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For the last one and a half million years, our species has 
been moving and breathing on earth (1). In addition, we 
have been able to modify our environment, develop tools 
and skills and, thereby, create what today we call culture. All 
these functions essential for both individual survival and the 
biological success of our species are linked to the contractile 
properties of striated muscles. Their name derives from 
their structure, since their basic functional unit, the 
sarcomere, gives them a typical striped appearance. When, 
as a result of a disease or even a physiological process (such 

as ageing) our muscles do not work properly, we become 
weak and frail and may even die.

Different muscles, different tasks

However, the tasks of the muscles are not homogeneous. 
Some of them, such as those located in the pelvic girdle and 
lower limbs are specialized in enabling us to move around. 
Whereas the muscles located in the upper limbs and 
scapular girdle are essential for the manipulation of all kinds 
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of objects and also for self-care activities (2,3). Both the 
upper and lower limb muscles are also known as “peripheral” 
muscles. Like those located in the trunk they are also 
referred to as “skeletal muscles” since they move the bones 
by means of their joints, thus producing movement and/or 
maintaining the skeleton structure. Other striated but very 
specialized muscles, whose role is to provide the subject 
with alveolar ventilation through breathing movements, 
are known as respiratory muscles. The latter can be 
subdivided into either inspiratory or expiratory muscles, 
depending on the part of the ventilatory cycle (inspiration 
or expiration, respectively) where their activity is more 
predominant. Inspiratory muscle contraction generates 
changes in thorax shape and volume, which combined with 
natural retraction of the lungs, increases the negativity of 
intrathoracic pressure. The gradient between intrathoracic 
and atmospheric pressures determines the airflow to the 
lungs. The main inspiratory muscles are the diaphragm 
(which can be subdivided into costal and crural portions), 
external intercostals and parasternals (4-10). However, 
many other muscles such as scalenes, sternocleidmastoid, 
latissiums dorsi, serratus and pectoralis can also participate 
progressively in the breathing effort if ventilatory loads 
or demands increase and/or the main inspiratory muscles 
fail to perform their job properly (11-14). Under normal 
conditions, expiration is a much simpler process since 

the mere relaxation of inspiratory muscles results in the 
reduction of the negativity of pleural pressure and a slightly 
positive alveolar pressure. This gives rise to the exit of the 
air from the respiratory system. However, some muscles can 
facilitate exhalation if necessary, and are therefore known as 
expiratory muscles (9,15-18). The main expiratory muscles 
are those that make up the abdominal wall (mostly major 
and minor obliques and transverse abdominis) as well as the 
internal intercostal group, with the exception of parasternals 
(which as mentioned before act predominantly during 
inspiration). Finally, another very specialized and critical 
muscle is the myocardium. Its contraction is responsible 
for blood flow through the entire body, including not only 
the perfusion of peripheral tissues but also pulmonary 
circulation, which is essential for gas exchange. However, 
its function has become so specialized that the muscle 
phenotype has diverged from that of classical striated 
muscles, to the point where it is classified as a different 
category: the cardiac muscle.

Muscle function and dysfunction

Striated muscles have two main functional properties: 
strength, or the ability to develop a maximal effort, and 
endurance, or the ability to maintain a submaximal effort 
through time. Therefore, it is worth noting that the time-
dependence (shorter for strength and longer for endurance) 
and the magnitude of the effort (maximal in the case of 
strength and submaximal in that of endurance) are the 
two main differences between these concepts. Muscle 
dysfunction can be defined as the situation where skeletal 
muscles show reduced strength and/or reduced endurance, 
being unable to perform their physiological tasks 
adequately. Muscle dysfunction can be expressed both as 
fatigue or weakness. Fatigue is a state in which the muscle 
is temporarily unable to perform its current tasks (Figure 1). 
This condition is reversible with rest, thus differing from 
the concept of weakness, which is a much more permanent 
impairment in muscle contractile properties. Although 
fatigue and weakness appear to be very different conditions, 
they are related in the sense that a weak muscle becomes 
more easily fatigued. There are different conditions, and 
not only diseases, which can result in muscle dysfunction. 
Some involve striated muscle structure directly while others 
primarily affect the structures of the nervous, vascular and 
osteoarticular systems (18,19).

When lower limb muscles become ineffective in doing 
their tasks, the mobility of the individual is reduced. This 

Figure 1 Schematization of weakness (left) and the process of 
muscle fatigue (right). (A) The task is carried out by a specific 
muscle group; (B) when this group comes close to task failure due 
to muscle fatigue; (C) the workload is shifted to complementary 
muscles which can also sustain it; (D) finally, they also become 
fatigued and task failure occurs. However, the duty can be 
reinitiated following a period of rest.
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in turn generates the perception of being disabled, and 
has an extraordinary impact on one’s quality of life. A 
similar effect results from the loss of function in the upper 
limb muscles, since subjects would not only be unable to 
maintain their professional lives but, at advanced stages, 
they would also require assistance even for the simplest of 
everyday tasks. If the respiratory muscles fail to perform 
their tasks, hypoventilation occurs and subsequently, oxygen 
is deficiently provided to the different tissues (including the 
striated muscles themselves). Therefore, aerobic metabolism 
becomes impaired and anaerobic pathways increase their 
activity, which has consequences for both energy generation 
and acid-base homeostasis. The latter can even become 
aggravated by the fact that the drop in ventilation leads to 
carbon dioxide retention.

The analysis of cardiac muscle dysfunction is very 
complex and lies beyond the scope of this review, which 
will focus on the functional impairment of both limb and 
respiratory muscles in COPD.

Chronic obstructive pulmonary disease (COPD)

This is a highly prevalent respiratory disease, with 
enormous costs for both health and social care systems. 
The main cause of COPD is tobacco smoking, although 
other factors can also be involved (20,21). Inhalation of 
noxious particles suspended in the smoke results in airway 
and lung inflammation, as well as in the destruction of lung 
parenchyma, which are directly related to the occurrence 
of the two main entities included in COPD: chronic 
bronchitis and pulmonary emphysema. COPD has been 
classically defined in terms of its impact on lung function, 
mainly characterized by a non-fully reversible airflow 
obstruction (20), together with pulmonary hyperinflation 
and gas exchange abnormalities. Although symptoms 
such as coughing and breathlessness appear slowly, they 
progress and eventually lead to exercise limitation and 
death. However, in recent years it has become evident that 
COPD is not only a pulmonary disease since many of the 
symptoms are caused by the involvement of other organs 
and systems (22). This systemic involvement includes 
abnormalities in skeletal muscles, blood, nervous system 
and even in the bone metabolism (22-26), but its causes and 
mechanisms remain unclear. It is believed, however, that 
systemic inflammation (directly linked or not to the local 
inflammatory process already present in the lungs), plays a 
key role in the occurrence of extrapulmonary manifestations 
of COPD (20,22,25). Although systemic inflammatory 

response syndrome (SIRS) is an expression which is usually 
restricted to multiple organ damage and subsequent 
dysfunction appearing in the course of sepsis (27-29), some 
authors have suggested that this term or the alternative 
chronic systemic inflammatory syndrome (CSIS), can also 
be used in other entities, such as COPD (30,31), which are 
characterized by the presence of low level but persistent 
systemic inflammation and multiple organ involvement.

Muscle dysfunction in COPD

This is probably the most extensively studied systemic 
manifestation of COPD and can involve both respiratory 
and peripheral muscles (24). It is considered to be of 
multifactorial origin, with local and systemic factors 
interacting to modify, in different ways, the phenotype 
and function of any specific muscle (Figure 2) (32). The 
following pages summarize the current knowledge 
regarding the status of different striated muscles in COPD 
patients. They include structural, metabolic and functional 
findings as well as a review of the factors, which have been 
involved in muscle dysfunction.

Respiratory muscles in COPD
From the 1970s it has been well established that the 
function of the diaphragm deteriorates in subjects with 
pulmonary emphysema (33,34). This is mainly due to the 
dramatic increase in lung volume known as pulmonary 
hyperinflation (Figure 2), which shortens and flattens the 
diaphragm and negatively modifies its length-tension 
relationships. As a result, the diaphragm loses its capacity to 
develop contractile force (35). In addition, the involvement 
of the airways, inherent to COPD, implies that respiratory 
muscles have to cope with increased airway resistance and 
airflow obstruction. Both pulmonary hyperinflation and 
increased airway resistance increase the work of breathing, 
which is mainly dependent on inspiratory muscles. In other 
words, from a mechanical point of view, respiratory muscles 
need to perform heavy duty under very adverse conditions. 
Likewise, and from a metabolic point of view, although 
the nutrient and oxygen demands of respiratory muscles 
are relatively low under normal conditions (36), in COPD 
patients they become progressively higher as a consequence 
of their increased tasks. This is particularly important in 
individuals whose oxygen delivery to these muscles can 
be easily compromised by simultaneous gas exchange 
abnormalities occurring in the lungs. Therefore, respiratory 
muscles in COPD are also exposed to a potential metabolic 
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imbalance between offers and demands (32).
Nevertheless, respiratory muscles are not only subject to 

local mechanical and metabolic factors directly deriving from 
changes in the airways and lung parenchyma. Like other 
striated muscles in the whole body they can also be influenced 
by systemic factors such as inflammation and oxidative stress 
(both of which have been detected in the blood stream of 
COPD patients), nutritional depletion and the effect of 
certain drugs used in the treatment of this condition (Figure 2) 
(37-42). These systemic influences will be more extensively 
reviewed in the following sections. Moreover, as a result of 
all these local and systemic factors, molecular and cellular 
phenomena such as focal inflammation, oxidative stress and 
epigenetic changes (43-45) will be present in the diaphragm 
and rib muscles of COPD patients.

Unexpectedly and despite all these negative factors, the 
final result is not so negative. Certainly, the diaphragm 
and other respiratory muscles show an impairment in their 
functional properties (33,46,47). However, it has been shown 
that the diaphragm of COPD patients is able to develop even 
greater strength than that of healthy subjects when both 
are forced to maintain similar levels of hyperinflation (34). 

To explain such a paradox it is important to remember that 
striated muscles are very sensitive to modifications in their 
environment, as they are extraordinarily capable of changing 
their phenotype to adapt to the ongoing conditions. In 
keeping with this, different authors have supplied evidence 
that respiratory muscles actually undergo structural and 
metabolic changes, which would partially explain the paradox 
of their relatively preserved function. Phenotypic changes 
occurring in the respiratory muscles of COPD appear 
to include modifications in the expression of structural 
proteins such as myosin heavy chain (MyHC) isoforms, 
mitochondrial and capillary content, sarcomere length 
and fiber type proportions and sizes (48-56). Moreover, 
some experimental models suggest that these adaptive 
phenomena might be directly linked to chronic increase in 
respiratory loads (57), and they appear to be mediated by the 
occurrence of transient muscle damage (58,59), which would 
be followed by muscle repair/regeneration and remodeling 
(Figure 3) (57). However, coexisting with adaptive changes, 
and in addition to muscle damage, there are also indications 
that myopathy may be present in the respiratory muscles of 
COPD patients (60). Therefore, it is not so surprising that 

Figure 2 Consequences of tobacco smoking include local (pulmonary) and systemic inflammation. The former will lead to pulmonary 
changes characteristic of COPD, whereas the latter appears to be linked to its extrapulmonary manifestations including muscle dysfuntion. 
However, the key deleterious etiologic factors for muscle dysfunction are pulmonary hyperinflation for respiratory muscles and 
deconditioning for limb muscles. COPD, chronic obstructive pulmonary disease.
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isolated fibers from their diaphragms have been shown to 
develop less force than those from control individuals (61).

In contrast with the relative abundance of data on 
inspiratory muscles, information regarding changes 
occurring in expiratory muscles of COPD is in short 
supply. This is somewhat surprising since expiratory muscle 
function appears to be important in COPD patients for 
both coughing and breathing (62-66), but it is deteriorated 
(67-69). This expiratory muscle dysfunction, in contrast to 
what occurs in inspiratory muscles, cannot be attributed to 
mechanical changes occurring in the lungs. In this regard, 
hyperinflation might even improve the length-tension 
relationships of abdominal expiratory muscles (70). Neither 
can it be ascribed to muscle deconditioning, as is considered 
the case for peripheral muscles (see next sections). 
Therefore, systemic factors leading to molecular and cellular 
abnormalities are the most probable culprits in expiratory 
muscle dysfunction occurring in COPD. From the very 
sparse reports available it appears that fiber phenotype is 
altered in these muscles (54) but their global metabolic 
properties appear to be maintained (71).

Peripheral muscles in COPD
This is a very heterogeneous group of contractile elements 
located in the upper and the lower limbs, which perform 
different tasks including walking and the manipulation 
of instruments. Although the function of both upper and 
lower limb muscles can be impaired in COPD patients 
(24,32,47,72,73), the level of dysfunction is not necessarily 
the same. In fact, leg muscles appear to be more severely 
affected than those located in the upper limbs (69,74). The 

reason for these differences is believed to be closely related 
to the differential activity of these two groups of muscles in 
COPD patients.

Lower limb muscle dysfunction is not merely a local 
problem since it has a direct impact on the exercise capacity 
of the patients (72,75-78). It is characterized by a reduction 
in both muscle strength and endurance (24,47,72,73,79), 
as well as an impairment in the efficiency of muscle 
metabolism, since lower limb muscles of COPD patients 
consume more oxygen for any particular workload and 
are characterized by an early and increased production of 
lactate (78). Regarding structural and metabolic findings, 
most of the studies have been performed in the vastus 
lateralis, which is a part of the quadriceps muscle. These 
studies have shown overall muscle mass reduction, along 
with smaller fibers, and a “less aerobic phenotype” (reduced 
percentage of oxidative fibers and MyHC-I, fewer blood 
vessels and capillary contacts per fiber, a reduced myoglobin 
content and a diminished enzyme capacity in the oxidative 
pathways) (53,80-89). Moreover, the fact that the oxidative 
capacity of the muscle is reduced, whereas the oxygen 
delivery is relatively preserved in COPD, supports the 
existence of an inefficient intracellular use of this gas (78,90). 
This probably explains the above mentioned early lactate 
production and myocyte acidification (78,87,91,92). In 
contrast to abnormalities in oxidative pathways, the activity 
of glycolytic tracks is maintained or even increased in these 
patients (83,87).

Although studies focused on the upper limb muscles 
are much less frequent than those dealing with lower 
extremities, the findings are consistent with the relative 

Figure 3 Process of tissue regeneration and remodeling following an insult.
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maintenance of histological, biochemical and functional 
properties in the former (69,74,93-96). Furthermore, some 
of these muscles show mild adaptive changes, similar to 
those exhibited by respiratory muscles, along with certain 
other modifications that are more characteristic of lower 
limb muscles. Deltoid muscle, for instance, shows the 
coexistence of different fiber size subpopulations (normal, 
hypertrophic and atrophic) (93), preserving the percentages 
of different fiber types as well as the enzyme activities in the 
aerobic pathways (94). The brachial biceps, on the other 
hand, show an unchanged fiber type composition along 
with a mild decrease in size as well as preserved behavior 
in the aerobic pathways (95,96). The final result of all of 
these cellular and molecular changes is a generally mild-
to-moderate reduction in the functional properties of 
the upper limb muscles, which has a lower impact on the 
activities and life of the patients than lower limb muscle 
dysfunction (69,74).

The causes of peripheral muscle dysfunction have not been 
completely elucidated, but it is generally accepted that at least 
for the lower limbs, muscle deconditioning, resulting from 
a reduction in physical activity, plays a key role (Figure 2)  
(24,32,47). However, since most of the functional and 
structural limb muscle changes are only partially reversed 
by muscle training, other intrinsic and systemic factors are 
probably also implicated. Many of them would be common 
for all the striated muscles throughout the body.

To sum up, changes shown by different skeletal muscles 
in COPD patients are very heterogeneous, depending 
on the muscle group being judged. This indicates that 
these changes are most probably the result of the complex 
interaction of different factors, with each one being unique 
for any particular muscle (97). In the following paragraphs, 
the systemic factors and cell-molecular mechanisms 
that have been involved in the pathogenesis of muscle 
dysfunction in COPD will be briefly reviewed.

Systemic factors involved in muscle dysfunction in COPD

Inflammation
This can be considered as either a systemic or a local factor 
since inflammatory activity has actually been demonstrated 
both in different solid tissues such as skeletal muscles 
and in the blood of COPD patients (37,98-101). It is 
believed that the initial tobacco and/or other pollutants 
insult crosses through the alveolus-capillary interface 
and then immediately spreads through the systemic 
bloodstream targeting different organs (102). Alternatively, 

or complementarily, other authors sustain that the initial 
inflammatory process induced by these deleterious factors 
in the airways, lung parenchyma and pulmonary vessels is 
later disseminated through systemic circulation reaching 
different target-organs including muscles (‘spill over’ 
theory) (99,103-105). However, the absence of concordance 
between the inflammatory markers found in the blood and 
in other tissues, and the occasional occurrence of systemic 
manifestations preceding clear lung involvement strongly 
argues against the latter theory (42,106,107). Whether by 
one way or the other, it is generally accepted that chronic 
systemic inflammatory signal and the subsequent multi-local 
inflammatory activity are significant contributors to muscle 
dysfunction occurring in COPD (24,32,42,47). Among the 
evidence for the persistent systemic inflammatory signal 
there are studies which show increases in the serum levels 
of C-reactive protein (CRP), fibrinogen and different 
proinflammatory cytokines (37,99,101) as well as different 
abnormalities in circulating white cells (25,99,108). 
Similarly, inflammatory activity has been documented in 
other extrapulmonary targets such as striated muscles. In 
this respect, an increase in inflammatory cells has been 
documented within the peripheral muscles of COPD 
patients (100), although other authors have been unable to 
confirm such findings (109). In addition to cellular changes, 
an increase in the expression of local proinflammatory 
cytokines has been described in respiratory and peripheral 
muscles of COPD patients (100,110), although again not 
all the authors agree with this finding (98). It is well known 
that these inflammatory mediators are capable of inducing 
an increase in the degradation of intracellular proteins 
either through direct activation of proteolytic pathways or 
the development of oxidative stress (111,112).

One important aspect is the probable impact that 
exacerbations have on the levels of systemic inflammation 
in COPD. Some authors have demonstrated that the 
inflammatory load already present in the bronchial tree 
of the patients can be further increased by colonization or 
infection by microorganisms (113), which in turn may lead 
to exacerbations (114). This factor would support the use of 
local anti-inflammatory or antibacterial drugs to reduce “the 
inflammatory overload” present in the lungs. However, the 
extent to which this local ‘over inflammation’ is reflected in 
extrapulmonary targets such as skeletal muscles is still unclear.

Oxidative and nitrosative stress
Reactive oxygen species (ROS), a product of the oxygen 
metabolism, and nitric oxide (NO) are normally present 
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in skeletal muscles. Moreover, a moderate level of ROS, 
which are provided by the mitochondrial respiratory chain 
pathway and some microsome enzymes, is necessary for 
excitation-contraction coupling and an appropriate muscle 
contraction (115). The same is true of NO (synthesized by 
specific enzymes in both fibers and endothelium), which 
plays a role in myoblastic differentiation, carbohydrate 
metabolism, blood flow regulation to the fibers and 
electromechanical muscle coupling (116,117). However, 
when there is an increase in the production of oxygen or 
nitrogen reactants and/or their scavengers are unable to 
buffer them, oxidative and/or nitrosative stress occur. This 
leads to structural damage in proteins, lipids and DNA, with 
important functional consequences (118-120). Interestingly, 
the production of free radicals is modulated by a variety of 
factors including the presence of inflammatory mediators, 
blood supply and level of activity (121,122).

Free radical stress is believed to be involved in COPD 
pathogenesis. Moreover, as with inflammation, oxidative 
and nitrosative stress appear to extend beyond the lung to 
reach other systems. In this respect, these phenomena have 
been found both in animal models and COPD patients, 
where they involve both respiratory and peripheral muscles 
(43,123,124). Moreover, the oxidative stress level within 
the respiratory muscles appears to be directly related to 
the mechanical loads they have to deal with, and directly 
influences their function (43). Lower limb muscles in turn 
show even more stress than respiratory muscles (125), and 
the functional consequences (126) are probably related to 
changes induced in key enzymes such as creatine kinase 
and carbonic anhydrase (127). In this case, the local 
oxidative stress might be caused by the reduction in muscle 
activity, which is known to decrease the content of reduced 
glutathione, while increasing both oxidized glutathione 
and lipid peroxidation (128). However, the presence of all 
these deleterious phenomena can also open new therapeutic 
strategies for COPD patients, such as the use of antioxidants 
(126,129).

Deconditioning
Deconditioning is the result of the reduction in physical 
activity that, as previously mentioned, is frequent in COPD 
patients as a consequence of their ventilatory limitation, a 
sedentary life style and reactive depression. The effects of 
deconditioning are especially evident in lower limb muscles. 
There is strong evidence for the key role of deconditioning 
in limb muscle changes since many of the structural and 
biochemical changes observed in COPD are similar to those 

induced by disuse (fibers become smaller and the proportion 
of type II fibers increases) (130), and are reversible with 
training (131). However, the fact that muscle dysfunction has 
been observed even in hand muscles (69), which are being 
continuously used even by very severe COPD patients, 
and that training does not completely reverse all muscle 
abnormalities (78,131), strongly suggests that deconditioning 
is not the only factor.

A particular case is the muscle dysfunction appearing 
in those COPD patients who have been submitted to 
mechanical ventilation, with or without complete sedation. 
This therapeutic procedure, with many different modalities, 
is characterized by absolute or relative muscle rest, which 
leads to muscle involution and dysfunction (132). However, 
in this specific case, disuse is not limited to limb muscles 
but also affects respiratory muscles (133,134). Furthermore, 
other factors common in critically ill patients, such as sepsis, 
malposition and drugs (27,134-136) can further deteriorate 
muscle function in COPD patients submitted to mechanical 
ventilation.

Nutritional abnormalities
Nutritional abnormalities expressed as body waste and 
changes in body composition are also frequently observed 
in COPD patients (40,41,137), with their prevalence 
dependent both on the variables analyzed and the 
population considered. Body mass index (BMI) is the most 
currently used nutritional threshold variable, since it is 
clearly related to life expectancy in COPD patients (138). 
However, this is a very general parameter that can lead to 
an underestimation of nutritional abnormalities, especially 
in women. Therefore, the fat free mass index (FFMI) has 
been proposed as a better and more sensitive alternative 
for classifying patients (139). Malnutrition associated with 
COPD can lead to reductions in muscle mass, changes 
in the proportions and size of muscle fibers (140), and 
muscle dysfunction (41). It has been attributed to different 
factors including the presence of systemic inflammation 
(37,42,47,101), a reduction in food intake (probably due 
to changes in leptin metabolism) (141), and an increase in 
metabolic cost derived from the increased work of breathing 
(which in turn is the consequence of the impairment 
in the mechanical properties of the ventilatory system) 
(42,142). The prevalence of nutritional abnormalities, 
however, does not appear to be homogeneous through 
different geographical areas, since it seems to be lower in 
Mediterranean countries than in Northern Europe and 
North America (143,144). These differences have been 
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attributed to life-style factors such as dietary habits and the 
level of physical activity (145).

Gas exchange abnormalities
Ventilation-perfusion mismatching present in COPD 
patients frequently results in chronic hypoxia, with or without 
hypercapnia. In addition, respiratory muscle dysfunction 
can also contribute to gas exchange abnormalities through 
the development of absolute or relative hypoventilation. 
Conversely, both chronic hypoxia and hypercapnia can have 
effects on muscle function. Hypoxia results in a reduction 
of muscle strength and endurance, contributing to exercise 
limitation (146,147). This loss of muscle function can 
be explained by the induction of systemic inflammation, 
oxidative stress and apoptosis, the imbalance between protein 
synthesis and catabolism (proteostasis), the limitation in 
the aerobic pathways and impaired muscle regeneration  
(148-151). Hypercapnia, directly or through the development 
of respiratory acidosis, may also induce an impaired muscle 
proteostasis and affect muscle contractile properties (152-154).

Tobacco smoking
It is well known that even nonsymptomatic smokers 
can exhibit fatigability and reduced muscle resistance 
(155,156). This can be well explained by the anorectic 
effects of tobacco, which may lead to the loss of muscle 
mass, as well as inducing inflammation, oxidative stress, an 
imbalance between protein synthesis and degradation in 
the muscle, and blockading the neuromuscular transmission 
(102,106,157-159).

Drugs
Some of them, such as systemic steroids, with very well 
known deleterious effects on muscle structure and/or 
function, are used relatively frequently in the treatment of 
COPD patients. Steroids can induce both chronic and acute 
myopathies (160). In fact even low doses of these drugs 
can cause the chronic form, characterized by weakness of 
proximal muscles, if taken during a relatively long period 
of time (161). Acute myopathy in turn appears a few days 
after steroid administration, and the symptoms do not 
predominate in a particular muscle group. Therefore, it is 
not surprising that corticosteroids have always been related 
to muscle dysfunction in COPD patients, since they even 
influence their survival expectancies (161).

Anabolic hormones decrease or inefficiency
Plasma levels of testosterone, a steroid hormone with 

important anabolic effects such as the increase in muscle 
protein synthesis (162), have been shown to be reduced 
in some COPD patients (163,164). This abnormality has 
been explained by the effects of smoking, hypoxia and drug 
therapies (24,165) but its functional implications remain 
unclear since both muscle strength and endurance appear 
to be preserved in such patients (164). In the case of the 
growth hormone, another powerful anabolic agent, the 
problem is not the plasma level but the interaction with the 
insulin-like growth factor (165,166), which is altered and 
can potentially impair proteostasis and reduce muscle mass 
leading to dysfunction (42).

Exercise
This factor is essential to muscle performance but should 
be kept between physiological limits. When exercise is 
too intense it can lead to the development of metabolic 
dysregulations, systemic inflammation and oxidative 
stress, muscle damage and inhibition in the expression of 
genes crucial for muscle mass maintenance (59,167-171). 
Therefore, it is not surprising that it can also contribute to 
muscle dysfunction (169). Moreover, some COPD patients 
show marked energetic-mechanical inefficiency during 
exercise (78,172,173). This could be the consequence of a 
reduced matching between the expression of genes linked 
to bioenergetics and those participating in programs of 
muscle regeneration and remodeling (174). Furthermore, 
not only the intensity of the exercise but its time course can 
influence the response of the muscle in COPD patients, 
mostly in those with reduced body weight. In this respect, 
high intensity training programs may induce oxidative stress 
in the patient’s muscles during the first weeks (175) but 
this effect disappears if the program lasts longer (around  
8 weeks) (176).

Exacerbations
The relationships between inflammation and infections 
present during exacerbations and muscle dysfunction 
have been previously analyzed. However, these acute 
episodes also involve other deleterious factors such as 
inactivity, negative energy balance and the use of systemic 
steroids (42,177-179). Therefore, it is not surprising that 
exacerbations are widely considered to be one of the factors 
that contribute the most to muscle wasting and dysfunction 
(24,32,42). Both develop early in the episode, and last 
for a relatively long time (42). Conversely, those patients 
with muscle dysfunction show an increased risk of hospital 
admission due to exacerbations (180,181).
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Comorbidities and aging
These are also potential additional contributors to the 
muscle dysfunction shown by COPD patients. On the one 
hand, many of the most frequent comorbidities of this 
respiratory disorder, such as chronic heart disease, diabetes 
and cancer also lead to muscle wasting and dysfunction 
(24,32,42,140,182). On the other hand, developed societies 
are characterized by an increased number of elderly 
individuals with chronic conditions such as COPD. Aging 
per se associates with loss of muscle mass (sarcopenia), 
fibrosis, mitochondrial efficiency, functional impairment 
in the neuromuscular junction (183-185), and progressive 
muscle inability to perform daily life tasks (186).

Many of the cellular and molecular events that occur 
in the muscles of COPD patients have been mentioned in 
the previous section when reviewing the etiopathogenic 
factors of muscle dysfunction. This is the case of local 
inflammation and oxidative stress, apoptosis, muscle injury, 
regeneration defects, imbalance between protein synthesis 
and destruction, loss of capacity of enzymes in the aerobic 
pathways, changes in fiber size and type proportions, and 
findings suggesting a myopathy. These, and other findings, 
will be discussed in more detail in the next section.

Biological phenomena observed in muscle (Figure 4)

Muscle inflammation
As previously mentioned, inflammatory phenomena have 
been observed in some of the muscles of COPD patients. 
Most authors have reported increases in the number of 
inflammatory cells in the peripheral muscles (100,187,188), 

although not in the respiratory muscles of these patients (188). 
In contrast, there are major discrepancies among different 
authors with respect to the presence of inflammatory 
cytokines in skeletal muscles. Some of them have found 
increases of these substances in the patients’ peripheral 
muscles (100), while others have reported exactly the opposite 
(98,189). As for respiratory muscles, there is only one 
available report, and this indicates that there is an increase in 
different proinflammatory cytokines in this population (44).

Oxidative and nitrosative stress within the muscle
This factor is important for both its action damaging DNA, 
proteins and cellular lipids, and its direct impact on muscle 
function. Increased levels of oxidative and/or nitrosative 
stress have been described both in respiratory and limb 
muscles of COPD patients (43,123,140,190-193). This 
appears to be the consequence of an increased production 
of ROS in mitochondria (193) as well as a decrease in 
local antioxidants (194), although the latter appears less 
affected in the particular case of respiratory muscles (195). 
Moreover, in COPD patients the increased baseline levels 
of oxidative stress seem to increase even more after intense 
exercise (169,175). Although oxidative stress can damage 
different cellular structures and modify key enzymes 
(140,175), its role in the increase of protein destruction and 
fiber atrophy is not very clear (190).

Muscle damage
Although not all the authors agree (196), different signs 
of damage have been reported in either peripheral or 
respiratory muscles of COPD patients. This evidence 

Figure 4 Biological phenomena that have been observed in respiratory and limb muscles of COPD patients (clearly detrimental: black 
boxes; probably beneficial: white box). COPD, chronic obstructive pulmonary disease.
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has been observed both in the contractile structure of 
sarcomeres and also in the sarcolemma and other muscle 
structures (44,59,140,197). Interestingly, high intensity 
exercise appears to increase the level of muscle damage 
in these patients (59,198). However, as opposed to what 
happens in many myopathies, only small increments of 
fibrous and fat tissues have been observed in COPD muscles 
COPD (109). It should be emphasized that muscle damage 
is not necessarily a harmful phenomenon. As different 
animal models suggest, when its level is mild to moderate it 
can lead to muscle repair and adaptive remodeling (57,58).

Satellite cells and muscle regeneration program
These elements are closely related to the previous paragraph, 
since the maintenance of muscle structure depends on the 
balance between damage and repair/regeneration (Figure 3). 
Satellite cells are responsible for maintaining an adequate 
number of operational nuclei in muscle fibers, which in turn 
will favor an adequate protein synthesis and muscle mass. 
The number of satellite cells appears to be preserved both 
in the respiratory and the limb muscles of COPD patients 
(187,199). However, their regenerative capacity seems 
altered, at least in the latter, as suggested by the increase 
in internalized nuclei and decreased expression of late 
markers of regeneration (200). In keeping with this, cultured 
myoblasts (equivalent to satellite cells) obtained from 
COPD patients evidence problems in their later stages of 
differentiation, with difficulties in expressing adult myosins 
(200,201). This has been attributed to cell aging as suggested 
by telomere shortening (202).

Apoptosis
It must be clarified that the classical meaning of apoptosis 
and its histological signs is somewhat different in skeletal 
muscle (a syncytium) than in uninucleate cells. Indeed, here 
the death of one or more nuclei does not involve the death 
of the fiber since they can be replaced by those nuclei from 
satellite cells. Although the TUNEL technique has shown 
an increase of nuclei with ‘apoptotic signs’ in the muscles 
of COPD patients (either with preserved or reduced body 
weight) (188,203), true apoptosis has not been confirmed 
by electron microscopy (the gold standard technique) (188). 
Therefore, these signs are probably linked to the nuclear 
turnover, without the presence of real apoptosis.

Autophagy
This is a catabolic process involved in the elimination of 
excessive or altered cellular organelles. Signs of autophagy 

have already been found in peripheral muscles of COPD 
patients, with and without weight loss (140,204).

Epigenetic alterations
These are changes in the expression of certain genes 
without any modification in the genome. Such changes have 
been reported both in respiratory and peripheral muscles of 
patients with COPD, either with preserved or reduced body 
weight (45,205,206), and can be considered as a response to 
either chronic overload or atrophic signals, respectively.

Muscle capillarization
Although some authors have reported a decreased capillary 
density in the lower limb muscles of patients (80,207,208), 
especially in those with early occurrence of fatigue during 
exercise (209), other researchers have failed to confirm 
this finding (86,210,211). Moreover, both the external 
intercostal and diaphragm muscles seem to show an 
increased capillary density (212,213), which would be added 
to the other aerobic adaptations observed in these muscles. 
It is possible that many of these changes in the number 
of blood vessels are related to the level of expression of 
the vascular endothelial growth factor (VEGF), which 
is decreased in limb muscles but increased in respiratory 
muscles of COPD patients (98,214). Finally, animal models 
have shown that either emphysema or hypoxia may result in 
an increase in the number and length of the capillaries, as 
well as on their contact surface with fibers (215,216).

Mitochondrial density and function
Again a discrepancy between limb and respiratory muscles 
has been observed for mitochondrial density. While their 
number is decreased or roughly preserved in the former 
(quadriceps and tibialis anterior muscles, respectively) (217), 
it appears to be increased in the diaphragm (51). There 
is also an important mitochondrial dysfunction in limb 
muscles expressed by an uncoupling between different steps 
of the respiratory chain, reduced aerobic enzyme capacity, 
increases in phenomena linked to apoptosis and increased 
production of free radicals (218).

Enzymes in aerobic and anaerobic pathways
The capacity of key enzymes involved in different metabolic 
pathways has also been studied in detail in muscles of 
COPD patients. It is possible, however, that in some cases 
the reported changes directly depend on modifications 
also observed in fiber phenotype and/or the number or 
efficiency of some cell organelles such as mitochondrias (32). 
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Respiratory muscles show activity increases in different 
enzymes participating in the oxidative pathways in COPD 
patients (196,219-221), while a decrease in enzyme capacity 
may occur in glycolytic pathways (222). On the contrary, 
lower limb muscles typically show less enzyme activity in 
their aerobic pathways, with maintenance or even increase 
in glycolytic enzymes (83,223,224). However, chronic 
respiratory failure appears to counterbalance some of these 
effects, since some oxidative enzymes increase their activity 
in those patients in such circumstances (225). Unfortunately, 
this would lead to metabolic uncoupling in these pathways, 
probably resulting in impaired muscle bioenergetics (78). 
Moreover, the loss of aerobic enzyme capacity can also be 
reverted by endurance training (131,224,226). Finally, the 
upper limb and shoulder muscles roughly seem to maintain 
the capacity of their key enzymes (94,221,222) and can 
even show increases in the enzyme activity within oxidative 
pathways in most severe COPD patients (94).

Changes in muscle fibers
This is one of the changes consistently observed in the 
muscles of COPD patients. Their limb muscles show a 
higher proportion of type II fibers (fast-twitch contraction, 
predominantly anaerobic metabolism) (86,190,227), while 
the diaphragm and intercostal muscles seem to show 
changes in the opposite direction since patients increase the 
proportion of type I fibers (slow-twitch contraction, aerobic 
metabolism and fatigue resistant) (48,61,228). All these 
changes depend on parallel modifications in the expression 
of adult myosin isoforms in response to those stimuli 
mentioned in preceding sections (with an apparent key role 
for the level of activity of each muscle) (48,49,229). It is 
worth noting that the proportion of slow-twitch fibers has 
recently been related to mortality in COPD patients (230).  
Furthermore, it seems clear that lower limb muscle fibers 
disclose a reduced size in those patients with loss of body 
weight (86,190,231). This atrophy is especially evident 
for type II fibers (190,231). As already mentioned, the 
situation is different in the muscles of the upper extremities, 
as they appear to keep their fiber cross sectional area 
(93,232). There is more discrepancy regarding the size of 
diaphragmatic fibers. Some authors have reported atrophy 
(233,234), while others have not been able to find such an 
abnormality in COPD patients (45,188,235). As regards 
to the function of the fibers, it seems to be altered in 
respiratory muscles (236,237) but surprisingly, not in limb 
muscles (238) of patients. In this regard, the diaphragm (237) 
as well as the intercostal muscle (236) show a decline in the 

strength of their fibers (normalized by size).

Protein synthesis and degradation
The imbalance between protein synthesis and breakdown 
appears as the key mechanism for the loss of muscle mass 
and function (42). Indeed, muscle mass is dynamically 
maintained by the balance between these two processes. 
When such a balance breaks and destruction prevails, 
muscle mass is reduced and that has an important impact 
on muscle function. It is well known that protein synthesis 
is reduced in underweight emphysema patients (239), but 
not in those with preserved body weight (240). Protein 
synthesis depends on the availability of substrates and 
the activity of signaling pathways. Regarding the former, 
several authors have reported that there is a reduction in 
plasma levels of glutamine, glutamate and alanine, as well 
as in some branched-chain amino acids (such as leucine) in 
COPD patients with low weight (239,241-243). The results 
for other amino acids are much more controversial (244). 
With regards to signaling pathways, the protein kinases 
B (Akt) and rapamycin (mTOR), which are activated in 
response to the input of nutrients and anabolic hormones, 
play a determinant role in muscle protein synthesis. Some 
authors have observed a decrease in the expression of Akt 
in limb muscles of COPD patients (204), while others have 
not confirmed these changes (206). Moreover, it has been 
reported that in COPD patients with severe hypoxemia, 
high intensity exercise reduces phosphorylation of Akt, 
potentially contributing to decreased protein synthesis (245).  
Among the factors that may explain the deficits in 
the synthesis of proteins in COPD patients with low 
body weight are the changes in anabolic hormones or 
their signaling pathways, and the presence of systemic 
inflammation and oxidative stress (246).

Protein breakdown in turn can occur through different 
pathways, including that of the proteasome. This pathway 
requires previous ubiquitination of the target protein, which 
needs the intervention of atrogenin-1 and MuRF1, both 
controlled by FoxO transcription factors and their regulators 
(247,248). These factors seem to be overexpressed in skeletal 
muscles of COPD patients (238,249,250). Moreover, 
protein ubiquitination has already been demonstrated 
in both l imb muscles  (140)  and diaphragm (251)  
of such patients. In a second pathway, proteins can be 
degraded by the lysosomal enzyme system, which includes 
lipases, glycosidases and cathepsins, among others. This 
system is closely related with the aforementioned cell 
phenomenon of autophagy (252), which increases in the 
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muscles of COPD patients (204), although some authors 
have only been able to find it in those patients associating 
low weight (140). The third catabolic pathway is that of 
calpains, not lysosomal proteases that are highly dependent 
on calcium concentration. To date no studies have clarified 
the role of this proteolytic system in COPD patient muscles. 
Finally, there is also the pathway of caspases, closely linked 
to apoptosis. This can be activated by different factors, 
including exercise (253). Unfortunately, to date the results 
regarding its role in COPD are controversial. Some authors 
have found no changes in the levels of these enzymes in 
either peripheral or respiratory muscles of those patients 
with preserved body weight (188), while others have 
reported an increase in caspase 3 activity in the diaphragm 
of these patients (251). Moreover, the activity of caspases is 
still unknown in the muscles of patients with weight loss or 
following high intensity exercise. As with reduced protein 
synthesis, the activation of their degradation may be due 
to different factors present in COPD including tobacco 
smoking, exacerbations, inflammation, oxidative stress and 
treatment with steroids (246).

Signs of true myopathy
For a long time there was debate as to whether muscle 
abnormalities associated with COPD constitute a real 
myopathy (254). Strictly speaking, the definition of 
myopathy needs a number of specific muscle findings such 
as necrosis, inflammatory infiltrates, immune phenomena 
and/or inclusion bodies. Of all of them, only paracrystalline 
inclusions have been reported in the diaphragm of one 
isolated patient (60). Therefore, in recent years there 
is a strong tendency to consider that COPD muscle 
abnormalities do not constitute a true myopathy. The 
only exception is the myopathic alteration secondary to 
treatments with systemic steroids.

Conclusions

Taking everything into account, it can be stated that 
skeletal muscles show structural and functional changes in 
COPD patients, and that these changes are the result of the 
complex interaction of multiple factors, which is specific 
to each particular muscle. Tobacco, systemic inflammation 
and nutritional abnormalities seem to be important for 
all the different muscle groups, whereas geometrical 
changes occurring in the thorax are specifically harmful for 
respiratory muscles, and deconditioning is more detrimental 
for peripheral muscles.
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