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Introduction

Lung cancer (LC) is the most frequently diagnosed cancer 
worldwide and has the highest death rate (1,2). Of the 
different types of LC, approximately 80–85% are non-

small cell LC (NSCLC) with adenocarcinoma accounting 

for very considerable proportion (2-4). Previous studies 

have discussed the factors affecting the development 

and tumorigenesis of lung adenocarcinoma (LUAD), 
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including genomic mutation of EGFR and KRAS, and 
the gene fusion detection of ALK, which have been 
widely used in clinical practice (5-7). Although activating 
EGFR mutations for NSCLCs are considered predictive 
biomarkers for tyrosine kinase inhibitor (TKI) treatment (8),  
the total EGFR mutation frequency is only around 30% (9).  
Despite initially positive responses to EGFR TKI therapy, 
which is the standard main treatment for LUAD, most 
patients develop progression and TKI resistance during 
1–2 years after TKI treatment commencement (10). 
Positive ALK rearrangement occurs in 3–5% of NSCLCs. 
Although ALK-positive NSCLC patients benefit from 
crizotinib, the development of acquired resistance still 
causes treatment failure and poor prognosis (11). There are 
also some problems, such as difficulties in early diagnosis and 
chemoradiotherapy resistance, that remain to be addressed 
(12-14). The 5-year survival rate of patients with advanced 
LUAD is still low at 3–10% following diagnosis (15).  
Current prognostic and predictive biomarkers are not 
adequate, and the pathogenesis of LUAD is still far from clear. 
Therefore, further investigations on sensitive biomarkers that 
are related to overall survival (OS) are urgent.

Genome expression profiles have been widely used 
to identify prognostic signatures in patients with cancer. 
Deferentially expressed genes (DEGs) affecting prognosis 
have been analyzed and are widely used in clinical practice. 
Weighted gene co-expression network analysis (WGCNA), 
a method to elucidate the interactions of pathogenic genes 
in cellular processes, is a bioinformation tool used to 
determine the correlation between hub genes and modules 
with clinical traits (16,17). We applied WGGNA to the 
Gene Expression Omnibus (GEO) dataset to identify key 
genes that are related to pathway modules and to provide 
LUAD prognostic markers. This systematical biologic 
method of co-expression network for models has been 
used to study many cancers, such as pancreatic cancer (18),  
gastric adenocarcinoma (19), and renal clear cell carcinoma (20).  
However, relative research in LUAD is still insufficient.

In the present study, we set up a gene co-expression 
network of DEGs from the GSE32863 dataset using the 
WGCNA package (version 1.69) and identified specific 
modules correlated with the clinical and pathophysiological 
characteristics of LUAD. Furthermore, the data were 
analyzed by Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and Kaplan-Meier Plotter 
analysis for predictive key genes of LUAD patients (21). 
The function of key genes [dynein light chain roadblock-
type 2 (DYNLRB2) and mouse homolog of ß1 spectrin 

(SPTBN1)] were confirmed by the gene set enrichment 
analysis (GSEA) database (22). Our article was the first 
report to suggest a link between the DYNLRB2 and 
SPTBN1 expression and LUAD prognosis. We also verified 
the mRNA expression of DYNLRB2 by quantitative 
reverse transcription polymerase chain reaction (qRT-PCR), 
and examined the protein expression by Western blotting. 
Functional experiments were performed in vitro. Our 
aim was to identify specific biomarkers closely correlated 
with the prognosis of LUAD, and provide insight into the 
mechanism of LUAD.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/jtd-21-49).

Methods

Data collection

The GSE32863 dataset contained gene expression profiling 
of 58 LUAD samples, and normal adjacent lung tissues were 
downloaded from the GEO repository (http://www.ncbi.
nlm.nih.gov). Datasets were downloaded in CEL format and 
analyzed on R (version 3.1.2). After setting the threshold as 
adj. P<0.05 and |logFC|>1, DEGs from candidate genes 
were screened using the limma R package. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Pathway enrichment analysis

To explore the functional pathways  of DEGs ,  GO 
enrichment and KEGG  pathway analysis  of  both 
upregulated and downregulated DEGs using the cluster 
profiler package, the threshold value was set as P<0.05.

WGCNA for modules

We constructed a weight co-expression network of DEGs 
using WGCNA package version 1.69. We filtered the 
genes with top 25% variance using an algorithm for further 
analysis. We excluded outlier samples before incorporating 
DEGs into the co-expression network. Network modules 
were divided by a dynamic tree-cutting algorithm. To assess 
the stability of modules identified in the microarray dataset, 
we used a module preservation analysis (nPermutations 
=200) to detect the stability of the modules. A soft threshold 
(β=7) was used to transform the correlation matrix into 

http://xueshu.baidu.com/usercenter/paper/show?paperid=447e2795964055250a839b142b2f1da0&site=xueshu_se
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a signed weighted adjacency matrix. The preservation 
statistics, Zsummary and median rank, were used to quantify 
the preservation of gene modules. Modules with Zsummary 
>10 indicated strong preservation, and a lower preservation 
statistics median rank indicated reliable preservation; these 
were selected as the key modules. The different module 
eigengenes (MEs) and clinical traits, including age, sex, 
ethnicity, smoking history and the number of cigarettes 
smoked each year, and stage of disease development were 
evaluated by Pearson’s correlation test. The module with 
module significance <0.05 and correlation >0.25 was 
selected for further analysis. Correlations of modules were 
shown using a heat map. 

Screening for hub genes

In our study, hub genes were screened as the overlapping genes 
between DEGs and significant modules using Cytoscape 3.7.0 
(https://cytoscape.org) for in-depth analysis and validation. 
The key genes in in the intersection region between DEGs 
and modules are showed in the Venn diagram.

Hub gene analysis

The Kaplan-Meier Plotter database (http://kmplot.com) is an 
online survival analysis website (23). The database contains 
research on 54,675 genes and 18,674 cancer samples in 
cancers, such as breast cancer and LC. Based on the results of 
the survival analysis from Kaplan-Meier Plotter website, we 
verified the influence of different key genes expressions on 
the prognostic effect of LUAD patients.

Validation of the mRNA expression by The Cancer Genome 
Atlas Program (TCGA)

We used Gene Expression Profiling Interactive Analysis 
(GEPIA; http://gepia.cancer-pku.cn/), a website for RNA 
expression analysis of various tumors based on the TCGA 
database (24), to verify whether the expression of the 
selected key gene was significantly associated with LUAD 
by boxplots.

GSEA

We used GSEA version 2.21 software for the pathway of key 
genes. We divided LUAD samples into 2 groups according 
to their expression levels. We used the C2 cp.kegg.v5.1. 
symbols.gmt dataset from the Molecular Signature Database 

version 6.2 as the reference gene set. The method of default 
weighted enrichment statistics was used for the enrichment 
analysis. We set the random combination times to 1,000.

Cell culture and transfection

A549, a lung cancer cell line was purchased from the 
Shanghai Institute of Cell Biology (Shanghai, China). Cells 
were cultured in Dulbecco’s modified Eagle’s medium 
buffer which was purchase from Invitrogen (Carlsbad, 
CA, USA) with 10% fetal bovine serum (Thermo Fisher 
Scientific, Waltham, MA, USA) and 1% penicillin-
streptomycin solution (Invitrogen, Carlsbad, CA, USA). 
The cells were cultured in an incubator with 5% CO2 at  
37 ℃. When cell density reached 80%, cells were generated. 
We prepared transfected A549 cells with DYNLRB2 
overexpression, according to the manufacturer’s protocols 
(GenSript, Piscataway, New Jersey, USA). A549 cells at 
90–95% confluence were transfected using Lipofectamine 
2000 (Invitrogen, Carlsbad, CA, USA) with the plasmids 
pIRES2-ZsGreen1-homo-DYNLRB2 and plasmids 
pIRES2-ZsGreen1. All plasmid DNA was extracted using 
an Invitrogen Purelink HiPure Plasmid Kit (Invitrogen, 
Carlsbad, CA, USA). A549 cells were transfected with the 
plasmid using X-tremeGENE HP (Roche Diagnostics, 
Shanghai, China) and continuously cultured for 48 h.

Cell counting kit-8 (CCK-8) assays and apoptosis analysis

After transfection for 48 h, we tested cell viability using 
CCK-8 assay (n=3/group). CCK-8 buffer (MCE, Shanghai, 
China) (10 μL) was added into the wells and further 
cultured in an incubator at 37 ℃ for 4 h. The microplate 
reader was used to measure the absorbance value at 450 nm. 

The apoptosis analyze was implemented after 48 h 
transfection (n=3/group). After digestion with 0.25% 
ethylenediaminetetraacetic acid-free trypsin (Invitrogen, 
Carlsbad, CA, USA) and washing, the cells were centrifuged 
at 1,500 rpm to remove the supernatant. Apoptosis was 
evaluated using an Annexin V-APC/7-AAD apoptosis 
detection kit (BioLegend, San Diego, CA, USA).

Western blot analysis

Protein expression levels of DYNLRB2 in transfected 
cells were confirmed by Western blot analysis. A549 
transfected cells were harvested 48 h after transfection and 
extracted by lysis buffer with 0.01% protease inhibitor and 
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phenylmethylsulphonyl fluoride. The cells were centrifuged 
at 12,000 rpm at 4 ℃ for 5 min to remove the supernatant. 
The protein concentration was measured using the BCA 
Protein Quantitation Kit (Thermo Fisher, MA, USA). Each 
20 μL sample was added to 10% sodium dodecylsulfate-
polyacrylamide gel electrophoresis. The polyvinylidene 
difluoride membranes were blocked for 2 h with 5% non-
fat milk in Tris-buffered saline containing 0.05% Tween-20 
(TBST) at room temperature. The membranes were further 
incubated with primary antibodies targeting rabbit anti-
human DYNLRB2 (Sigma-Aldrich, St. Louis, MO, USA) 
(1:1,000) and rabbit anti-human GAPDH (Sigma-Aldrich, St. 
Louis, MO, USA) (1:1,000) at 4 ℃ overnight, then washed 
5 times with TBST. The membranes were further incubated 
with horseradish peroxidase-conjugated secondary antibody 
(Bio-Rad, Hercules, CA, USA) (1:50,000) diluted in TBST. 
After washing, the membranes were reacted via enhanced 
chemiluminescence (ECL) solution (Bio-Rad, Hercules, 
CA, USA). Finally, the gel band intensity was analyzed by 
BandScan 5.0 software for protein concentration.

qRT-PCR

RNA was extracted from A549 transfected cells and A549 
cells using 1 mL TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA). PCR was performed using the 7500 Fast Real-
Time PCR System (Applied Biosystems, Foster City, CA, 
USA) with the following primers: Homo DYNLRB2 sense 
5'-ATGGCAGAGGTGGAGGAAAC-3' and reverse 
5'-TGGCTTTCATTGTCAGGTGA-3'. Homo GAPDH 
5'-TCAAGAAGGTGGTGAAGCAGG-3' and reverse 
5'-TCAAAGGTGGAGGAGTGGGT-3'. Homo DYNLRB2 
was normalized by GAPDH using 2-ΔΔCq method.

Statistical analysis

Quantitative data which were generated from three 
independent experiments and presented as means ± standard 
deviation (SD). The data were compared using independent 
sample t-test. SPSS 24.0 (IBM, Armonk, NY, USA) was 
used for statistical analysis. P values <0.05 were considered 
statistically significant.

Results

DEG identification and enrichment analysis

GSE32863 containing 23,762 RNAs was analyzed using 

the limma package following preprocessing. In total, 1,587 
DEGs were identified, including 649 upregulated genes and 
938 downregulated genes in the LUAD samples, as shown in 
a volcano map (Figure 1A). The top 100 DEGs, according to 
|logFC| value, are shown in a heatmap (Figure 1B).

DEGs were analyzed using the clusterProfiler package 
for enrichment analysis. P<0.05 was defined as a meaningful 
cut-off value. In the GO analysis, upregulated genes 
that were significantly enriched included cell adhesion 
molecule binding, extracellular matrix structural constituent 
conferring tensile strength and so on (Figure 2A).  
A total of 71 biologic processes were obtained by 
downregulating genes. We selected the top 12 biologic 
processes, as shown in Figure 2B. Downregulated genes 
were enriched in glycosaminoglycan binding, cytokine 
binding, growth factor binding and so on. In the KEGG 
analysis, upregulated genes were mainly enriched in 
biosynthesis of amino acids, carbon metabolism and so on 
(Figure 2C). Downregulated genes were mainly enriched 
in complement and coagulation cascades, Staphylococcus 
aureus infection, osteoclast differentiation, pertussis and 
so on (Figure 2D). Significantly enriched pathways results 
demonstrated that DEGs play important roles in LUAD 
development.

Construction of co-expression modules of LUAD by 
WGCNA

The top 25% variance DEGs were filtered by an algorithm 
for further analysis to set up the weighted co-expression 
network. We excluded 2 cluster height surpass samples 
before incorporating DEGs into the co-expression 
network (Figure 3A). The other 114 samples were retained 
for further analysis to determine the modules of highly 
correlated genes by WGCNA. A power value of β=7 was 
selected as the soft threshold parameter (Figure 3B), and 13 
modules were generated (Figure 3C). Module stability was 
tested by the module preservation function in the WGCNA 
package (nPermutations =200). Zsummary statistics and 
median rank statistics for each module were then tested 
(Figure 3D). The interaction relationship of the modules 
was analyzed by plotting a network heatmap (Figure 3E). 
Based on the clinical traits in GSE32863, the interaction 
analysis of co-expression modules was performed. Among 
the 13 modules, those with module significance <0.05 and 
correlation >0.25 were identified to be associated modules. 
We found that module green and module pink correlated 
with smoking status, module yellow correlated with age and 
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recurrence were considered as the key modules of interest. 
Smoking status, age, and recurrence were closely related to 
the treatment of cancer. In total, we chose genes from these 
modules that were most relevant to LUAD for further analysis.

Screening for hub genes and survival analysis

To better extract key genes for prognosis from these data, 
a total of 15 key genes were found to overlap between 
WGCNA modules and the DEGs in GSE32863. Of these, 
8 key downregulation genes were identified from module 
green (Figure 4A), 5 key upregulation genes were identified 
from module pink (Figure 4B), and 1 upregulation gene and 
1 downregulation gene were identified from module yellow 
(Figure 4C). Survival analysis for key genes further evaluated 
their effects on the prognosis of LUAD. The Kaplan-
Meier Plotter database search revealed that the expressions 

of DYNLRB and SPRBN1 were closely associated with 
LUAD patient survival. Patients with lower DYNLRB2 and 
SPRBN1 expressions had significantly shorter OS time than 
those with higher expressions (P≤0.05) (Figure 5).

Validation of expressions of DYNLRB2 and SPTBN1 in 
LUAD by TCGA database

We then validated whether the screened hub genes were 
significantly associated with LUAD based on other data 
extracted from the TCGA database. We observed a decrease 
in DYNLRB2 and SPRBN1 expressions (Wilcoxon rank 
sum, P<0.05) in tumor tissue than normal tissue (Figure 6).

Enrichment analysis for key gene expression in LUAD

We investigated the biologic characteristics of different 

Figure 1 Overview of GSE32863 and identification of common differentially expressed genes (DEGs). (A) Volcano plot of DEGs. (B) 
Heatmap of the first 100 DEGs in GSE32863.
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Figure 2 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs). 
(A,B) The pathways for upregulated and downregulated genes by GO analysis. (C,D) Top 12 pathways for upregulated and downregulated 
genes by KEGG analysis.
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Figure 3 Results of Weighted gene co-expression network (WGCNA) analysis. (A) A total of 112 samples were in the clusters and passed 
the cuts. (B) Sample dendrogram and soft-thresholding value estimation. (C) gene cluster tree. (D) Evaluation of module preservation by 
median rank and Zsummary statistics. Each point represents a color-coded module. (E) Correlation between module traits and clinical traits 
of lung adenocarcinoma shown in heatmap. Seven traits are age, sex, ethnicity, pack-years, smoking status, stage, and recurrence status.
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Figure 4 Venn diagram of the overlapping genes between weighted gene co-expression network analysis modules and differentially 
expressed genes (DEGs). (A) DEGs and hub genes in the green module revealed 8 key genes. (B) DEGs and hub genes in the pink module 
revealed 5 key genes. (C) DEGs and hub genes in the pink module revealed 2 key genes.

Figure 5 Kaplan-Meier survival curves. Survival analysis indicating that dynein light chain roadblock-type 2 (DYNLRB2) (A) and mouse 
homolog of ß1 spectrin (SPTBN1) (B) are good prognostic factors in lung adenocarcinoma by Kaplan-Meier Plotter (Logrank P both 
<0.05).

key genes in LUAD by GSEA assay. The GSEA results 
showed that upregulated DYNLRB2 and SPTBN1 were 
both enriched in drug metabolism cytochrome P450, 
cardiac muscle contraction, and retinol metabolism. 
Downregulated DYNLRB2 and SPTBN1 were associated 
with homologous recombination, base excision repair, and 
progesterone-mediated oocyte maturation (Figure 7).

In vitro DYNLRB2 experiments

We first found that the expression of DYNLRB2 was 
downregulated in LUAD tissues by bioinformation analysis. 
The findings of our study indicated that DYNLRB2 was 
dysregulated and might be a suppressor gene for LUAD. 
We further verified this conclusion in vitro. We then 
upregulated DYNLRB2 expression using a plasmid vector 
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Figure 6 Verification of from dynein light chain roadblock-type 2 (DYNLRB2) and mouse homolog of ß1 spectrin (SPTBN1) expression 
level in The Cancer Genome Atlas database. Wilcoxon rank test showed that the expression of DYNLRB2 expression was lower in lung 
adenocarcinoma (LUAD) tissues than in normal tissues (A). SPRBN1 was lower in LUAD tissues than in normal tissues (B). *P<0.05.

(pIRES2-ZsGreen1-homo-DYNLRB2) in A549 cells and 
compared this with a negative control (DYNLRB2-NC). 
The mRNA level and protein level of DYNLRB2 were 
tested. The PCR analysis results showed that DYNLRB2 
in the A549 was upregulated 17.6 times versus Normal 
Control (NC) (Figure 8). The protein level of DYNLRB2 
increased after transfection with the pIRES2-ZsGreen1-
homo-DYNLRB2 plasmid vector (P<0.01) (Figure 9). 
CCK-8 assays were then used to identify the influence 
of DYNLRB2 on A549 cell proliferation. Compared 
with the NC group, DYNLRB2 overexpressed cells were 
significantly inhibited (P<0.01) (Figure 10). Apoptosis 
analyses were performed to determine if DYNLRB2 
changed the apoptotic rate in transfected cells. There was 
an increasing apoptotic rate in A549 cells transfected with 
pIRES2-ZsGreen1-homo-DYNLRB2 compared with 
A549 cells transfected with the NC vector (P<0.001). No 
significant difference was observed in A549 cells transfected 
with the NC vector and in normal A549 cells (Figure 11).

Discussion

Efficient diagnostic markers and accurate therapeutic targets 
are lacking for LUAD patients. Therefore, the aims of the 
present study were to identify potential biomarkers closely 
correlated with LUAD prognosis and to provide insight 

into the mechanism of LUAD. We collected GSE32863 
from GEO datasets and constructed a gene co-expression 
network with WGCNA to study the data. GO and KEGG 
enrichment analyses showed that DEGs in GSE32863 
might play a role in LUAD. Significantly changed modules 
that correlated with LUAD were identified. The results 
showed that 3 modules screened out by WGCNA were 
closely related to clinical traits of LUAD; these were age, 
recurrence of LUAD, and smoking status. Those genes 
were verified using TCGA and survival analysis. The results 
showed DYNLRB2 and SPRBN1 in modules could serve as 
biomarkers for prognosis.

DYNLRB2 has been considered a suppressor gene for 
many cancers. DYNLRB2 was found to be dysregulated 
in lung squamous cell carcinoma and nasopharyngeal 
carcinoma (25,26). DYNLRB2 was also found to be related 
to mixed primary ductal carcinoma in situ of the breast (27).  
Previously published studies have suggested that 
DYNLRB2 downregulation could be involved in tumor 
progression and pathogenesis mechanisms. It also could 
serve as a molecular switch that determines invasive 
progress and could be involved in cellular migration 
(27,28). Our study demonstrated that DYNLRB2 was 
dysregulated in LUAD and might be a suppressor gene for 
LUAD. Our data also confirmed that the overexpression of 
DYNLRB2 significantly suppressed A549 cell growth and 
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Figure 7 Dynein light chain roadblock-type 2 (DYNLRB2) and mouse homolog of ß1 spectrin (SPTBN1) correlated enrichment gene 
analysis with gene set enrichment analysis (GSEA). GSEA results showed that high DYNLRB2 and SPTBN1 co-expression was enriched 
in drug metabolism cytochrome P450 (A), cardiac muscle contraction (B), and retinol metabolism (C). Downregulated DYNLRB2 and 
SPTBN1 expressions were associated with homologous recombination (D), progesterone-mediated oocyte maturation (E), and base excision 
repair (F).

caused apoptosis in vitro. Further analysis of the functional 
consequences of reduced DYNLRB2 expression should be 
carried out in LUAD.

SPTBN1 is an adapter protein for transforming growth 
factor-ß signaling through the Smad3/Smad4 complex 
formation. SPTBN1 is related to tumor cell motility, 
adhesion, migration, and invasion (29,30). SPTBN1 is 
recently considered a negative regulator of tumorigenesis. 
It was reported that the downregulation of SPTBN1 is 
found in human hepatocellular carcinoma (HCC), ovarian 
cancer and colon cancer (29-31). In pancreatic cancer, 
decreased SPTBN1 expression suggested worsening 
prognosis (32). SPTBN1-ALK gene fusion in LUAD has 

been found to cause resistance to multiple therapies (33).  
SPTBN1  cou ld  work  a s  a  tumor  suppre s so r  in 
tumorigenesis; however, further studies are required to 
determine its effect on LUAD development.

Downregulated DYNLRB2 and SPTBN1 affect the 
homologous recombination, progesterone-mediated oocyte 
maturation, and base excision repair pathways, which are 
closely associated with LUAD development. Dysfunction 
of homologous recombination is associated with many 
cancers and considered as the most important one (34,35). 

Homologous recombination is a major repair pathway 
for double-strand break repair (36). The overexpression 
of the homologous recombination is associated with 

A B C

D E F
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metastasis development and a high Ki67 score (37). It also 
regulates sensitivity to chemotherapeutic drugs. Disorder 
of the homologous recombination increases sensitivity to 
anticancer drug treatment (38,39). The overexpression of 
homologous recombination in lung tumor tissues leads 
to low chemosensitivity of patients with NSCLC (37).  
It also influences radiosensitivity in NSCLC (40). 
Therefore, DYNLRB2 and SPTBN1 via the homologous 
recombination regulate the development of LUAD.

Although a comprehensive bioinformatics analysis using 
GEO datasets and in vitro experiments were performed, the 
present study had some limitations, we did not deeply prove 
potential mechanism how they effect LUAD prognosis. 
Further in vivo experiments are required to verify our 
results. Nevertheless, the present study provides novel 
insight into LUAD pathogenesis.

Conclusions

In the present study, bioinformatics analysis tools were used 
for determining biomarkers for LUAD prognosis. Our 
results indicated that DYNLRB2 and SPRBN1 were key 
genes in LUAD. In addition, the expressions of DYNLRB2 
and SPRBN1 were found to be good prognostic makers. 
Further studies should focus on exploring the biologic 
functions and molecular mechanism of DYNLRB2 and 
SPRBN1 for LUAD.

Figure 8 Quantitative reverse transcription polymerase chain 
reaction validation of the expression level of dynein light chain 
roadblock-type 2 (DYNLRB2) in empty vector transfected cells 
and DYNLRB2 transfected cells. ***P<0.001.

Figure 9 Dynein light chain roadblock-type 2 (DYNLRB2) 
Protein expression levels were determined by western blot. (A) 
Western blot bands representing DYNLRB2 protein level in 
control, empty vector transfected cells and DYNLRB2 transfected 
cells. GAPDH was used as an inner control. (B) Relative protein 
level of DYNLRB2 in control, empty vector transfected cells and 
DYNLRB2 transfected cells. **P<0.01.

Figure 10 Cell viability assay results by cell counting kit-8 in 
empty vector transfected cells and dynein light chain roadblock-
type 2 (DYNLRB2) transfected cells. **P<0.01.

20

15

10

5

0

R
el

at
iv

e 
m

R
N

A
 le

ve
l o

f D
Y

N
LR

B
2

***

CON NC

OE-D
YNLR

B2

A

B

CON          NC          DYNLRB2

DYNLRB2

GAPDH

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

of
 D

Y
N

LR
B

2

**

1.5

1.0

0.5

0.0

CON NC

DYNLR
B2

2.0

1.5

1.0

0.5

0.0

O
D

 4
50

 n
m

CON NC

OE-D
YNLR

B2

**



1184 Zhu et al. Novel prognosis-associated key genes in LUAD

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(2):1172-1186 | http://dx.doi.org/10.21037/jtd-21-49

Figure 11 Apoptosis assay in empty vector transfected cells, normal cells and dynein light chain roadblock-type 2 (DYNLRB2) transfected 
cells. ***P<0.001.
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