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EGFR as a model of non-invasive detection 
monitoring

The assessment of molecular alterations for patients with 
non-squamous non-small cell lung cancer (NSCLC) has 
been adopted into guidelines to determine suitability for 
targeted treatments (1,2). Tissue adequacy in detecting 
resistance mutations is an important reason to consider 
plasma testing. Up to 30% of NSCLC patients cannot 
provide sufficient tumor samples for molecular testing at 
diagnosis or progression (3). Circulating tumor DNA serves 
as an alternative method to non-invasively detect molecular 
aberrations in NSCLC when tissue is not available (4) 
(Figure 1).

Plasma detection of EGFR mutations serves as a model 
to demonstrate the clinical utility of a non-invasive testing 
study for EGFR-TKI selection in the era of precision 
medicine (5). The therascreen (Qiagen) EGFR RGQ 
PCR Kit and cobas® EGFR Mutation Test v2 are qPCR 

assays approved by the EMA and FDA, respectively, for the 
analysis of plasma ctDNA (6). The cobas® EGFR Mutation 
Test (v1) is a qualitative real-time polymerase chain reaction 
(RT-PCR) test approved in 2013 for exon 19 del and L858R 
substitution mutations in FFPE NSCLC tissue specimens (7). 
The FDA approved the cobas® EGFR Mutation Test v2 in 
2015 for both FFPE and plasma specimens and includes 
the assessment of T790M mutations, exon 18 substitutions, 
exon 19 deletions, and exon 20 and 21 substitutions when 
tissue is not available (7,8). There have been several plasma 
based laboratory developed tests that utilize next generation 
sequencing (NGS) strategies, and these are currently 
pending regulatory approvals.

Initial genotyping with PCR technologies

The need to initially genotype patients with prompt turn-
around times is fundamentally important in therapeutic 
decision-making. Basing front-line approaches on the results 
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of a patient’s molecular profile has maximized efficacy and 
mitigated potential toxicity with sequential treatments. 
The overall survival of patients on targeted therapies has 
superseded historical controls without targeted approaches.

Among Japanese NSCLC patients on first-line gefitinib, 
48% patients had EGFR exon 19 deletions and L858R 
mutations, and the identification of these mutations predicted 
response to gefitinib (9). In another study of forty-two 
patients receiving gefitinib, EGFR mutation detected by 
ctDNA was predictive of improved objective response rate 
(P=0.001) and median progression free survival (P=0.044) to 
gefitinib (10).

In a recent prospective trial called the Non-invasive vs. 
Invasive Lung Evaluation study (NILE), a hybridization 
captures targeted sequencing NGS assay detected FDA-
approved mutations (EGFR, ALK, ROS1, BRAF) in 
previously untreated patients with high concordance of 
driver alleles compared to tissue genotyping tests (>98.2%). 
The utilization of cfDNA combined with tissue increased 
detection by 32% in patients with negative, not accessible, 
or insufficient tissue and median turn around time of 9 
days (11). Another PCR based analysis showed a 91% 
overall concordance of EGFR mutations detected in plasma 
and tissue in 196 NSCLC patients studied (12). A high 
correlation was seen in a separate study with the EGFR 
gene as detected in plasma versus those detected in the 
matched tumor sample (87.7% concordance) (13). There 
have been earlier studies that have lacked this high level of 
concordance with potential underlying variables including 
differences in assay platforms, spatial and temporal factors 

in tumor burden, tumor heterogeneity, interval treatment, 
potential germline DNA contamination, and variants which 
may derive from clonal hematopoiesis (14).

The FASTACT-2 trial demonstrated the predictive 
value of serial ctDNA EGFR testing by exploring 
prospectively whether baseline tissue biopsy correlates 
with Cobas® EGFR ctDNA testing. Analysis of circulating 
tumor DNA was performed in patients with stage IIIB/IV  
NSCLC randomized to receive chemotherapy followed 
by maintenance with either erlotinib or placebo (15). A 
planned retrospective analysis of advanced NSCLC treated 
first-line with chemotherapy and erlotinib showed an 
88% concordance between blood and tissue testing with 
a sensitivity and specificity of 75% and 96%, respectively. 
Median PFS for ctDNA was 13.1 months for EGFR 
mutant ctDNA-positive patients treated with erlotinib, 
and 6 months for patients treated with placebo. For EGFR 
wild-type ctDNA patients, erlotinib or placebo yielded 
similar survival (~6 months). Patients with EGFR mutant 
ctDNA detected at baseline who experienced a complete 
elimination at the end of an induction period of treatment 
had improved progression-free survival (12 vs. 7.2 months) 
and overall survival (31.9 vs. 18.2 months) (15,16).

Some additional studies have evaluated whether the 
upfront ctDNA load may correlate with clinical outcome 
endpoints. The EURTAC176 clinical trial tested ctDNA as 
a proxy for tissue EGFR testing with an RT-PCR (TaqMan) 
assay to assess for EGFR mutations. Patients with EGFR 
mutations detected in pre-treatment ctDNA predicted 
shorter OS in univariate analysis. Tissue confirmed L858R 

Figure 1 Applications of non-invasive mutation detection for the initial genotyping and resistance monitoring on EGFR tyrosine kinase 
therapy.
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mutation when detected in plasma correlated with a median 
OS of 13.7 months compared to 27.7 months for those with 
the mutation undetectable in cfDNA (HR 2.22) (17).

Tracking tumor burden with NGS based 
approaches

A number of studies have demonstrated that ctDNA load 
can correlate with changes in tumor burden as detected with 
ultrasensitive NGS approaches. Newman et al. evaluated 
the effectiveness of CAPP-Seq for minimal residual disease 
(MRD) detection and monitoring using plasma samples 
from healthy controls and a NSCLC cohort (18). In patients 
with Stage I-IV NSCLC, ctDNA was detected in all 
patients, in half of the patients with stage I and with a 96% 
mutant allele fraction specificity and a detection threshold 
of ~0.02%. Chabon et al. serially tracked EGFR tumor load 
and resistance mutations on therapy with rises that were 
concordant with CT scan tumor increases (19). Chaudhuri 
et al. evaluated CAPP-Seq in over 250 samples from forty 
patients being treated with curative intent diagnosed with 
stage I-III NSCLC and in fifty-four healthy controls. 
Plasma circulating DNA was detected post-treatment in 
the vast majority (94%) of patients having recurrence. 
ctDNA detection after treatment preceded progression 
seen on imaging modalities in about a third of patients by 
approximately 5 months. About half of the patients had 
actionable mutations in plasma, providing an opportunity 
for personalized adjuvant treatment (20). A novel 
technology called TEC-SEQ (Targeted Error Correction 
Sequencing) has identified genomic aberrations in lung 
cancer in stage I and II patients at a rate of approximately 
45–50% (21). This strategy facilitates early MRD 
monitoring and has been utilized for tracking response to 
therapy (22). Ongoing studies are using fragment length to 
characterize tumor specific DNA from wild type DNA (23).

Resistance monitoring

Circulating tumor DNA has been used as a companion 
diagnostic to monitor for the EGFR gatekeeper T790M 
mutation after treatment with first- and second-generation 
inhibitors (24,25). Oxnard et al. showed similar efficacy 
outcomes with osimertinib with plasma digital PCR by 
BEAMing or tissue T790M testing (26). The positive 
predictive value (PPV) of ctDNA was 100% for L858R and 
EGFR 19 deletions, and 79% for T790M mutations. The 
study had a 30% false negative rate for plasma genotyping. 

Patients with a negative plasma T790M result have 
necessitated a primary tumor biopsy to confirm the absence 
of T790M.

In a separate retrospective study of EGFR mutant 
patients, BEAMing digital PCR was able to detect 70% 
T790M mutants. About a third (31%) of the patients with 
T790M-negative tumors had T790M positive ctDNA. In 
this study, response rates and PFS correlated with plasma 
positive T790M or tissue positive T790M (27). In another 
trial, an association between ctDNA load and OS was seen, 
whereas no correlation was noted with serial PET/CT 
tumor volume or avidity. Increased ctDNA independently 
associated with a shorter overall survival (28). 

Tumor heterogeneity and acquired resistance

Co-occurring alterations or tumoral heterogeneity may 
explain drug resistance to EGFR inhibitors. Plasma ctDNA 
sampling can provide a comprehensive analysis across 
metastatic sites when detectable (6,29). Furthermore, a 
tumoral molecular profile may evolve dynamically over 
time as a result of selection pressures on therapy (30).  
Understanding the evolution of selective pressures 
contributing to resistance mutations may help guide 
sequential targeted therapy (31-34). Third generation 
EGFR tyrosine kinase inhibitors irreversibly inhibit EGFR 
T790M resistance and have received front-line approval in 
the metastatic setting for patients with EGFR mutation (35).  
Patients treated with osimertinib whom relapse may 
acquire new genetic alterations including the EGFR 
C797S mutation (36). A variety of additional alterations 
have been observed and may include KRAS mutations, 
BRAF V600 mutations, HER2 amplification, and MET 
amplification among others (35-37). 

In patients with NSCLC treated with third generation 
EGFR TKIs, acquired EGFR C797S mutation has been 
identified on serial cfDNA specimens (38). Analysis of plasma 
collected from 15 patients treated with osimertinib detected 
three molecular subtypes emerging at resistance defined by 
EGFR C797S or a bypass mechanism (39). In a subset of 
patients who had progressed on rociletinib, different EGFR 
activating mutations (i.e., L798I) and bypass pathways with 
MET amplification have been detected in ctDNA and track 
with tumor resistance (19). 

Early markers of response

A number of studies have shown that the dynamic 
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monitoring of ctDNA load can provide insights into the 
detection of treatment response (19,40). Shorter PFS 
and OS can be associated with early ctDNA detection 
independent of confounding factors including age, stage, 
and histological subtype (41,42). We have employed an 
ultrasensitive liquid biopsy approach (TEC-SEQ) to 
serially evaluate patients with advanced NSCLC who have 
received tyrosine kinase inhibitors including erlotinib, 
afatinib, osimertinib, and mavelertinib (PF-06747775). 
Analyses of 28 patients revealed molecular responders had 
a near complete elimination of ctDNA (>98%) on therapy. 
Molecular non-responders with limited or no reduction of 
ctDNA levels experienced a statistically shorter PFS (1.6 vs. 
13.7 mos, P<0.0001) detected approximately 4 weeks sooner 
than detection on CT imaging (22). 

Circulating tumor DNA has been detected in urine, and 
drug induced apoptosis has been modeled within days of 
TKI treatment in patients with detectable EGFR mutations. 
In a proof of concept study, we identified an initial spike 
within the first week of therapy followed by a significant 
decrease in the number of copies detected from baseline 
within a week. This work demonstrates that frequent 
ctDNA sampling may enable early evaluation of patient 
response or progression (43).

In a separate study, changes in EGFR mutation have been 
shown to correlate with early clinical response prediction to 
EGFR TKIs. EGFR-mutated tumors with ctDNA testing 
at baseline and serially during erlotinib therapy showed a 
decrease in 95% of cases. The rate of the decrease in ctDNA 
fraction correlated with radiological response (P<0.0001). 
The patients with rapid decrease in ctDNA fraction  
(>50–70%) had longer progression free survival (44). 

Recent data from the FLAURA first line osimertinib 
study of 489 patients showed that the clearance of ctDNA 
at weeks 3 or 6 was associated with a longer PFS than 
those patients in whom there was no clearance of ctDNA. 
Plasma ctDNA analysis of treatment naïve patients with 
stage III/IV NSCLC were evaluated by ddPCR. EGFR 
mutation analysis was done at baseline, week 3, and week 6 
after EGFR-TKI therapy. Early clearance of plasma EGFR 
mutation after EGFR-TKI therapy was associated with 
improved PFS. Patients with detectable baseline plasma 
ctDNA had shorter PFS than those without detectable 
EGFR mutation (45). The integration of ctDNA analyses 
in clinical trials to understand their correlation with clinical 
outcomes is an ongoing path forward.

Conclusions

There has been a pressing need for a highly sensitive and 
reliable non-invasive liquid biopsy strategy for screening 
and resistance monitoring. EGFR testing and tracking 
through serial ctDNA plasma analyses is being utilized for 
initial genotyping and resistance monitoring. Plasma assays 
are being increasingly utilized when tissue is not available. 
These tests may have high sensitivities and specificities, 
and several studies are ongoing demonstrating concordance 
with tissue testing. There has been integration of ctDNA 
analyses in clinical trials as endpoints to track with response. 
The development of additional assays will further improve 
our knowledge of drug resistance, clonal evolution, and 
combinatorial therapeutic strategies forward. 
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