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Introduction

Obstructive sleep apnoea (OSA) is a serious and worldwide 
health problem that affects at least 10% of the general 
population (1,2), although a large percentage of patients with 
moderate to severe disease remain undiagnosed (3,4). OSA 
is highly prevalent in adults (14% in men, 5% in females), 
especially mild-moderate severity and is becoming more 

prevalent due in part to the increasing prevalence of obesity in 
the developed world (5,6). The global prevalence is thought 
to be 1 billion, with general population prevalence estimates 
exceeding 50% in some countries (7). This represents a 
challenge for diagnosis, as the current gold standard diagnostic 
test is overnight polysomnography (PSG) in a sleep laboratory, 
which is labour intensive and expensive (8).

OSA is characterised by recurrent upper airway 
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obstruction (UAO) during sleep triggering episodes of 
apnoea and hypopnoea that leads to sleep fragmentation, 
non-restorative sleep and excessive daytime somnolence 
(EDS) (9). The cessation in airflow causes intermittent 
hypoxia (IH) (10) which is thought to be a major pathogenic 
mechanism for the adverse complications associated with 
OSA (11) including cardiovascular complications and 
increased mortality (12,13). Increasingly, it is recognised 
that various phenotypic traits are important contributors 
to OSA for most patients, which include a low respiratory 
arousal threshold, loop gain, and anatomical factors that 
narrow the upper airway (14). Clinical symptoms, the 
presence of certain biomarkers and co-morbidities are also 
significant variables (15).

OSA contributes to a significant health burden in society 
due to the strong association with cardiovascular disease 
[hypertension (HTN), coronary artery disease, congestive 
cardiac failure], stroke, metabolic syndrome and type 2 
diabetes mellitus (12,16). OSA, independent of age, sex 
and obesity is also associated with reduced quality of life 
secondary to EDS (17), motor vehicle accidents (18), 
depression and cognitive decline (19).

Currently, disease severity is measured using the apnoea-
hypopnoea index (AHI) as determined from a sleep study. 
However, recent evidence suggests a poor association 
between daytime symptoms (e.g., EDS) and the severity of 
OSA recorded in a sleep study (20), and there is a growing 
call to move away from the AHI as the principle measure 
of OSA severity towards a more personalised approach to 
OSA diagnosis and treatment (15). The global individual 
and socioeconomic burden of OSA, evidence for poor 
correlation of daytime symptoms with AHI, and limitations 
of AHI in terms of disease severity has led to emerging 
trends for the practice of personalized medicine within 
OSA and the development of simpler, more convenient 
objective methods of diagnosis. Recent reviews (15,21,22) 
highlight the need to move away from sole use of AHI as 
indicator and predictor of adverse outcome in OSA and 
instead consider individual risk factors, clinical history and 
co-morbid disease in the diagnosis and treatment of OSA. 
Other signals such as heart rate variability (HRV), pulse 
transit time (PTT), oximetry and the use of biomotion 
sensors may allow for an improved and phenotypic 
diagnosis. Home sleep apnoea testing (HSAT) and wearable 
technologies may help improve access to diagnosis and 
treatment adherence. Finally, technological advances 
in telemedicine may strengthen inter-departmental 
collaboration to improve overall care of OSA patients.

In this paper, we review the current diagnostic strategies 
for OSA in the context of their limitations, the role of 
emerging technology and potential physiological targets. 
We review the current evidence for using newer technologies 
in OSA diagnosis such as smartphone applications and 
wearable technology.

We present the following article/case in accordance with 
the Narrative Review Checklist (available at http://dx.doi.
org/10.21037/jtd-sleep-2020-003).

Clinical and pathophysiologic phenotypes

OSA patients typically present with EDS, frequent 
awakenings, bed partner reports of frequent choking/
gasping during sleep, and loud snoring (8). Patients 
often complain of morning headache, dry mouth and 
nonrestorative sleep, and may have a diagnosis of systolic 
HTN or co-morbid cardiovascular disease. Evidence 
from epidemiological studies indicate that not all patients 
complain of EDS or fatigue and some patients report only 
minimal symptoms (23). Furthermore, clinical history and 
symptoms are now recognised as an important phenotypic 
variable in the individualised approach to the diagnosis 
and treatment of OSA (24) with different characteristics 
requiring tailored treatment plans (15,21). Nonetheless, 
undiagnosed and untreated OSA is a significant burden on 
the healthcare system, with increased healthcare utilization 
seen in those with untreated disease (25).

More recently, Randerath et al. (15) presented conclusions 
from an expert review of the challenges in OSA management. 
The expert consensus was that a revision to the diagnostic 
criteria for OSA is required to include factors that reflect 
different clinical and pathophysiological phenotypes, and 
relevant comorbidities such as non-dipping nocturnal 
blood pressure (BP), which are not currently part of the 
diagnostic criteria. PSG will objectively measure AHI but 
fails to demonstrate an individual’s susceptibility for systemic 
effects of recurrent hypoxia due to OSA or the underlying 
pathophysiology. For instance, in older adults, airway 
anatomy/collapsibility plays a relatively greater pathogenetic 
role (26). Molecular markers or biomarkers that result from 
end-organ strain or damage inflicted by factors such as IH 
represent another variable to consider. These differences have 
clinical relevance and may influence treatment options (14).  
Going forward, management should be linked to the 
underlying clinical and pathophysiological phenotype and 
assess additional factors to the AHI such as acute systemic 
effects and associated relevant comorbidity (Figure 1).
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Diagnostic strategies in OSA

Traditional measures

Current guidelines describe optimum methods for testing 
of patients suspected of OSA (8). Patients presenting with 
symptoms of EDS and clinical features as highlighted above 
should be suspected as having OSA, particularly in the setting 
of risk factors such as advanced age, male gender and obesity 
(5,8). PSG in conjunction with a sleep-focused clinical 
review is the gold standard for the diagnosis of OSA and 
represents the reference method for the quantitative study of 
sleep (8). PSG is labour intensive, involving the continuous 
recording of electroencephalography, electrooculography, 
electromyography, and electrocardiography (ECG) to 
determine sleep stages, arousals, movement and sleep related 
cardiac arrhythmia, respectively. A nasal pressure sensor 
and a thermistor detect airflow and respiratory inductive 
plethysmography detect thoracic movements. Pulse oximetry 
is also utilised to monitor oxygen saturations and heart rate 
(HR). PSG is typically performed in a sleep laboratory setting 
with a technician in attendance. The increasing prevalence 
of OSA (5,27), cumbersome set up, and concern that PSG 
testing is not cost effective (28) has led to the emergence 
of alternative types of testing including portable HSAT in 
recent years.

HSAT

HSAT can be performed in the patient’s home, is cheaper 
and convenient. HSAT will record between four and seven 
variables that include respiratory effort, airflow, HR or 
ECG, arterial oxygen saturation, snoring, body position 
and movement. Newer devices have improved diagnostic 
accuracy and many devices have now been validated against 
PSG (29), thus providing a more convenient and cost-
effective diagnostic option. Also, HSAT can record several 
nights of sleep, which is advantageous as night-to-night 
variability is a feature of OSA and tends to be most relevant 
in patients with mild disease (30,31).

Despite the convenience of HSAT, these devices typically 
underestimate the AHI, increasing the likelihood of a false 
negative result due to the inability of HSAT to record 
total sleep time (TST) and detect arousals (32,33). Fewer 
physiological variables are measured which can lead to 
misinterpretation of results and may miss coexisting sleep 
disorders such as insomnia, periodic limb movements and 
parasomnias. The American Academy of Sleep Medicine 
(AASM) recommends the use of HSAT for OSA diagnosis 
in selected populations, but advises against its use as a 
population screening tool (34).

However, current OSA severity thresholds based on 
AHI level also need to be revised, especially since recent 
general population studies suggest that up to 50% of 
the general population have significant OSA based on 
AHI (23). Furthermore, the disparity between AHI 
and symptom level evokes concerns regarding the sole 
assessment of OSA by PSG. Thus, a move toward multi-
modality testing using novel technologies that encompass 
clinical, phenotypical and objective measurements is 
needed, employing additional markers of disease severity 
than the AHI.

Technological developments in sleep assessment

Emerging innovative technology allows more in-depth 
information to be gathered from more sophisticated 
algorithms and systems. Traditional PSG remains the “gold 
standard”, but new technologies such as novel sensors, 
WiFI, remote monitoring and wearable devices provide 
exciting potential alternatives to PSG (Figure 2). Integration 
of these technologies has the potential to improve patient 
care and allow more readable accessibility of diagnostic 
tests to allow quicker diagnosis and ultimately treatment of 
patients with OSA.
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Figure 1 Graphic representation of a three-dimensional model 
of OSA disease severity. The X-axis represents respiratory events 
such as apnoeas and hypopnoeas; the Y-axis represents the acute 
systemic effects of sleep-disordered breathing such as oxygen 
desaturation and increased blood pressure. The intermediate 
axis represents end-organ effects such as vascular and metabolic, 
predisposing to comorbidities such as hypertension and diabetes. 
The grey triangular zone is intended to convey the variability in 
susceptibility to comorbidity. OSA, obstructive sleep apnoea.
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Novel approaches to evaluating oxygen saturation metrics

Overnight oximetry (ONO), typically using a pulse oximeter 
has long being proposed as an accessible, uncomplicated 
and reasonably reliable technique for OSA diagnosis, 
especially in severe cases (35,36). In OSA, recording of the 
arterial oxygen saturation (SpO2) requires a high sampling 
rate (>0.5 Hz) for an overnight period to ensure adequate 
detection of intermittent oxygen desaturations. In clinical 
practice, several relevant data can be obtained from the 
recordings, including the oxygen desaturation index (ODI) 
[number of desaturations per hour which drop 3% (ODI3) 
or 4% (ODI4) below baseline], the cumulative time with a 
saturation below a predetermined level, usually 90% (T90), 
and signal variability, which may be referred to as the delta 
index (8,37). In OSA, the common “saw tooth” pattern of 
transient oxygen desaturation is seen, especially in severe 
cases, which gives an instant visual picture of the disease 
that is unique to OSA. Simple indices fail to capture all of 

the important and potentially diagnostic pathophysiological 
characteristics (36) and novel strategies for analysis of 
oximetry have concentrated on the use of automation  
(38-40) to maximise the diagnostic potential of these data.

Application of computer-assisted quantification of the 
time, number and severity of desaturations aids detection of 
OSA (39,41). Automation of desaturation events facilitates 
a better description of events, to include desaturations of 
>4%, >5% and more, with desaturation duration and depth 
also calculable (42). Time series variables such as mean 
SpO2, variance of SpO2, minimum SpO2 and cumulative 
time with a saturation below a predetermined level can be 
measured and plotted graphically (43).

Automated signal processing plays an important role 
in optimizing the use of ONO in the context of OSA 
diagnosis. Several studies have focused on automated signal 
processing which look at the time/frequency dynamics 
of ONO (44), morphological features (45), and analysis 
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of repetitive apnoeic/hypopnoeic events (39,42). Non-
linear analysis, which quantifies information related to 
the temporal order of values in the oximetry signal, has 
also been utilized (39,42) in characterizing the changes in 
ONO. Several devices that encompass these technologies 
have been developed and most include a sensor that sends 
data to be examined by Bluetooth to a mobile phone. OSA 
detecting algorithms compute this data to diagnose OSA. 
Other devices use smartphones or personal digital assistant 
(PDA) as the receiver. Algorithm analysis and statistical 
analysis of time and frequency allow in depth processing to 
occur with encouraging potential for home testing (46-48). 
Wireless approaches are also available (48), which may assist 
in OSA diagnosis and prioritise cases for more detailed 
study, and may also have a role in treatment follow-up (49).

Oximetry and AHI
ODIs can be directly used as a substitute for the AHI to 
estimate the number of respiratory events during the night. 
However, ODIs (>4%) often underestimate the severity 
of OSA, which can have significant clinical consequences 
(12,13) and influences treatment decisions (8). Different 
approaches have been utilised to combat this limitation, 
including regression analysis (45,50) and machine learning 
algorithms (51), with average diagnostic accuracy of 96.7% 
reported. The diagnostic potential of ONO compared to 
AHI is emphasised by several reports indicating that ODI 
is a superior predictor of co-morbidity than AHI in OSA 
patients regarding co-morbid HTN (52) and diabetes 
mellitus (53).

Oximetry in patients with co-morbidity
Some work has been conducted on the use of portable 
ONO to diagnose sleep disordered breathing (SDB) in 
patients with co-morbidities including stoke (54), heart 
failure (55), morbid obesity (56,57) and COPD (58). In 
stroke, OSA is associated with impaired recovery and 
an increased risk of mortality (59). In stroke patients 
undergoing rehabilitation, >15 events/hour reached 77% 
sensitivity and 100% specificity in the prediction of an 
AHI >15 events/h and the authors concluded that ONO 
could be used as a diagnostic tool for OSA in stroke  
patients (54). In the setting of congestive cardiac failure, 
one study found that ONO achieved high sensitivity (97%) 
but lacked specificity (32%) making it a useful rule out test, 
but was not diagnostic for OSA in this population (55). In 
obesity, ONO performs better, with conventional oximetry 
alone achieving 100% sensitivity and 93% specificity when 

used alone at home for the diagnosis of severe OSA in 
patients with morbid obesity (56). ODI4 was shown to be 
predictive of mild, moderate and severity OSA in a further 
study of 475 surgical patients (57).

Both OSA and nocturnal hypoxemia are commonly 
seen in chronic obstructive pulmonary disease (COPD) 
patients (58,60) and treatment with CPAP as compared 
to LTOT alone is associated with higher survival rates in 
patients with OSA-COPD overlap (61). ONO alone in 
diagnosing patients with the overlap syndrome is limited by 
low sensitivity (59%) and specificity (60%) (58). However, 
oximetry when combined with novel technology was able to 
identify moderate-severe OSA regardless of the presence of 
COPD (62).

Future direction
Advances in technology and signal processing have expanded 
the role of ONO but controversy persists. Oximetry alone 
demonstrates significant variability in diagnostic accuracy, 
with reported sensitivity ranging from 31–98% and specificity 
41–100% (38). Part of this variability may be accounted by 
the range in sampling frequency and amplitude resolution 
seen in currently available devices (39) and also without 
automation, variability in how physicians interpret oximetry 
tracing (63). Thus, further research is needed to support the 
use of oximetry at home as a single diagnostic test for OSA, 
particularly in those patients with comorbidities.

Cardiac based measures

ECG analysis: monitoring of HRV, ECG and respiration
Monitoring of HRV by overnight ECG has long been 
recognized as a potential diagnostic tool in patients with 
SDB (64). Under standard conditions, a single lead ECG 
is recorded during PSG to measure HR and rhythm. Use 
of dedicated software allows analysis of HRV (65) which 
can provide insight into autonomic activity and may even 
distinguish sleep stages (66). Additional information 
may be obtained from fluctuations in QRS amplitude 
relating to rib cage movement during respirations. The 
combination of ECG-derived respiration and sleep apnoea 
related HRV has the potential to be a reliable predictor 
of OSA (67) and has potential for screening in the 
cardiologist’s office prior to referral.

PTT
The PTT is derived from the ECG and the photoplethysmographic 
arterial pressure wave measured by a finger probe, which 
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has been shown to reflect inspiratory effort (68). PTT 
measures the time required for the arterial pulse wave to 
travel between two points in the arterial tree: from the 
moment when the pulse leaves the aortic valve (R-wave on 
ECG) to the time when it reaches the vessels in the finger as 
identified by pulse oximetry. Pulse wave speed depends on 
the vessel stiffness, which is influenced by BP levels. PTT 
fluctuates with changes in arterial wall stiffness and has the 
potential to identify apnoea and arousals (68).

Peripheral arterial tonometry (PAT) (the pulse wave as 
a measure)
PAT allows a closer look at the pulse wave and is one of the 
more robust diagnostic tools available. Amplitude of the 
wave is modulated by sympathetic tone, and arousals can be 
estimated by drops in pulse amplitude. Sleep stages may also 
be estimated by pulse rate analysis (69). The WatchPATTM 
device (Itamar Medical, Ltd) uses a proprietary algorithm 
that combines PAT, oximetry, HR monitoring, and 
actigraphy to provide an estimate of TST and to calculate 
a respiratory disturbance index (70). It has been validated 
in a number of studies (69-71) and the overall agreement 
between sleep indexes calculated by in-lab PSG and those 
calculated using PAT devices have a reasonable correlation 
(r=0.889) (72), making it an attractive and reasonably 
reliable diagnostic tool for OSA.

BP monitoring as a potential diagnostic tool
OSA is a known independent risk factor for daytime HTN 
with apnoeic episodes during sleep also recognized to 
result in acute BP elevation (5,73). Meta-analysis suggests 
that OSA increases the likelihood of non-dipping blood 
pressure (NDBP) by approximately 1.5 times (74), suggesting 
ambulatory BP monitoring may serve as a surrogate marker 
of OSA, An increased frequency of reverse systolic dippers 
(73.5%), which is also independently associated with OSA 
is also seen (75). A recent report from this department has 
indicated a high predictive value for moderate to severe OSA 
in unselected patients recruited from a HTN clinic who 
demonstrated a non-dipping pattern of nocturnal BP (76).

However, standard ambulatory BP measurement with a 
pneumatic cuff may cause arousals during sleep and cannot 
track the rapid BP changes that are observed in OSA (77,78). 
Continuous BP measurement can be conducted by finger 
photoplethysmography, whereby a miniature cuff fits on 
the finger and provides a continuous signal. This provides 
beat-by-neat pressure curves, allowing assessment of BP 
variability which can be increased in OSA (79). A novel 

smart-watch, CareUpTM (Farasha Labs, Paris, France) has 
been developed for estimating BP in real time (80). This 
watch has been validated in 44 subjects, representing a 
promising tool for home monitoring of BP and may serve 
as a screening tool to identify patients with OSA, whilst also 
identifying and monitoring BP variability which could help 
improve the management of OSA and reduce cardiovascular 
risk in these patients (77). Cardiac-based signals potentially 
useful in the diagnosis and monitoring of OSA are 
summarised in Table 1.

Biomarkers in OSA and associated comorbidities

Markers of inflammation or oxidative stress, metabolic 
markers, novel exhaled breath analysis have potential as 
novel biomarkers in OSA. Chronic hypoxic stress may 
increase circulating levels of biochemical mediators of 
inflammation such as C-reactive protein (CRP), tumour 
necrosis factor-α (TNF-α), interleukin-6 (IL-6), and 
interleukin-8 (IL-8) which could have potential as markers 
of disease severity and likelihood of associated comorbidity 
(81,82). However, no studies have identified an ideal 
biomarker. Furthermore, certain co-morbidities such as 
non-dipping nocturnal BP have potential as a biomarker in 
OSA (76).

Exhaled breath analysis is an innovative and non-
invasive approach that allows collection of a wide range of 
substances that provide information on pathophysiological 
and metabolic processes in a wide range of disorders. In 
sleep disorders, exhaled breath analysis has allowed insight 
in to the metabolomics of OSA and its consequences. Most 
studies focus on markers of inflammation and oxidative 
stress (IL-6, TNF-α) which can correlate with measures of 
OSA severity. Further research into this area may facilitate 
earlier diagnosis and assist therapeutic monitoring (83).

Acoustic and airflow devices

Acoustic devices
Despite snoring being a common finding in OSA, on its 
own, snoring is probably of limited value in the assessment 
of OSA, due to its weak relationship with AHI (84). 
However, breath sounds are capable of being recorded 
and may offer an alternative home measure of AHI. 
BresoDXTM (BresoTec Inc., Toronto, Ontario, Canada) is 
a portable device consisting of an open lightweight face 
frame, embedded electronic module and a microphone. 
Breath sounds are stored continuously for up to 8 hours and 
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can be transferred to a central server for acoustic analysis 
(85,86). In this context, an intermittent pattern of snoring 
is likely to be the most useful predictive pattern for OSA. 
AHI determination using BresoDXTM in one study of  
135 subjects showed good correlation to PSG with a 
diagnostic accuracy ranging between 88.9% and 93.3% at 
AHI cut-offs of 5–15 (87).

More recently Zansors® has developed a small, wireless 
wearable patch that measures sleep breathing patterns using 
an inbuilt microphone and an accelerometer to record 
movement. In a pilot study the device demonstrated 75% 
sensitivity and 71% specificity for detecting sleep apnoea 
events compared to gold standard PSG. Further results are 
awaited, but highlights the potential for an acoustic sensor 
to have improved diagnostic performance when used with 
other signals (88).

Airflow devices
Home single-channel nasal pressure (HNP) devices such as 
ApneaLinkTM (Resmed, Sydney, Australia) (89) have been 
proposed as a cheaper alternative to PSG for OSA diagnosis. 
ApneaLinkTM is a portable, battery powered, single-channel 
nasal pressure device that measures airflow through a nasal 
cannula. Sophisticated algorithms calculate the AHI (90). 
When compared to PSG, home ApneaLinkTM recordings 
have a 73.1% sensitivity and 91% specificity for detecting 

an AHI >15 in at risk populations (89), with similar results 
reported in other studies (90,91). These results suggest a 
promising role for devices that measure one or two signals 
only, with appropriate pre-selection of patients, but further 
study is needed to fully validate their role.

Actigraphy

Immobility is a predictable and distinctive feature of 
sleep compared to wakefulness. Actigraphy involves the 
collection of data representing body movement (often an 
accelerometer built into a wristwatch) over time. Actigraphs 
can display daily sleep-wake cycles, which may be useful 
in the diagnosis and evaluation of several clinical sleep 
disorders. In 1995, the AASM concluded that actigraphy 
was useful as a research tool in sleep (92) and since, 
advancements in technology have allowed for cheaper and 
smaller devices that can unobtrusively measure sleep in 
large-scale, real life settings (see section “Use of technology 
to improve adherence in OSA”). In 2007, actigraphy was 
accepted by the American Academy of Sleep Medicine 
(AASM) as an alternative to PSG to allow prolonged 
monitoring of sleep (93).

Previous reviews (94-96) have noted that actigraphy 
can provide useful information about sleep in the natural 
sleep environment, measures of basic sleep indices and/or 

Table 1 Application of technology to measure cardiovascular signals in the diagnosis of OSA

Parameter Sensor Signals Comments Applications

ECG ECG leads attached to chest HRV Use of automated software to analysis HRV (64) Screening prior 
to referral

QRS 
amplitude

Analysis of QRS amplitude relates to rib cage movement and 
respiration—can be used in conjunction with HRV analysis (66)

PTT ECG leads Pulse wave 
speed

Measures time needed for arterial pulse wave to travel 
between two points

Identify SDB

Pulse oximetry 
(photoplethysmographic arterial 
pressure wave)

Shorter times equate to increased sympathetic tone (increase 
BP). Can identify apnoea’s and arousals (67)

Use in wearable 
technology

PAT Pulse oximetry Pulse wave Measures arterial pulse volume changes in the finger as a 
result of vasomotion (vasoconstriction and vasodilatation)

Home diagnosis 
of OSA

Finger probe Pulse rate 
analysis

Automated algorithms to detect apnoea’s (68-71) WatchPATTM (69)

BP Finger photoplethysmography BP variability BP variability seen in OSA (78) Screening tool

BP cuff Monitoring 
CareUpTM (78)

ECG, electrocardiogram; HRV, heart rate variability; PTT, pulse transit time; SDB, sleep disordered breathing; PAT, peripheral arterial 
tonometry; OSA, obstructive sleep apnoea; BP, blood pressure.
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inform when extended monitoring is clinically indicated. 
However, actigraphy is not able to accurately detect sleep 
stage and has low specificity (97). When compared to PSG, 
actigraphy tends to overestimate TST and underestimate 
wake time (98). Actigraphy is limited by an indirect signal, 
namely motion, and estimations of sleep patterns are only 
inferential. However, with technological improvements, the 
role of actigraphy is likely to evolve as a screening tool and 
become part of more complex systems to evaluate OSA.

Wireless systems: biosensors in OSA

Sleep can be monitored wirelessly. The first device was 
constructed in Finland in the 1980s using pressure sensitive 
foils in the bed of the sleeping patient, which recorded 
sleep, HR and respiration (99). These have evolved 
substantially with the introduction of digital technology 
for signal processing and signal acquisition, and by the 
inclusion of oximetry.

Radio frequency waves, similar to radar technology, can 
detect very small body movements, as caused by respiration 
and heartbeat, even through the bed clothes of a sleeping 
patient, thus allowing the clinician to distinguish sleep and 
wakefulness, sleep apnoea and normal breathing (100,101). 
SleepMinder™ (ResMed Sensor Technologies, Dublin, 
Ireland) is a device that estimates the severity of OSA using 
a novel method of interpreting the breathing pattern of 

subjects during sleep (102). The device is non-contact, 
portable and easy to use. It is based on a multi-channel 
biomotion sensor and integrated analysis software. The 
biomotion sensor uses an ultralow power radiofrequency 
transceiver to measure the biomotion due to breathing and 
body movement of the subject in bed. Algorithms are used 
to perform signal analysis, including respiration analysis, 
sleep quality measurement and sleep apnoea assessment. 
The device has been shown to correlate well with PSG 
in the determination of AHI (103) and sleep efficiency  
(SE) (104) during controlled laboratory settings. More 
recently, the device was shown to be effective as a screening 
tool in high risk patients (but demonstrated lower accuracy 
in mild OSA (105). The device also allowed monitoring 
over seven nights, which may provide further information 
on the patient’s disorder. Further validation studies are still 
needed on various populations, but it is a promising and 
simple home test.

Smartphone technology

PSG, although well studied and the gold standard in 
diagnosis of OSA, is not a set up that is well suited to 
ambulatory assessment. In contrast, smartphones are 
widely available and potentially can track sleep and sleep 
behaviour in a non-invasive manner. Most smartphones 
have embedded sensors (Figure 3) that can facilitate data 
acquisition (e.g., accelerometer, microphone), offering 
novel opportunities to passively monitor patients in their 
natural environments (106). The majority boast a wide 
array of computational power which can be fed to a cloud 
computing database and sophisticated algorithms employed 
to analyse and score sleep data (107).

The concepts underpinning actigraphy are important as 
most smartphones rely on sleep assessment methods that 
involve movement detection, in addition to audio and video 
recording in some applications. The inbuilt accelerometer 
act as a modern actigraph to distinguish wake and sleep from 
the movement detected by the phone’s embedded sensors. 
More novel devices utilise sound recordings (e.g., snoring) 
to aid detection of SDB. More recently, advances have 
allowed sensors devices (HR recording, breathing frequency) 
to be connected to the smartphone device permitting the 
assessment of more biological signals (106). Given the wide 
availability, relatively low cost and ease of use, smartphones 
are considered by many as the best strategy for monitoring 
sleep outside the traditional PSG set up (108,109), and may 
have potential as screening tools for SDB (Table 2).

Light sensor

GPS sensor

Touch (Fingerprint) 
sensor

Temperature 
Sensor

Magnetometer*

Pressure 
sensor

Gyroscope*Face
Recognition

Actinograph: 
Accelerometer*

Acoustic:
Microphone

* IMU (Inertial Measurement Unit) chip provides gyroscope,
accelerometer and magnetometer on a single chip.

Figure 3 Signals potentially available with smartphone technology 
that may be relevant to evaluating sleep disordered breathing.
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Applications or “apps” in sleep medicine

Smartphones allow consumers to download third-party 
applications (apps) through an online mobile store. Mobile 
apps are the most popular form of consumer technology, 
running on smart phones or tablets and are common in 
the area of sleep and sleep hygiene. They can analyse data 
online and provide real-time feedback to the consumer, 
functioning through the support of in built sensors (110). 
The apps monitor sleep tracking, facilitate sleep and 
dream logging, and may have alarm functions. They allow 
sleep analysis and are increasing in number (111). Sound 
recording can also be added to detect snoring (112).

Consumers often use these “apps” to improve or self-
monitor sleep. However, robust evidence for their use 
is lacking (108,113,114) and there is a paucity of clinical 
validation with traditional sleep technologies (PSG, HSAT, 
actigraphy) (107,115,116). A review of 51 such “apps” in 
2016 (117) found inconsistencies and lack of any scientific 
publications to back up the accuracy of the apps. Every app 
reported sleep duration but reporting data on sleep structure 
(time in light sleep, deep sleep, REM) was unreliable. App’s 
were reliant on inbuilt accelerometers (actigraphy), but each 
app had its own proprietary algorithm to relate the amount 
of movement detected to specific sleep stages.

Nonetheless, sleep tracking products remain very 
popular consumer products and are widely used for sleep  
tracking (117). One of the top 5 paid apps in 2014 on iTunes 
was a sleep tracker and alarm clock (106). Data from these 
apps are currently not regulated for use as medical devices 
and are used without prescription or clinical guidance. To 
date, the accuracy of these data when used as healthcare 
related data remains to be determined (108).

Smartphone vs. PSG

Few studies have compared sleep apps with PSG and 
most relate to sleep tracking measures. In one study of the 
sleep app, Sleep TimeTM (Azumio, Inc., Palo Alto, CA, 
USA), no correlation was found with PSG regarding sleep 
efficiency, light sleep percentage, deep sleep percentage, 
or sleep latency (SL) (115). Furthermore, the app had poor 
specificity, similar to previous reports (96,118). Similar 
poor correlations with PSG are reported for the apps Sleep 
CycleTM (Northcube, Goteborg, Sweden) (119), and Motion 
X 24/7TM (Fullpower technologies, Inc. Santa Cruz, CA, 
USA) (116), and are not recommended as a diagnostic tool.

A more recent study (120) compared four smartphone 
apps (Sleep Cycle-AccelerometerTM (Northcube, Goteburg, 
Sweden), Sleep Cycle-MicrophoneTM (Northcube, 
Goteburg, Sweden), SenseTM (Hello, San Francisco, 
USA), Smart AlarmTM (Plus Sports, USA) with PSG. A 
combination of sound and movement sensors, either in 
built or external were used for sleep-wake detection and 
determining sleep stages. In keeping with previous studies 
(115,116,119) and a recent systematic review (114), the apps 
compared poorly to PSG in determining sleep stage and at 
present are not suitable alternatives to PSG in the diagnosis 
of SDB. The authors concluded that further validation 
studies involving accelerometer-based apps are needed.

In contrast, Tal et al. (121) evaluated a contact free 
monitoring system, EarlySenseTM (Ltd., Israel) which 
consists of an under the mattress piezoelectric sensor and 
a smartphone app, to identify sleep stages in 43 adults 
compared to in-laboratory PSG. An overall sleep accuracy 
of 88.5% was found. EarlySenseTM also detected snoring 
and integrated data from multiple signals including HR, 

Table 2 Advantages and disadvantages of smartphone based technology in OSA

Advantages Disadvantages

Inbuilt sensors Not validated

Wireless (reduced risk of connection issues, failures to record and loss of data) Unable to accurately detect sleep stage

Widely in use Poor correlation with PSG

Cheap technology (relative to PSG) Battery life (longer battery life required for continuous 
monitoring)

New devices: increased computational power allowing use of complex 
algorithms

Unregulated (at present)

External sensors; oximeters can now be connected wirelessly Risk of interference from environment (i.e. ambient noise)

Role in compliance/telemedicine

OSA, obstructive sleep apnoea; PSG, polysomnography.
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RR, and motion detection, suggesting that multiple signals 
are required to accurately distinguish sleep stages.

Thus, clinicians need to be aware of the limitations 
of actigraphy as outlined previously, and especially its 
limitations when used within Smartphone Apps. More 
research into the measurement validity of these apps and 
development of enhanced and more sophisticated sleep 
algorithms are needed, which may in the future improve 
the diagnostic utility and reliability of these applications. 

Examples of smartphone apps that may have a role in 
screening for sleep disorders and SDB are given in Table 3.

Snoring and SDB via smartphone apps

Detection of snoring
Recording sounds during sleep allows physicians to 
potentially screen patients who are unaware of snoring, 
which is a risk factor for cardiovascular disease and possibly 

Table 3 Examples of smartphone application based technology in the diagnosis of OSA

Application (reference) Study aim
Additional 
sensor(s)

Outcome

Accelerometer based- use principles 
of actinography to detect movement

Sleep TimeTM (114) Evaluate the validity of sleep parameters reported by 
app compared to standard PSG (n=20, adults)

– No correlation between 
app and PSG; SE, SL, light 
sleep percentage, deep 
sleep percentage

Sleep CycleTM (118) Accuracy of an application in recording sleep 
compared to standard PSG (n=23, paediatric)

– Poor correlation. Unable to 
detect sleep stage

MotionX 24/7TM (115) Comparison of app against PSG and actigraphy 
(Actiwatch2TM) in a clinical paediatric sample (n=78)

– Poor correlation with PSG, 
did not accurately measure 
sleep or wake

Sleep Cycle-acclerometerTM, Sleep 
Cycle-microphoneTM, SenseTM, Smart 
alarmTM (119)

Reliability of four smartphone applications for sleep 
wake detection through sound and movement 
sensors either inbuilt or external to the phone, by 
comparing their performance with PSG (n=21, adults)

Microphone Poor correlation. Unable to 
detect sleep stage

Biomotion sensor based-motion 
sensor

EarlySenseTM (120): piezoelectric 
sensor under the mattress at level of 
patient’s chest

Accuracy of contact-free system in recording sleep 
parameters compared to PSG (n=63, adults)

Microphone 
Accelerometer, 
HR, RR

Accuracy 88%. Integration 
of multiple signals needed

Acoustic based-in built microphone

SnoreMonitorSleepTM, Quit SnoringTM, 
Snore SpectrumTM (111)

Ability to record snoring in the real-life environment – Poor reproducibility, 
difficult to distinguish 
between noises

Oximetry based-external oximeter 
sensor/PPG feeds wirelessly to 
Smartphone

SleepApTM (122) Accuracy of diagnosis of OSA compared to clinician 
(n=121, adults)

Accelerometer 
Microphone

92.2% accuracy for 
diagnosis of moderate-
severe OSA

SleepCareTM (123) Accuracy of screening algorithm in detecting OSA – Developed Algorithm 
demonstrated 85.6% 
accuracy in diagnosis OSA

OSA, obstructive sleep apnoea; PSG, polysomnography; SE, sleep efficiency; SL, Sleep latency; HR, heart rate; RR, respiratory rate.
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points to OSA (124). Nakano et al. (125) used a smartphone 
to monitor and quantify snoring and OSA severity using 
a built-in microphone and analysed information obtained 
using a signal processing procedure like that developed 
for tracheal sound monitoring to detect OSA. Snoring 
time correlated well with PSG findings. The diagnostic 
sensitivity and specificity for diagnosing OSA (AHI ≥15) 
was 0.70 and 0.94, respectively, within laboratory settings.

However, Stippig et al. (112) looked at the accuracy of 
three available apps; SnoreMonitorSleepLabTM (Adactive 
AB, Sweden), Quit SnoringTM (Pointer Software Systems, 
Ltd. CA, USA) and Snore SpectrumTM (Zurlin Technologies, 
Melbourne, Australia) to determine whether this technology 
could be used in a noisy home environment. The apps 
demonstrated difficulty distinguishing between snoring 
sounds and other noises in the bedroom or close by, with 
both environmental and device variability noted. The authors 
concluded that the audio recordings were good, but ability 
to analyse and draw conclusions from the data was limited 
due to poor reproducibility and poor reliability and cannot 
replace current screening devices.

Snoring and SDB
The addition of oximetry should enable better diagnostic 
utility of smartphones for the diagnosis of OSA and systems 
have been designed to fit this purpose (126). However, as 
shown previously, continuous monitoring of oximetry is 
required and such systems require increased processing 
power, longer battery life and more detailed algorithms. Al-
Mardini et al. (122) combined an external oximetry sensor 
with an in-built accelerometer to detect movement and a 
microphone to detect respiratory effort with a smartphone 
application to detect OSA in adults. Testing on a small 
group (15) demonstrated 100% sensitivity and 85.7% 
specificity in classifying OSA when compared to PSG, while 
severity of disease was accurately diagnosed in 87.5%. The 
authors designed an OSA detection technique that utilised 
the built-in sensors in the smartphone. The detection 
platform extracted and analysed physiological signals (SpO2, 
movement, respiratory effort) using the smartphones 
computational power and in-built algorithms.

SleepApTM was developed for the purpose of screening 
and monitoring OSA (123). Internal phone sensors and 
an external pulse oximeter are used to record audio, body 
position, activity and oxygen saturation during sleep. The 
clinically validated STOP-BANG questionnaire was also 
used (127). Specific algorithms used by the app are based 
on signal processing and machine learning algorithms 

developed from a larger database. The app classifies the 
user as either: Non OSA or OSA (mild, moderate, severe) 
and performed well compared to clinicians with an accuracy 
of up to 92.2% for those with moderate-severe OSA. Less 
robust data exists for those with mild OSA, where the app 
performs less well. Similarly, Nakano et al. (125) showed 
high correlation between smartphone and PSG in terms of 
total snore time (r=0.93) and AHI (r=0.94) after developing 
a specific algorithm using a test population of 10 patients.

Daly et al .  (128) tested SleepCareTM (Sleepcare 
Technologies Inc., Canada): which comprised a smartphone 
app, a pulse oximeter, and an online server. The screening 
algorithms demonstrated 85.6% accuracy in a test database. 
Strengthened algorithms and use of more than one sensor led 
to improved detection of OSA and suggests that in order to 
produce a robust and reliable app, combining more than one 
sensor and use of objective and subjective sleep assessment 
maybe a more reliable screening tool. Further work is still 
needed to validate these systems in the real-world setting.

Wearable technology

Smart watches, fitness trackers and photoplethysmography

Wearable health monitoring technologies such as 
smart watches and fitness trackers have recently gained 
popularity (129). These devices are novel in that they 
are worn on the wrist and can pick up physiological 
signals directly without additional sensors being attached. 
The market is growing. In 2016 it was valued at over  
$13.2 billion and is forecast to reach $34 billion by the 
end of 2020. Despite the popularity of these device, only 
limited data are available on how these devices compare 
to each other and how valid and reliable they are when 
compared to traditional diagnostic methods (106,130).

The most common sensor technology employed in 
wearable devices is motion sensing via accelerometery, similar 
to actigraphy (95). Along with built-in accelerometers, 
cardiac monitoring is increasingly being used as an additional 
sensor, through optical and photoplethysmography  
methods (130). Light sensors on the device record pulse wave 
signal, with sophisticated algorithms capable of extracting 
HR and SpO2 data making these devices ideal for sleep 
monitoring. However, to date the data suggests these devices 
have limited accuracy and reliability.

Wearable devices vs. PSG
Seventeen studies have examined the accuracy of consumer-



5031Journal of Thoracic Disease, Vol 12, No 9 September 2020

© Journal of Thoracic Disease. All rights reserved.   J Thorac Dis 2020;12(9):5020-5038 | http://dx.doi.org/10.21037/jtd-sleep-2020-003

targeted wrist-worn or arm-band accelerometers that 
include FitBitTM (Fitbit Inc, CA, USA), JawboneTM (Jawbone 
Inc, CA, USA), and SensewearTM (Bodymedia, USA). An 
early study comparing FitbitTM with PSG demonstrated 
that the device overestimated TST by 63 minutes compared 
to PSG and by 25 minutes compared to actigraphy (131). 
The more recently developed Fitbit FlexTM (Fitbit, CA, 
USA) demonstrated more favourable results with an 
overestimation of sleep duration by 6.5 minutes in good 
sleepers and by 32.9 minutes in insomniac patients (132). 
This better performance in good sleepers is expected, given 
sleep research consistently shows that wrist accelerometry 
has a high sensitivity for sleep (~90%; i.e., a true sleep epoch 
is recorded as sleep), while having much lower specificity 
for sleep (~50%) (130).

Mantua et al. (133) compared four devices [Basis Health 
TrackerTM (Intel Corp, CA, USA), Misfit ShineTM (Misfit 
Wearables, CA, USA), Fitbit FlexTM (Fitbit Inc, CA, USA) 
and Withings Pulse O2TM (Withings, Issy-les-Moulineaux, 
France)] to Actiwatch SpectrumTM (Philips Respironics, OR, 
USA) and PSG in 40 patients. Their analysis found that the 
only parameter that was reliably measured for all devices 
was time to sleep. Another study compared nine devices 
for accuracy in a 24-h activity measurement. Error rates 
ranging from 8–16.92% were reported when compared 
with EEG based sleep duration (134), indicating none were 
capable of accurately capturing activity data across the 
entire day.

Combined use of photoplethysmographic methods 
(HR, SpO2) may improve diagnostic capabilities and 
determinants of sleep stage. However, the FitBit Charge 2TM 
(Fitbit Inc. CA, USA) underestimated sleep stage transition 
dynamics compared with PSG, although performed better 
in estimating TST and sleep efficiency (135,136). A recent 
meta- analysis of 22 reports evaluating FitBitTM compared 
to PSG confirmed that FitbitTM models overestimate TST 
and SE (137). Predictably, newer devices that analyze more 
physiological signals (HR, body movement) performed 
better but sleep-staging devices were limited by low 
specificity (137).

Reliability of HR measurement
All wrist worn activity trackers rely on photoplethysmography 
and use proprietary HR-derived algorithms. Several recent 
studies investigated the accuracy of wearable devices for 
measuring HR. Benedetto et al. (138) reported that the 
Fitbit Charge 2TM (Fitbit Inc, CA, USA) underestimates the 
HR by up to 30 bpm. Another report (139) evaluated the 

HR accuracy of Apple Watch 3TM (Apple Inc, CA, USA) 
and Fitbit Charge 2TM compared with ambulatory ECG 
and reported acceptable HR accuracy (<±10%). However, 
both slightly underestimated HR and measurements were 
influenced by wrist movement and higher HR.

Wearable devices vs. actigraphy
The accuracy of three consumer wearable devices [Fitbit 
FlexTM, Jawbone Up24TM (Jawbone, CA, USA), Misfit 
ShineTM] was compared to the well validated actigraphy 
device, Actiwatch-2TM (Philips Respironics, OR, USA). 
Users wore all devices on the same wrist for seven 
consecutive 24-hour periods. Overall, both devices were 
comparable to actigraphy in establishing TST and wake 
after sleep onset (WASO). Kanady et al. (140) compared a 
consumer grade wearable sleep monitor (Basis B1TM (Basis 
Science Inc. CA, USA) in the assessment of sleep patterns 
in normal adults to PSG and research grade actigraphy. The 
device performed similarly to actigraphy for estimation of 
TST, but was not accurate for sleep stages and was not a 
substitute for PSG.

Role in detection of OSA
Wearable sleep trackers are not reliable in the diagnosis 
of OSA. The ability of two wrist worn sleep trackers; 
Withings pulse 02TM and Jawbone UpTM and one actigraph 
(Bodymedia SenseWear Pro ArmbandTM) to measure sleep 
architecture and sleep quantity in patients diagnosed with 
OSA assessed during one polysomnographic recording 
night in a general sleep laboratory was evaluated in  
32 patients (141). Both sleep trackers were unable to 
accurately measure SE, SL or awakenings, could not 
estimate deep sleep properly and demonstrated poor intra-
class correlation, confirming the limited performance of 
wearable devices in the evaluation of sleep in OSA patients.

Use of technology to improve adherence in OSA

Despite the technological advancements in CPAP devices, 
including improvements in comfort (humidifiers, pressure 
ramp features) and more discreet machines over the last 
20–30 years, adherence to therapy has not significantly 
improved and remains a significant stumbling block in 
the management of OSA patients (142). This data was 
provided via a systematic review of clinical trials evaluating 
adherence, but may not be fully reflective of real world 
practice and in general adherence rates fluctuate widely 
(50–80%). Traditional intensive support strategies involve 
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regular nursing visits and detailed education, which is time 
consuming, costly, labour intensive and produces variable 
results (143).

However, CPAP devices already objectively record usage 
data and now with emergence of cloud-based technologies, 
a unique way of analysing adherence in patients with OSA, 
in a real-world setting exists. Cistulli et al. (144) evaluated 
2.62 million patients, using real world data with an observed 
90-day adherence rate of 75%, higher than previously 
reported (142). Still, we can and should do better and new 
technology also affords development of patient engagement 
strategies to improve compliance.

Patients may now engage in their own care. Most CPAP 
machines can display previous nights’ usage, and this can 
facilitate direct feedback to the patient in real time. Cloud-
based platforms, similarly, can be used to update physicians 
on patient’s adherence and allow remote monitoring, 
facilitating better care and be cost efficient (145). Cloud-
based technology can also be developed to provide real time 
feedback to the patient. Malhotra et al. (146) compared 
CPAP adherence among patients who were provided with 
active patient engagement (APE) technology versus those 
who received usual care monitoring (UCM). APE was 
associated with improved adherence (87.3%) compared with 
UCM patients (70.4%; P<0.001).

Smartphone applications may also improve patient 
adherence to CPAP. SleepWell24TM (ASU, Arizona, USA) 
is a multicomponent evidence-based smartphone app that is 
designed to deliver biofeedback about CPAP use and sleep 
patterns by combining cloud-based CPAP data and wearable 
sensor data. It remains to be seen whether this app will be 
effective in improving adherence and will be evaluated for 
efficacy compared to UCM in an upcoming RCT (147).

Conclusions

The growing recognition that AHI represents a poor 
metric to assess the presence of a clinically significant 
OSA syndrome,  together with the move towards 
ambulatory monitoring of patients for diagnosis and 
treatment has resulted in an increasing desire to identify 
biological variables that identify patients with a clinically 
significant disorder. It is likely that smartphone and 
wearable technologies will play a significant role in these 
developments, but currently available technologies have not 
yet reached that goal. Other strategies such as biomarkers 
will also likely play a role, especially in the identification of 
relevant comorbidity. Combinations of signals that can be 

non-invasively measured in the ambulatory setting are most 
likely to succeed in replacing conventional testing such as 
PSG for most patients.
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