of diagnostic endoscopic biopsies, 44% of EBUS-
TBNA samples, and 90% of surgical biopsies provided 
>25% tumor cells, which is considered adequate for Sanger 
sequencing. Surgical biopsies provided more DNA than 
bronchoscopic biopsies and EBUS-TBNA, with medians of 
2,500 vs. 1,610 and 1,440 ng, respectively (21). Hagmeyer 
and colleagues examined the role of brush specimens 
acquired from central lung cancers for molecular testing 
using NGS. The combined brush smear and brush tip 
washing provided diagnostic sensitivity of 69%, and NGS 
was feasible in 18 of 29 samples (62%) (22). Perhaps not 
surprisingly, NGS has been shown to be more sensitive than 
Sanger sequencing for detection of EGFR mutations in 
both BAL and pleural fluid samples (23).

EBUS-TBNA samples and molecular testing

Labarca and colleagues recently reviewed the adequacy of 
EBUS-TBNA samples for molecular analysis in patients 
with NSCLC. A total of 33 studies, encompassing 2,698 
participants, were included in their meta-analysis. The 
pooled probability of obtaining an adequate sample for 
EGFR and ALK testing was 94.5% and 94.9%, respectively, 
and the prevalence of  EGFR mutat ion and ALK 
rearrangement were 15.8% and 2.8%, respectively (24). A 
small study from Chile reported 10 of 12 (83.3%) EBUS-
TBNA specimens were adequate for ROS1 testing (25). A 
retrospective review by Cicek et al. showed 90 of 98 (91.8%) 
EBUS-TBNA samples were adequate for the ROS1 FISH 
test (26). Xie et al. showed 100% concordance for EGFR, 
ALK, and ROS1 results between NGS and conventional 
analytical assays in EBUS-TBNA samples, however NGS 
provided information on 12 additional mutations (27).

The recent CHEST Guideline on technical aspects 
of EBUS-TBNA recommends that additional samples, 
beyond the minimum of 3 separate needle passes acquired 
to establish the diagnosis of lung cancer, be obtained for 
molecular analysis (28). Labarca et al. suggested that the 
minimum number of needle passes per lymph node in order 
to obtain adequate tissue for molecular analysis was 3 with 
rapid on-site evaluation (ROSE) or 4 without ROSE (24). 
Trisolini et al. conducted a randomized trial to evaluate 
whether ROSE increased the yield of EBUS-TBNA for 
molecular analysis. The result showed 90.8% of EBUS-

TBNA specimens from the ROSE arm and 80% from non-
ROSE arm were suitable for genotypic analysis (P=ns). 
Patients in the ROSE arm were more likely to have the 
bronchoscopy terminated after a single biopsy site (29). 
The available evidence does not suggest a difference in 
diagnostic yield and/or feasibility of molecular analysis 
according to needle size used (21 or 22G), and data is still 
limited on the newer 19G needles (30,31). Larger size 
needles, however, have been associated with more blood in 
specimens (30).

Guided bronchoscopy samples and molecular testing

Molecular testing guides the treatment of patients with 
advanced lung cancer, in whom isolated peripheral 
pulmonary nodules are rarely targeted for sampling. 
Accordingly, there is limited data on molecular analysis of 
specimens acquired with guided bronchoscopy techniques. 
Moon et al. demonstrated the feasibility of molecular testing 
using R-EBUS-guided TBB peripheral lung lesions: 63 of 
64 specimens (98%) were found to be adequate for EGFR 
testing, 60 of 60 (100%) adequate for ALK IHC, and 16 of 
17 (94%) adequate for PD-L1 IHC (32). Kim et al. compared 
EGFR mutations and ALK rearrangements of paired 
R-EBUS-guided TBB and subsequent surgical resection 
specimens. The result demonstrated 97% agreement in 
EGFR mutations and 100% in ALK translocation (33). 
Guisier et al. retrospectively reviewed the adequacy of 
R-EBUS-guided TBB and brushings for molecular testing. 
Molecular analysis was feasible in 88/113 non-squamous 
NSCLC samples, with 73 of 86 diagnostic biopsy specimens 
(85%) being suitable for testing. Factors associated with 
successful molecular testing included upper or middle lobe 
location and at least three biopsies taken (34). However, 
when diagnosis was based on brushings (smears) alone, 
only 15/27 smears were suitable for molecular analysis. In 
contrast, two studies from Taiwan and Spain demonstrated 
a 95% success rate of molecular analysis from R-EBUS-
guided “waste” brushing samples; the brushes were 
immediately snipped off and immersed into fixative solution 
(35,36). The NAVIGATE study examined the diagnostic 
yield of ENB-guided sampling for peripheral pulmonary 
lesions, and reported 86.2% of samples (75/87 specimens) 
were adequate for molecular/genetic testing (37). If tissue 
sampling is successful, then advanced molecular testing 
is highly feasible in samples from peripheral pulmonary 
lesions acquired using guided bronchoscopy techniques.
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PD-L1 testing of small biopsy and cytology 
specimens

The current NCCN guidelines recommend quantitative 
evaluation of tumor cell PD-L1 expression at initial 
diagnosis of advanced NSCLC (6). PD-L1 expression is 
quantified by the percentage of membrane stained viable 
tumor cells relative to all viable tumor cells in the sample, 
known as tumor proportion score (TPS). A minimum of 
50–100 viable tumor cells is required, depending on the 
assay used. Several antibodies and platforms for PD-L1 
IHC testing have been developed and marketed, and lack 
of standardization remains a significant limitation. Clinical 
trials have used different PD-L1 assays and varying cut-
off levels (38). Most clinical trials supporting the use of 
immune checkpoint inhibitors performed PD-L1 testing on 
formalin-fixed paraffin-embedded (FFPE) core biopsy or 
surgical resection specimens, however this practice does not 
reflect the clinical care of most patients with advanced lung 
cancer (39).

Concerns have been raised with regards to the use of 
cytology specimens to evaluate with immune landscape in 
NSCLC (38). Small biopsies and cytology samples could 
increase the risk of false-negative PD-L1 results, based on 
the known temporal and spatial heterogeneity of its tumoral 
expression (40,41). Bigras et al. evaluated the impact of 
small biopsy size on PD-L1 results in vitro. More biopsies 
<2 mm2 were associated with false-negative results (PD-
L1 TPS <1%), while larger specimens more frequently 
demonstrated PD-L1 TPS 1–49%. However, the number 
of samples which detected PD-L1 TPS ≥50% was not 
different between small and large biopsies (42).

The concordance of PD-L1 expression as assessed 
by bronchoscopic small biopsies and surgical resection 
specimens has been examined. Kitazono et al. reviewed 
the PD-L1 expression of 79 patients in whom both small 
biopsy specimens and surgical resection samples were 
available. The bronchoscopic samples included 59 TBB, 12 
TBNA, and 8 CT-guided needle biopsies. The concordance 
of PD-L1 expression was 92.4% concordance between 
small biopsies and surgical resections, using a hybrid IHC 
score assessment (43). The study of Ilie and colleagues 
provides contrasting results: 160 patients with both surgical 
specimens and small biopsies were considered, in whom 
110 (69%) had TBB specimens. PD-L1 expression was 
underestimated by small biopsy specimens, with 48% 
overall discordance rate. However, overall concordance 

was evaluated based on PD-L1 expression in both tumor 
cells and tumor-infiltrating immune cells using the PD-L1 
SP142 antibody clone (44).

Several recent studies have examined the feasibility 
of PD-L1 testing using small biopsy and cytological 
samples (43-46), in particular the use of EBUS-TBNA 
samples for PD-L1 IHC analysis (Table 1). Sakakibara et al. 
demonstrated that a significantly larger number of tumor 
cells were obtained with EBUS-TBNA compared with 
TBB, with median numbers of 1,149 vs. 435 (P<0.001); 
crush rate was significantly lower with EBUS-TBNA 
vs. TBB (47). Sakata et al. retrospectively compared the 
results of PD-L1 testing in EBUS-TBNA samples vs. 
surgical resection specimens in 61 patients and reported 
that sensitivity, specificity, PPV, and NPV for PD-L1 
≥1% were 72%, 100%, 100%, and 80%, respectively. 
The concordance rate between EBUS-TBNA vs. surgical 
specimens was 87% for PD-L1 ≥1% and 82% for PD-L1 
≥50%. However, the sensitivity of EBUS-TBNA samples 
declined from 72% to only 47% at a PD-L1 expression 
cut-off of ≥50% (vs. ≥1%), raising concerns of false-
negative PD-L1 results in EBUS-TBNA specimens (48). In 
contrast, we have reported a recent series of PD-L1 testing 
in 120 consecutive EBUS-TBNA samples. Comparison 
of PD-L1 results in the subgroup of 18 patients with both 
EBUS-TBNA and histological samples revealed moderate 
concordance, with no false-negative results (50).

PD-L1 IHC testing has been approved in formalin-fixed 
paraffin embedded (FFPE) tissue samples (54). Concerns 
have been raised with regards to the use of other agents 
such as methanol-based fixatives for subsequent PD-L1 
assessment. Recent studies have reported on the feasibility 
of PD-L1 testing in Cytolyte-fixed specimens (50,51), with 
two recent studies reporting concordance rates of 78% 
and 91%, respectively, for PD-L1 expression in EBUS-
TBNA specimens initially processed with methanol-based 
fixatives vs. FFPE histological specimens (49,50). Similar to 
molecular testing, limited data is currently available on the 
role of ROSE (55) and needle gauge in ensuring adequate 
EBUS-TBNA samples are acquired for assessment of PD-
L1 expression.

The available evidence thus suggests that PD-L1 testing 
of EBUS-TBNA samples is feasible, and points towards at 
least moderate concordance with PD-L1 expression assessed 
in histological samples. Future work will need to determine 
the role of PD-L1 expression as assessed in cytological 
samples for predicting response to immunotherapy.
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Summary

The treatment of advanced lung cancer has become 
increasingly personalized over the past decade, as a result 
of improved understanding of tumor molecular biology and 
anti-tumor immunity. Advanced diagnostic bronchoscopy 
techniques play a central role in the evaluation of patients 
with suspected lung cancer. An adequate tumor sample is 
central to targetable mutation analysis and immunologic 
profiling. To the question “Are we getting enough?” the 
answer is “it depends”—mainly on the procedure being 
performed, but also partly on the analysis being requested. 
Communication between bronchoscopists and pathologists 
is key: clinicians should know which technique is being 
used locally for molecular profiling, minimum number of 
tumor cells required, as well as preferred samples types and 
preparation. Minimally invasive needle techniques such 
as EBUS-TBNA have become the first-line procedures 
in patients with adenopathy, and/or centrally located 
tumors. The available data suggests that EBUS-TBNA 
samples are largely adequate for molecular testing, and 
seem to provide a reliable assessment of PD-L1 expression. 
Advanced diagnostic bronchoscopy techniques for sampling 
of peripheral pulmonary lesions still suffer from a limited 
and variable diagnostic yield, which technological advances 
actively seek to remedy. The role of conventional diagnostic 
bronchoscopy techniques is similarly limited to centrally 
located lesion that can be sampled under direct vision. 
Technological advances in both bronchoscopy procedures 
and analytical processes are expected to further consolidate 
the role of small biopsy and cytological specimens for 
molecular testing in patients with advanced lung cancer.
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