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Introduction

Ascending thoracic aortic aneurysm (ATAA), with an 
incidence about 10 per 100,000 patient-years, is a life-
threatening disease that is associated with increased risk of 
aortic adverse events (AAEs) (1,2). Clinically, AAEs include 
rupture, aortic dissection (AD) and mortality. For ATAA 
patients with high risk of developing AAEs, the mortality 
rate following emergency surgery is fairly high (16–59%) 
(1,3). Therefore, for high-risk ATAA patients, preventive 

surgery is often performed before AAEs occur and in such 
cases the mortality rate drops to 3–9% (1,3,4). Although the 
effectiveness of preventive surgery has improved in recent 
years, how to accurately identify high-risk patients who are 
suitable for preventive surgery (the risk of AAEs occurrence 
exceeds the risk of surgery) remains a significant challenge 
for surgeons (5). 

The purpose of this study is to review the indicators 
proposed in current studies that may help to identify 
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patients at high risk of AAEs and suitable for applying 
intensive surveillance and early interventions. We also 
highlight that the algorithm obtained by combining 
multiple indicators may be a better choice compared with 
single indicator, but this still requires more the support 
of evidence (6,7). We present the following article in 
accordance with the Narrative Review Checklist (available 
at http://dx.doi.org/10.21037/jtd-20-2728).

Methods

A literature search was conducted using MEDLINE, 
Embase, Web of Science, PubMed from January 2000 to 
June 2020. The search terms included “ascending thoracic 
aortic aneurysm”, “ATAA”, “morphology”, “geometry”, 
“morphological” and “geometric”. These terms were 
combined using the Boolean operator AND or OR. After 
identifying relevant studies, we expanded the electronic 
search using the “related articles” function in PubMed. The 
reference lists of related studies were manually screened to 
obtain additional studies. If the unpublished data reported 
sufficient data, they were considered for inclusion to 
reduce the publication bias, and the primary authors were 
contacted for missing data.

Criterions for inclusion were as follows: the study (I) 
reported at least one morphological indicator predicting 
AAEs in patients with ATAA; (II) consisted of 10 or more 
patients; (III) clearly defined the AAEs; (IV) described the 
detection methods of AAEs in patients with ATAA.

Criterions for exclusion were as follows: (I) non-English 
language; (II) animal and laboratory studies; (III) letters 
to editors and commentaries; (IV) systematic reviews and 
meta-analysis; (V) case reports; (VI) conference abstracts 
without extractable data; (VII) included only other acute 
aortic syndromes (e.g., AD, penetrating aortic ulcer).

Discussion

Absolute aortic diameter as an indicator

Absolute aortic diameter is an essential morphological 
indicator in AAEs prediction (8). Previous studies 
demonstrated that the risk of AAEs increased when the 
diameter of the ascending aorta reached 6 cm; therefore,  
5.5 cm is recommended as a threshold for preventive surgery 
in current guidelines (2). However, in patients with ATAA, 
most AAEs occur in the aorta with diameters less than  
5.5 cm, which is considered as the aortic size paradox  

(9-12). On the one hand, the phenomenon is probably due 
to the bell-shaped curve of the aortic diameter distribution 
in the general population. Specifically, the number of people 
with aortic diameters less than 5.5 cm is much larger than 
that of people with a diameter greater than 5.5 cm (13,14). 
On the other hand, this may be due to heterogeneity among 
the studies of measurement methods used to confirm the 
threshold of 5.5 cm (15-17). Although the preventive surgery 
threshold should be applicable to patients before AAEs onset, 
most studies only analyzed the aorta of patients who had 
already developed AAEs, and there are few studies comparing 
the aortic diameter before and after the occurrence of AAEs 
(6,12,18,19). Previous study reported an increment of at least 
32% in the average mid-ascending aortic diameter after AD 
occurrence, with a value of 13±7 mm (12). As a result of this 
AD primed aortic dilatation, the aortic diameter, which should 
be recommended as risk stratification threshold, may be less 
than 5.5 cm (20,21). Secondly, the diameters of the different 
segments of the aorta are different, and there is no uniform 
standard for which segment should be used for setting 
the threshold (4,15,19,22-24). Thirdly, optimal imaging 
methods for ATAA include echocardiography, computed 
tomography (CT) and magnetic resonance imaging, which 
are complementary but not competitive (6,24,25). There 
are slight differences in the diameter data obtained by 
the three methods, which leads to differences in findings 
among studies that use different imaging methods (22).  
Meanwhile, the methods of measuring the diameter vary 
from study to study (26). Currently, AAEs prediction is 
based on traditional data analysis methods, including manual 
axial, coronal, and sagittal image analysis (3,19,27). These 
risk stratification thresholds are not suitable for patients 
using the centerline measurement technique, which usually 
obtains lower aortic diameter (28,29). Thus, as the centerline 
method increasingly used, it may be necessary to ‘‘left-shift’’ 
the thresholds (30). Furthermore, there is also a method 
of calculating the diameter based on the circumference to 
minimize the influence of the non-circular aorta (7,31). The 
above evidence suggests that a unified acquisition protocol 
and general morphological parameters should be developed 
to eliminate heterogeneity caused by different measurement 
methods (22). 

For the reasons outlined above, we believe that the 
risk stratification thresholds in current guidelines are not  
reliable (30). In addition to the heterogeneity in the 
formation of these thresholds, there are still several issues 
associated with the application of diameter alone as a 
single indicator (6,32). Firstly, when comparing the median 
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diameters of non-AAE, post-AAEs and pre-AAEs aortas, the 
diameter ranges of these three groups substantially overlap, 
which explains why there is suboptimal discrimination 
between non-AAEs and AAEs aortas based on diameter 
alone (33). Secondly, diameter alone does not account for all 
the relevant factors that contribute to aortic geometry, such 
as the irregular, elliptical shape of the aorta, and the three-
dimensional (3D) process of aortic growth (10,34).

In conclusion, on a populational level, the aortic 
diameter may be useful to predict poor prognosis, but it 
is not sufficient to identify particular patients who are at 
risk of AAEs. For this reason, investigations are underway 
to explore new predictive indicators to help clinicians 
accurately identify ATAA patients in a timely manner who 
are candidates for preventive surgery.

New indicators combining aortic diameter and 
personalized parameters

Aortic diameter is modulated by several personalized 
parameters such as height, gender, age, lifestyle, body size, 
hypertension, genetic factors, bicuspid aortic valve (BAV) 
and sleep apnea (6,23,25,35-44). Due to the correlation 
between diameter and these parameters, it may not be 
appropriate to classify patients with the same diameter but 
with different personalized parameters into the same risk 
category (6). Therefore, we discuss new indicators that 
combine aortic diameter with personalized parameters and 
compare their efficiency in AAEs prediction.

Diameter height index (DHI)
Previous studies reported the correlation between height 
and aortic diameter, which are both affected by genetics. 
Importantly, it is not reasonable to use the same risk 
stratification threshold in ATAA patients of different 
heights (38). Many studies have adopted a new predictive 
indicator called DHI by indexing height to diameter, which 
is known to be consistent in people of different heights 
(2,27,34,38,45-48). Abnormal DHI was highly correlated 
with increased long-term cardiovascular mortality, which 
illustrates its suitability as predictor of AAEs (34,47). 
Previous studies have used DHI =2.4 cm/m as the risk 
stratification threshold, and found that patients with DHI 
above this threshold have significantly higher probability 
of surgical intervention than those below (P<0.001) (2). 
Moreover, DHI can help to stratify diameter indicators in 
moderately dilated aorta (4.5–5.5 cm) and identify high-risk 
patients who may develop AAEs, which remains a grey area 

in the current guidelines (34,46,47). Among patients with 
moderately dilated aorta, 44% had abnormal DHI, and this 
population accounted for 78% of long-term deaths (47). 
Among patients with a BAV as well as a moderately dilated 
aorta, patients with abnormal DHI accounted for 70% of 
overall mortality (46). In another study, ATAA patients were 
further divided into 45–50 and 50–55 mm groups. It was 
reported that 49.1% of patients in the 45–50 mm group and 
98.5% in the 50–55 mm group had abnormal DHI (34). 
This shows that combining height and aortic diameter to 
create new predictive indicators can effectively categorize 
patients with moderately dilated aorta. In patients with 
genetically mediated aneurysms, including suspected 
familial aortic syndromes, BAV and Marfan syndrome 
(MFS), DHI is already used as additional criterion to 
warrant elective aortic repair (8,38,45,49). This further 
illustrates the feasibility of DHI as a predictive indicator of 
risk stratification in patients with ATAA.

Aortic size index (ASI)
Many studies focused on creating nomograms for aortic 
diameter prediction based on body surface area (BSA), 
which have already been adopted in guidelines (50,51). BSA, 
which accounts for both body size and height, is known to 
correlate with aortic diameter (25,39,52). Therefore, recent 
studies reported a new indicator named ASI, which is the 
aortic diameter indexed by BSA for AAEs prediction (27).  
For ATAA patients with ASI less than 2.75 cm/m2, between 
2.75–4.25 cm/m2 and above 4.25 cm/m2, the yearly 
incidence of AAEs is 4%, 8% and 20–25%, respectively (27).  
ASI has been shown to be a better predictor for AAEs than 
simple aortic diameter by all analytic methods, although 
there is still ongoing debate around the merits of DHI 
and ASI (2,27). Some studies reported that diameter is 
associated with height but not with BSA, whereas others 
reached the opposite conclusion, which is probably due 
to heterogeneity between studies (24,39,51). Moreover, 
most studies reported that DHI yields more satisfactory 
results for AAEs prediction in ATAA patients than ASI, as 
evidenced by a higher area under curve (AUC) (2,48). This 
is most likely because height is more stable compared with 
body size parameters, which do not significantly fluctuate 
throughout adulthood (6). At the same time, compared with 
BSA, height is easier to measure clinically, and errors can be 
eliminated by BSA calculation (45).

Age
Previous studies proposed morphological indicators 
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according to different age groups to predict type B aortic 
dissection, with larger threshold values for elderly patients, 
whereas studies in patients with ATAA are insufficient (40). 
Risk stratification thresholds should be adjusted according 
to age because aorta morphology changes with age 
(8,25,33,40,53). In particular, the aortic diameter in people 
under 15 years of age increases at the fastest rate. From the age 
of 15 years, the diameter growth rate slows down to 1.3 and 
1.2 mm per decade for males and females, respectively (54). 
Moreover, most aortic geometric variables, including arch 
morphology, aortic circumference, thickness, and aortic 
length, are age-dependent (33,40-42,53). In addition to 
the morphology of the aorta, as age increases, changes also 
occur in microstructural components including collagen, 
elastin and smooth muscle cells (26,55). These components 
change in each tunica of the aortic wall both in quantity and 
organization (56). As older patients exhibit a weaker wall 
under delamination but not tensile strength, they are more 
prone to dissection propagation (43). Although this strong 
evidence supports the idea that the ATAA risk stratification 
thresholds should be adjusted for patients of different ages, 
there is currently no model in place and this remains an 
important direction for future research.

Gender
Previous studies suggested that different risk stratification 
thresholds should be applied separately for men and 
women. The main reason is that in ATAA patients with 
AAEs, aortic diameter in women is often smaller than 
in men, which may be due to inherent physiological 
differences (19,24,39,44,54,57). The mean diameter of the 
ascending aorta is 38±4 and 35±3 mm in males and females, 
respectively. For men, the percentage of ascending aorta 
diameters greater than 40 mm, greater than 45 mm, and 
greater than 50 mm is 18.9%, 2.2%, and 0.2%, respectively, 
and 5.9%, 0.5%, and 0%, respectively in women (58). 
Some studies suggest that these differences can be partly 
explained by body size (males tend to have larger BSA) (58).  
However, many studies have shown that even if BSA is 
adjusted, there is still a gender difference in aortic diameter 
(19,57,58). Specifically, the average aorta of older men 
is larger than that of women of similar ages, but the 
difference between young men and women is small (25,54). 
In addition, female patients with ATAA have a higher 
MMP (matrix metalloproteinases)/TIMP (tissue inhibitor 
of metalloproteinase) expression ratio (probably due to 
estrogen) (59). MMP can degrade extracellular matrix 
components in the aorta, resulting in aortic remodeling, 

which in turn increases aortic stiffness (60,61). Aortic 
stiffness is associated with accelerated aneurysm growth, 
which is a high-risk factor for AAEs occurrence (guidelines 
recommend preventive surgery when aneurysm growth 
reaches >0.5 cm/year) (8,62).

Due to these differences between genders, whether 
morphologically or biologically, it is unreasonable for men 
and women to be subject to the same risk stratification 
thresholds. Otherwise, this may lead to a considerable 
proportion of women with AAEs who may not undergo 
preventive surgery in a timely manner (62). As a result, the 
mortality rate of female ATAA patients is 40% higher than 
males, and the risk of dissection or rupture is tripled (19). 
However, although there is sufficient evidence to support 
the use of sex-specific risk stratification thresholds, specific 
protocols that are verified for aneurysm surveillance and 
treatment in male and female ATAA patients are yet to be 
developed (58,62).

Non-syndromic ATAA
It has been reported that 20% of TAA patients have 
a first- degree relative whose thoracic aorta is dilated, 
which shows the important role of genes in TAA (35). 
In contrast to syndromic ATAA, some families exhibit 
abnormalities limited to the cardiovascular system without 
physical features of connective tissue disorders (63). These 
conditions are called non-syndromic ATAA include familial 
thoracic aortic aneurysm and dissections (FTAAD), familial 
thoracic aortic aneurysm and BAV with aneurysm (63). 
The non-syndromic ATAA related genes included ACTA2, 
MYH11, MYLK and PRKG1, which encode components 
of the smooth muscle contractile apparatus (64-67). 

It has been reported that non-syndromic ATAA tend to 
grow at a higher rate even compared with MFS patients, 
which highlights the need for different risk stratification 
thresholds for non-syndromic ATAA patients (35). Previous 
studies have focused on assessing relationships between 
candidate genes and ATAA to facilitate daily monitoring 
of the aorta, early intervention of aortic disease and family 
cascade screening (68,69). As technology advances and the 
cost of DNA sequencing continues to decrease, the use 
of ATAA-related genetic testing is expected to gradually 
increasing clinical practice.

Hypertension
It was traditionally considered that hypertension would 
accelerate the rupture of elastin fibers in the aorta, causing 
the proximal aortic dilation (70,71). However, as previous 
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studies have shown, compared with the diameter prediction 
model established by height, body size, age, and gender, 
the incremental effect of hypertension is much smaller  
(39,72-74). Another study divided patients with hypertension 
into four subgroups, including prehypertension, systolic-
diastolic, isolated diastolic and isolated systolic. However, 
there were no significant difference in aortic root diameter 
between the subgroups and normotensive individuals after 
adjusting age and BSA (36). As whether hypertension 
will cause aortic dilatation is still unclear, no studies have 
proposed the revision of risk stratification thresholds for 
hypertension patients.

Other morphological indicators

As mentioned above, a single diameter,  as a two-
dimensional (2D) indicator in the horizontal direction, 
is insufficient to describe the complex 3D shape of the 
entire aorta (47). Previous studies have proposed many 
3D indicators (e.g., diameter, length, volume, curvature, 
arch morphology and angulation) for characterizing the 
geometric complexity of the aorta (33). At present, the 
acquisition of these 3D indicators is mostly processed by 3D 
post-processing technology based on computer tomography 
angiography (CTA) (75,76). Although 3D parameter 
acquisition depends on 3D reconstruction of the aorta 
(which more or less limits the application), the advancement 
of modern acquisition technologies has made it increasingly 
convenient (77,78). Meanwhile, echocardiography, which 
has high repeatability and no nephrotoxicity from contrast 
agents, has been proven to have the potential to measure 
3D parameters (79). Previous study measured length from 
aortic annulus to the most cranial part of visible aorta with 
transthoracic 2D echocardiography (80). Another study 
also proposed an algorithm for aortic root 3D modeling 
based on 2D echocardiography by a computer-aided design 
software (81). Such technological progress makes 3D 
indicators expected to be widely used. Therefore, numerous 
studies have focused on 3D parameters to confirm 
morphological differences other than diameter between 
the non-AAEs aorta and AAEs aorta (82). This shows 
that when formulating risk stratification thresholds, we 
should consider combining 3D parameters to characterize 
aortic risk morphology more precisely and improve the 
accuracy of diagnosis and prognosis (33). We will introduce 
some indicators that have proven to show effectiveness of 
predicting AAEs, and other indicators that may be useful 
are summarized in the Table 1.

Aortic length
As mentioned above, previous descriptions of aortic 
morphology always focused on horizontal indicators such 
as diameter (6). However, the observation that the entrance 
of the aortic dissection mostly extends in a circumferential 
direction could be explained by decreased longitudinal 
elasticity due to aortic elongation (53,88). Meanwhile, a 
previous study also showed that the length of the AAEs 
aorta processed from 3D reconstruction based on CTA is 
significantly larger than the non-AAEs aorta (7,78). These 
findings led to further investigation into the correlation, if 
any, between aortic length and the risk of AAEs (Figure 1) 
(7,78). It has been further reported that each centimeter 
increase in the length of the aorta carries a 5-fold risk of 
AAEs occurrence, and the probability of AAEs in the aorta 
with a length greater than 13 cm is 12.4 times higher than 
that of less than 9 cm (6,31). This correlation is independent 
of the increase in diameter: some aortas only have mild 
dilatation, whereas the length increases sharply (7). This 
shows the rationality of aortic length as a predictive 
indicator, and studies have further proved that the sensitivity 
of aortic length as a predictor is sevenfold higher than for 
diameter. The possible reasons why length is suitable for 
AAEs prediction are as follows: firstly, aortic elongation 
reduces the thickness of the aortic wall and causes elastin 
fiber fragmentation, further increasing aortic stiffness, 
which is manifested by a significant increase in aortic pulse 
wave velocity and brachial/aortic pulse pressure ratio (53). 
Secondly, as the length of the aorta increases, asymmetrical 
changes in the aortic morphology occur simultaneously, 
which disrupts the blood flow pattern, resulting in activated 
mechanical transduction pathways (7,31,53). This in turn 
affects the structure and function of aortic wall cells (89). 
Moreover, unlike the diameter, the length of the aorta does 
not change much before and after the occurrence of AAEs, 
with a slight increase of just 3%, which reduces the study 
heterogeneity when developing aortic length thresholds (6).

However, for single indicators, regardless of length and 
diameter, there are still overlaps in the distribution of AAEs 
aorta and non-AAEs aorta, suggesting the need for indicators 
which comprehensively reflect aortic morphology (33).  
A previous study calculated the length and diameter of the 
aorta as an arithmetic sum and created a new indicator called 
aortic height index (AHI) (diameter height index + length 
height index) (6). Importantly, the AUC of AHI for AAEs 
prediction was higher than for diameter (6). Moreover, for 
moderately dilated aorta where diameter is not an optimal 
indicator, the annual rate of AAEs increases proportionally 
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Table 1 other parameters in 3D model

Parameter Define Study

Arch angle The angle along the inner surface of the arch Doyle, Barry J 2018 (83)

Between the 2 tangent lines from the highest point of the aortic arch to the 
centerline of the aortic arch

Hasegawa, Tomomi 2015 
(84)

Aortic angle The angle of the origin of the brachiocephalic and of the left subclavian 
arteries from the aortic arch was measured

H.B. Alberta 2015 (85)

Ascending angle; Descending angle Ardellier, F D 2017 (82)

Tortuosity The length of the midline within the aorta divided by the linear distance 
between reference points

Shirali, Aditya S 2013 (86)

A ratio of the incremental curve length to the linear distance (d) between its 
2 endpoints

Rylski, Bartosz 2014 (20)

Arch radius Inscribing a circle to the inner curvature of the centerline and recording the 
radius

Doyle, Barry J 2018 (83)

Arch height Distance between the inferior margin of the aortic arch and the superior 
margin of the left main bronchus

Hasegawa, Tomomi 2015 
(84)

Distance between highest point in the center line of the true lumen and 
mid-level of the right pulmonary artery flow in

Ardellier, F D 2017 (82)

Arch width Between the posterior margin of the ascending aorta and the anterior 
margin of the descending aorta at the level of the left main bronchus

Hasegawa, Tomomi 2015 
(84)

Distance between the reference points (true lumen center at the mid-level 
of the right pulmonary) artery flow in

Ardellier, F D 2017 (82)

Ascending aorta distensibility (Amax − Amin)/Amin/(SBPCMR − DBPCMR) Guala, Andrea 2019 (87)

Ascending aorta circumferential 
strain

(Dmax − Dmin)/Dmin Guala, Andrea 2019 (87)

Longitudinal strain The maximum longitudinal displacement with respect to the late diastolic 
position reached during the cardiac cycle was considered in the analysis

Guala, Andrea 2019 (87)

Dmax & Dmin: the maximum (systolic) and minimum (diastolic) diameters of the aorta.

with increasing AHI (6). Another study proposed a score 
that combines aortic length and diameter to predict the 
risk of AAEs. The score defines a diameter ≥55 mm as 2 
points, a diameter between 45 and 54 mm as 1 point, and a 
centerline length ≥120 mm as 1 point (7). When the total 
score is greater than 2 points, the preventive surgery is 
recommended. At least 23.5% of pre-TAD patients had a 
positive score (sensitivity =0.24), and the identifiable pre-
TAD patients were at least twice as many as when diameter 
alone is used as a risk indicator. The above evidences 
showed the superiority of algorithms obtained by combining 
multiple indicators, and the establishment and proof of these 
algorithms may become the future research direction.

Arch tortuosity
Previous studies have found that patients with aortic 

disease have extremely high arch tortuosity compared with 
healthy controls, and there are often fewer cardiovascular 
risk factors when AAEs occur in patients with high arch 
tortuosity (Figure 1) (7). On the one hand, the extremely 
high arch tortuosity results in increased systolic wave 
reflection in the arch, which in turn increases wall stress 
and causes structural changes in the aortic wall (increased 
stiffness and decreased compliance), finally leading to the 
occurrence of AAEs (77,90-93). On the other hand, high 
arch tortuosity also reflects the hemodynamic stress caused 
by progressive structural damage in the vascular media and 
further pathologic remodeling (77).

Based on these factors, we believe that aortic arch 
tortuosity can be used as a predictive indicator for AAEs 
occurrence. In addition, the continuous advancement of 
CTA-based 3D reconstruction technology makes it possible 
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to quantify the aortic arch tortuosity (76). However, there 
is great heterogeneity among studies with regards to 
definitions of arch tortuosity (92,94,95). Meanwhile, the 
anatomical sites that measure arch tortuosity are not the 
same between different studies and no protocols have been 
validated in a robust fashion (86,94,95). To fully understand 
the correlation between arch tortuosity and the occurrence 
of AAEs, validated protocols for defining arch tortuosity are 
required. A previous study proposed a method to determine 
aortic arch tortuosity based on 2D images, which is easy 
to apply clinically and has the potential to be used as a 
standard definition protocol in the future (77).

Others

Although the focus of this article is on aortic morphological 
parameters, we also fully recognize the need to develop 
and verify non-morphological parameters, such as 
biomechanical indicators (6). A large number of studies 
have proposed indicators for abdominal aortic aneurysms 
including wall stress rupture potential index, numerically 

predicted wall stress, severity parameter and finite element 
analysis rupture index (96-99). Less data are currently 
available on the mechanical properties of ATAA (100-102). 
In recent years, studies have also suggested that ATAA can 
be identified by whole blood analysis before imaging, and 
that plasma signatures for certain proteins (such as collagen) 
can not only identify ATAA patients but also stratify them 
into etiologic subtypes, which is important for personalized 
treatment (32,103). 

Conclusions

The accurate and timely identification of high-risk patients 
requires effective predictive indicators of AAEs and accurate 
risk stratification thresholds. Compared with a single 
diameter, whether that be the combination of absolute 
diameter and personalized parameters, or the combination 
of 3D parameters to formulate risk stratification thresholds, 
models based on combined indicators show better accuracy 
in AAEs prediction. We also highlight that the algorithm 
obtained by combining multiple indicators may be a better 
choice compared with single indicator, but this still requires 
the support of more evidence.

Acknowledgments

Funding: This work was supported by a grant from the 
National Natural Science Foundation of China (No. 
51576049).

Footnote

Reporting Checklist: The authors have completed the 
Narrative Review Checklist. Available at http://dx.doi.
org/10.21037/jtd-20-2728

Peer Review File: Available at http://dx.doi.org/10.21037/jtd-
20-2728

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/jtd-20-2728). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. 

Figure 1 Methodology of the aortic 3D indicator measurements. 
The ascending aorta length was defined as the centerline distance 
between the origin of the brachiocephalic trunk (A) and the 
sinotubular junction (B). The most commonly used method to 
define arch tortuosity is height-to-width ratio. Width of the aortic 
arch (W) was measured as the maximal horizontal distance between 
the midpoints of the ascending and descending aorta close to the 
axial plane going through the right pulmonary artery. Height of 
the aortic arch (H) was measured as the maximal vertical distance 
between W and the highest midpoint of the aortic arch.
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