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Developments during the previous decade in melanoma 
and lung cancer headlined an explosion of new molecular 
targeted therapies and the arrival of immunotherapy as a 
mainstay of cancer treatment. Melanoma saw unprecedented 
improvements in survival outcomes with rapid development 
of combination BRAF-MEK inhibitors alongside immune-
checkpoint inhibitors targeting the CTLA-4 and anti-
programmed-death-1 axis (PD1) (1,2). Lung cancer 
followed suit with the development of anti-PD1/anti-PDL1 
as monotherapy (3-5), in combination with chemotherapy 
(6,7) and with anti-CTLA-4 (8). Furthermore, a plethora of 
molecular targeted therapies against ALK such as crizotinib, 
alectinib, ceritinib, brigatinib and lorlatinib together with 
the development of the third generation EGFR inhibitor 
osimertinib are now firmly established in the lung cancer 
armamentarium. However, melanoma and lung cancer 
exhibit the highest rate of brain metastases of all solid 
malignancies and remains a challenging clinical problem. 
While patients with brain metastases have ordinarily been 
excluded from Phase III registration trials, the Food and 
Drug Administration recently released a draft document 
recommending inclusion of such patients (9). Hence the 
new decade brings upon a new challenge of improving 
outcomes of patients with brain metastases. 

The brain exhibits a unique tumour micro-environment 
for two major reasons: the presence of the blood brain 
barrier that protects the CNS from most drugs or toxins 
and secondly the brain’s unique cellular composition (10). 
The blood brain barrier comprises of endothelial cells 
that are connected by continuous tight junctions. The end 
feet of astrocytes ensheath the endocytes and together 

with pericytes located at the basement membrane form 
a protective barrier that blocks most small molecules. 
Compared to extracranial sites, the brain parenchyma 
comprises of vastly different inflammatory cells dominated 
by macrophages. Chief amongst these macrophages are 
microglia that are brain specialised macrophages that persist 
throughout life with spindle like extensions that are able to 
surveil the parenchyma. Furthermore, astrocytes and other 
glial cells are unique to the brain and as such the tumour 
microenvironment is unique compared to other anatomical 
sites. These considerations shape small molecule drug 
delivery to the brain and also have potential implications on 
immunotherapy. 

Local therapy such as radiation and surgery have 
traditionally been the mainstays of brain metastasis 
management but systemic therapies have now entered the 
treatment paradigm particularly with ALK rearranged 
NSCLC. Second generation ALK tyrosine kinase inhibitors 
such as alectinib and brigatinib were specifically designed 
to penetrate the blood-brain barrier; a key shortcoming 
of the first generation crizotinib. These newer agents 
display clear superiority over crizotinib with impressive 
intracranial response rates and prolonged progression free 
survival. In patients with measurable brain metastases in the 
ALEX study, alectinib exhibited an intracranial response 
rate of 81% (17/21) versus 50% (11/22) with crizotinib. 
Duration of CNS response to alectinib was also prolonged 
at approximately 17.3 months compared to 5.5 for  
crizotinib (11). Moreover 40% (n=122) of the entire study 
population possessed any brain metastases at baseline, but 
landmark 12-month CNS progression was strongly in favour 
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of alectinib at 9.4% versus 41.4% for crizotinib. Similarly of 
39 patients with measurable brain metastases in the ALTA-
1L study, brigatinib exhibited an intracranial response rate 
of 78% versus 26% with crizotinib (12). Median intracranial 
progression free survival was not reached with brigatinib 
and the second generation inhibitor was associated with 
a lower rate of CNS progression compared to crizotinib 
(9% versus 19% respectively). Unpublished data suggests 
ceritinib also possesses encouraging intracranial activity in 
ALK rearranged NSCLC from the ASCEND-7 trial with 
an intracranial response rate of 52% with median duration 
of 7.5 months (13). High intracranial activity is not only 
restricted to ALK rearranged, but also EGFR mutant 
NSCLC. Patients with measurable intracranial metastases 
in the FLAURA study had a response rate of 91% (20/22)
to osimertinib (14). As such systemic therapy for brain 
metastases in ALK and EGFR mutant NSCLC can be 
considered as first line therapy—foregoing the need for 
local therapy unless the patient is grossly symptomatic with 
high volume disease.

Given the majority of NSCLC does not possess a 
readily targetable oncogene such as EGFR or ALK, 
can immunotherapy therefore play a role in patients 
management of CNS metastases without an ALK or 
EGFR oncogenes? The only formal study addressing 
this question is a single arm Phase II study of 18 patients 
with asymptomatic NSCLC brain metastases which 
demonstrated an intracranial response rate of 33% with 
median duration of response of 10.7 months (15). On 
the surface this appears a promising result, however the 
trial was a single institution study and patient PD-L1 
status was not assessed using an approved FDA assay. The 
melanoma experience with anti-PD1 monotherapy in brain 
metastases also provides caution: single agent nivolumab 
and pembrolizumab elicited an intracranial response rates 
of 20% (5/25) and 26% (6/23) respectively which is half the 
anticipated extracranial response rate of approximately 40% 
(16,17). Hence the utility of anti-PD1 monotherapy for 
NSCLC brain metastases without additional local therapy 
is questionable. Given responses to immune checkpoint 
inhibitors can take 2–3 months, combination chemotherapy 
with anti-PD1/PDL1 and local therapy should be employed 
in NSCLC brain metastases without an EGFR or ALK 
rearrangement. 

Despite the explosion of immunotherapy combinations 
in NSCLC, there are few translational studies that explore 
the tumour microenvironment of brain metastases. 
Recently Kudo et  a l . ,  performed Nanostring and 

complementary immunohistochemistry studies on 78 
paired tumour samples of primary lung and intracranial 
metastasis from 39 patients (18). Most tumours were 
adenocarcinomas and a small proportion of samples were 
derived from never smokers. Differential gene expression 
suggested dendritic cell maturation, Th1 responses and 
leucocyte extravasation were downregulated in CNS 
metastases implying an immunosuppressive tumour 
microenvironment. Strikingly the CNS tumours exhibited a 
high proportion of macrophages (CD68+) with lower CD8 
T cells compared to the primary tumour. Whilst microglia 
are a major cellular player of the central nervous system 
micro-environment, additional immunohistochemistry 
with TMEM119; a specific microglia marker were 
invariably negative thereby confirming bone marrow 
derived macrophages as the predominant cell type. The 
abundance of both macrophages and microglia is also 
notable in glioblastoma multiformae (GBM) where they 
comprise between 25–80% of all cells in the tumour 
microenvironment depending on molecular subtype (19).  
Using semi-quantitative immunohistochemistry of  
98 patients with GBM, CD3+ T cells accounted for less 
than 5% of cells with low CD8+ tumour infiltration that 
varied between 0.18% to 0.38% of the tumour area. B cells 
were rare, with only 4 patients exhibiting any evidence of 
this cell type. The importance of macrophages is unclear, 
with early studies suggesting this cell type might exhibit 
an immunosuppressive M2 phenotype (20), although this 
finding was not replicated in a study of freshly acquired 
tumours (21). With an abundance of macrophages, 
inhibition of colony-stimulating factor-1 receptor (CSF-1R)  
could potentially be advantageous. Further studies 
are required to delineate the brain metastasis tumour 
microenvironment and whether these observations in GBM 
are similar to NSCLC and its molecular subtypes. 

Recent investigations in melanoma brain metastases, 
might provide additional insights into NSCLC. Fischer et al.  
demonstrated a mismatch in immune cell populations 
between melanoma brain metastases and other extracranial 
sites (22). Even when lymph node deposits were excluded, 
melanoma brain metastases exhibited fewer CD3, CD8+, 
dendritic cells and macrophages compared to extracranial 
metastases. Interestingly analysis of well described 
candidates of immunosuppression in melanoma such as loss 
of PTEN and beta catenin signalling did not correlate with a 
relatively “cooler” CNS tumour microenvironment. Rather 
an upregulation of oxidative phosphorylation pathways 
was found to correlate with the immunosuppressive 
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melanoma brain microenvironment. Subsequent mouse 
models of brain metastases treated with an oxidative 
phosphorylation inhibitor showed improved survival; 
surprisingly the CNS tumour was controlled, but primary 
tumour and lung metastases growth was unchanged (22).  
An  in tere s t ing  hypothes i s  i s  whether  ox ida t i ve 
phosphorylation pathway upregulation in melanoma CNS 
metastases induces “metabolic starvation” of surrounding 
immune cells in the tumour microenvironment. 

As mentioned above, anti-PD1 monotherapy intracranial 
responses are substantially less than extracranial sites in 
melanoma. However, combination ipilimumab-nivolumab 
possesses near equivalent intracranial and extracranial 
response rates at approximately 55% albeit in populations 
with asymptomatic and relatively low volume brain 
metastases (16,23). Insufficient T cell priming of CNS 
metastases might account for the discrepant response rates 
with anti-PD1. Whether this is due to impaired antigen 
presenting cell function or other suppressive factors is 
unclear. In a murine melanoma model, intracranial responses 
to combination anti-CTLA-4 and anti-PD1 occurred only in 
the presence of an extracranial metastasis (24). Furthermore, 
responses by combination immunotherapy against murine 
GBM and melanoma brain metastases were boosted by the 
addition of a vascular endothelial growth factor-c construct 
that enhanced development of cranial lymphatic vessels 
draining to deep cervical lymph nodes (25). Collectively 
these two studies suggest the unique anatomical structure of 
the brain limits T cell priming required for immunotherapy 
responses. Anti-CTLA-4 might enhance T cell priming 
within the CNS draining lymph nodes and when given in 
combination with anti-PD1, increases CD8 cytotoxic T cells, 
into the tumour (24). Depletion of CD8 and natural killer 
cells did negate responses to combination anti-CTLA-4 with 
anti-PD1 indicating the requirement of cytotoxic cells for 
intracranial responses reminiscent of extracranial metastasis 
studies. Clinical correlation of these findings is naturally 
limited by the practicalities of intracranial biopsy but murine 
models can provide some insight into this difficult to study 
area.

With the great advances in small molecule inhibitors 
and immunotherapy, the long held dogma of the brain 
representing a “sanctuary” site for advanced cancer is 
being broken down. However, much work remains to be 
done with respect to investigations of the mechanisms 
of CNS metastasis. Furthermore, the role of microglia, 
macrophages and the entire interplay of CNS tumour 
microenvironment remains under investigated. With the 

growing recognition of the brain representing a unique 
tumour microenvironment, and increasing inclusion of 
patients with CNS metastases in clinical trials sets the stage 
for a new decade of dynamic cancer research.
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