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Introduction

It is not unpredictable that disorders in the cardiac energy 
metabolism are major contributors to many cardiovascular 
disease as the heart is the most metabolically demanding 
organ in the body (1). Furthermore, conditions often 
associated with cardiovascular disease pathogenesis can 

change cardiac function and myocardial metabolism. 
Alterations in substrate metabolism resulting from onset 
of cardiovascular disease can contribute to characteristic 
changes in the patient’s metabolic profile (2,3).

Thanks to new “omics” tools (genomics, transcriptomics, 
proteomics and metabolomics) we now have a much broader 
understanding of pathophysiological molecular, cellular 
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and functional alterations that take place in cardiovascular 
diseases (4). Modern metabolomics technologies represent 
a tool to measure a plethora of metabolites in biological 
samples including blood plasma, urine and tissues. These 
snapshots might serve as prognostic and diagnostic tools to 
identify early specific changes during onset and progression 
of cardiovascular disease (5) (Figure 1). Therefore, 
metabolomics are representing an important tool to provide 
further insights into the pathophysiology of cardiovascular 
diseases and advance clinicians’  understanding of 
pathogenesis of cardiovascular disease. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/jtd-21-22).

Metabolomic analytic techniques

Currently, two techniques dominate metabolomic studies: 
nuclear magnetic resonance (NMR) and mass spectrometry 
(MS) (6). Both techniques are able to identify and quantify 
different metabolites in an automated manner. Due to 
the complexity of the human metabolome, none of the 
available techniques is able to provide an overview of the 
complete metabolome in biological samples due to the 
chemical diversity as well as very broad concentration 
range of different metabolites and metabolite classes  
(7-9). Therefore, often more than one analytical technique 
is applied. NMR delivers detailed information about the 
structure allowing identification of the molecules. MS-based 
platforms coupled to liquid or gas chromatography (GC) 

separation systems yield better sensitivity, but molecules 
must be ionized to be detected via MS and the selected 
separation methods play a huge role which molecules can be 
analyzed (7,10,11). Detailed reviews with focus on technical 
features of metabolomic platforms have previously been 
published (12). 

Nuclear magnetic resonance

NMR was the first analytical platform and is highly selective 
for the respective metabolite and non-destructive with 
minimal sample preparation (11,13-15). The basis of this 
technique is to identify the metabolites by chemical shifts 
in resonance frequency. Advantages of NMR are robust, 
reproducible results with minimal sample preparation 
at low costs (16). Multiple spectral libraries provide 
detailed information about the metabolite structure for 
identification, especially using multidimensional NMR 
including 1D, fast 2D or ultrafast schemes (17-19). 
Furthermore, no chemical derivatization is needed for 
NMR analysis reducing sample preparation, duration and 
analytic variability (15,20).

Proton NMR (H-NMR), as most popular NMR 
techniques, displays fast acquisition times with high 
sensitivity of protons to NMR and abundance of protons 
in organic molecules (21). H-nuclei exhibit a small 
range in chemical shift. Therefore, NMR can be used as 
2-dimensional NMR to detect and avoid co-resonances of 
metabolites with similar chemical shifts (22).

In contrast, C-atoms have a wider chemical shift, thus 

Genome

Transcriptome

Microbiome Xenobiotics Environment Lifestyle

Proteome

Metabolic phenotype/
metabolomics

Figure 1 A metabolomics-centric view of the metabolic pathways. Genetic variations lead to changes in gene expression (transcriptome) 
which affect protein variations (proteome). The metabolic phenotype is influenced by many factors. In turn, variations in metabolism can 
modify genomic, transcriptomic and proteomic outputs. 
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C-NMR delives detailed positional information about stable 
isotope compounds (23).

However, the sensitivity of NMR assays is poorer 
compared to MS which relates to the strength of the 
magnet (5). Via NMR, quantification of only around 100 
of the most abundant metabolites is possible while low 
abundant compounds cannot be determined in complex 
sample matrices (24,25). Furthermore, much larger amounts 
of starting material are needed for analyses via NMR, in 
comparison to MS. This is especially crucial in studies using 
mice, where only small amounts of tissue or biofluids are 
available or for studies with human tissue material of low 
availability. In the last years, most metabolomic studies used 
NMR as a stand-alone technique, however a complimentary 
approach with MS is becoming increasingly popular, as it 
improves sensitivity and metabolome coverage (26-28).

Mass spectrometry

MS identifies metabolites on basis of their mass/
charge ratio. Mass spectrometers consist of three basic 
components: The ionization source, the mass analyser and 
the ion detector (29). Prior to infusion into the MS source, 
often separation of metabolites within processed biological 
samples is applied using liquid chromatography (LC) or 
GC (30). This chromatographical separation increases 
selectivity and confidence in compound identification while 
it decreases potential ion suppression effects in the mass 
spectrometer due to fewer co-eluting compounds reaching 
the mass detector at a given time (30). 

GC based MS requires volatile metabolites and gas-
phase chemistry. However, because most metabolites are 
not naturally volatile, they must be derivatized artificially, 
which requires a variety of preparations (31). Thus, unstable 
and easily degradable metabolites such as α-keto acids, acyl-
CoAs and acylcarnitines are not optimally suitable for GC-
MS. Until now, for most GC-based targeted metabolomic 
studies, quadrupole GC-MS is used (32). Its main function 
is to select ions for more accurate analyses, since mass 
selectivity and mass range is limited by various parameters. 
Using a time of flight (TOF) analyser, mass accuracy and 
range can be improved (33). A TOF MS analyser is able to 
identify a mass/charge ratio value based on the time taken 
by a pulse of ions to traverse a known distance (34). Because 
even well-prepared samples might exhibit identification 
problems with large molecules due to similar mass/charge 
ratio, GC-MS is often combined with tandem MS (MS/
MS) (35-37). Via tandem MS, greater certainty in the 

identification of large ions is provided due to specific 
fragment ions and fragment patterns (34). Combination of 
GC-Q-TOF and tandem MS systems offers high separation 
capability and good mass accuracy, which is ideal for non-
targeted metabolomic profiling (38). However, limited 
metabolite coverage and restricted usability for labile 
compounds are still a problem, even for the latest systems.

LC is a separation technique often used for involatile 
and polar compounds with high molecular weight. 
However, also smaller metabolites can be separated using 
LC. LC is able to separate a wide range of metabolites, 
optimal for high-throughput and extensive metabolomic  
analyses (39). After injection into a moving stream of the 
mobile phase (solvent mixture), samples are transferred 
onto the chromatographic column containing a stationary 
phase of diverse chemical composition. Separation is based 
on the compound’s affinity to mobile phase versus stationary 
phase (40). Therefore, different types of chromatographic 
columns can be used providing very diverse separation 
properties (41). In normal-phase chromatography, mobile 
phase is nonpolar and stationary phase is polar, and 
molecules separate according to their polarity. Reversed-
phase chromatography operates vice versa and is more 
efficient, stable and withholds polar analytes, therefore 
best applied for nonpolar metabolites such as glycerolipids, 
phospholipids, fatty acids, acyl-carnitines and acyl-CoAs. 
In hydrophilic interaction chromatography the stationary 
phase is polar, similar to normal-phase chromatography. 
However, the solvent phase is highly hydrophobic 
enhancing the retention and separation of extremely 
polar analytes. Hydrophilic interaction chromatography 
is therefore used for nucleotides, phosphate compounds, 
organic acids and sugar monomers (42,43).

Heart failure

The healthy human heart is able to select its substrates for 
energy production depending on the substrate availability 
and the myocardial energy demand (44,45). Oxidative 
phosphorylation, oxygen consumption and ATP production 
is reduced during heart failure (HF) resulting in lower 
ATP levels compared to healthy hearts (46). Metabolism of 
one substrate can inhibit utilization of an alternative one. 
An example was previously published for the glucose-fatty 
acid cycle, where a higher release of fatty acids (FA) and 
ketone bodies lead to abnormalities in the carbohydrate 
metabolism (47). The failing heart gradually loses its ability 
to select substrates flexibly. In early stages of HF, glucose 
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and FA metabolism is enhanced. As HF progresses, chronic 
hemodynamic stress leads to an increased carbohydrate 
metabolization instead of FA (48). End-stage HF is 
characterized by reduction in both substrates (49) (Figure 2). 

Low energy state

The concept of the failing heart as an engine out of fuel 
is in the meantime decades old (50-52). A major reason 
for attention of this topic is that energy-saving treatment 
options for heart failure such as ACE inhibitors, angiotensin 
II inhibitors and beta-blockers improve prognosis of 
patients with heart failure (53-58). Lack of cardiac energy 
has a major role in heart failure (59). The human heart 
generates impressive amounts of ATP daily to maintain 
the needs of its contractile elements and ion pumps. 
The creatine kinase (CK) system provides an important 
mechanism to buffer and maintain cellular ATP levels 
by rapidly transferring high-energy phosphates from 
phosphocreatine (PCr) to adenosine diphosphate (ADP) 
(60,61). This reaction generates ATP 10 times faster than 
oxidative phosphorylation (62). During HF, studies have 
shown a drop in CK activity of around 20–45% (3). This 
is followed by a significant decrease in the PCr/ATP ratio, 

known as an important parameter of cardiac metabolism. 
This ratio correlates with New York Heart Association 
(NYHA) classes, systolic and diastolic function (63-65). 

Together with CK, its substrate, creatine, is reduced by 
50% in the failing heart (3). This is probably secondary to 
downregulation of the creatine transporter (responsible for 
myocardial uptake of this metabolite from the circulation) 
(Figure 2) (66). Nevertheless, transgenic overexpression 
of the creatine transporter leads to a decrease in ATP 
levels in myocardium of rats and reduced left ventricular 
function despite significant increasing myocardial creatine 
concentrations and PCr/ATP ratio (67). This finding 
emphasizes the difficulty to transfer a metabolomic finding 
to the pathophysiology of HF. 

Energy starvation during HF results in essential 
ion transport abnormalities including Ca2+ release and 
uptake (68-71). Ca2+ is known to be crucial for the cardiac 
muscle contraction (72,73). Furthermore, it is essential 
for regulation of key Krebs cycle enzymes affecting 
mitochondrial metabolism all resulting in a diminished 
ATP production (74,75). Despite efforts and progress in 
this research field of cardiac energy metabolism during 
HF, there is still no simple answer to the question whether 
changes in the substrate utilization are cause or result of the 

• lncreased anaerobic glycolysis

• lncreased ketone body oxidation

• lmpaired BCAA catabolism

• Impaired mitochondrial function

• Decreased fatty acid oxidation

Heart failure syndrome

Laxtate ↑ Ketone bodies ↓ BCAA ↑ L-C acylcarnitines ↑ Creatine ↓

Figure 2 Heart failure is characterized by low energy state with a drop in CK activity and its substrate creatine. During heart failure the 
oxidative energy metabolism and the mitochondrial function is reduced, which is compensated by increased anaerobic glycolysis. Peripheral 
metabolomic profiles show often increased lactate, BCAA and L-C acylcarnitine levels. Furthermore, the failing heart’s reliance on ketone 
bodies is increased to compensate the reduced fatty acid oxidation in the mitochondrion. BCAA, branch-chained amino acids; CK, creatine 
kinase; L-C, long-chain.
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disease. 

Fatty acid metabolism

To date, several abnormalities in the process of FA 
metabolism have been identified among HF patients. 
Free FA can cross the lipid bilayer (76). After entering 
the cytoplasm, free FA are either bound by heart-type 
cytoplasmatic fatty acid-binding protein (H-FABPc) or 
are converted into acyl-CoA which can be transported 
into mitochondria, where acyl-CoA is oxidized generating  
ATP (76). 

Attention has primari ly focused on changes in 
acylcarnitine profiles, since acylcarnitines are derivatives 
of fatty acyl-CoAs, reflecting changes in FA oxidation 
rates and specific defects in the mitochondrial β-oxidation  
machinery (77). 

Elevated  leve l s  o f  c i rcu la t ing  C16 and C18:1 
acylcarnitines in patients with end-stage heart failure 
were associated with an increased risk for mortality and 
rehospitalization due to HF (78). Consequently, after 
implantation of left ventricular assist device (LVAD) 
circulating long-chained (L-C) acylcarnitines decreased (78). 
In line with these findings, among patients with heart 
fai lure with preserved ejection fraction (HFpEF) 
circulating L-C acylcarnitines were increased. Even higher 
levels are found among patients with heart failure with 
reduced ejection fraction (HFrEF) (79). Bedi et al. found 
controversial results, in which acylcarnitines were reduced 
in myocardial tissue from end-stage HF patients at the time 
of heart transplantation or implantation of LVAD compared 
to tissue from patients with no history of HF (80). The 
authors recruited only non-diabetic HF patients, whereas 
the previously mentioned study included a large fraction of 
HF patients with diabetes. In obese and diabetic patients 
circulating acylcarnitines are often elevated, possibly 
explaining this discrepancy between the above-mentioned 
studies (Figure 2) (81). 

Decreased myocardial acylcarnitines might represent 
the impaired mitochondrial function and subsequent FA 
oxidation (82-84), which is in line with previous findings 
showing a reduction of FA oxidation during more severe 
stages of HF (12,82,85,86). Results from studies in mice 
confirm these findings since both FA oxidation and protein 
expression are only mildly decreased in compensated HF, 
but markedly decreased in decompensated HF (82,87-89). 
So, it is plausible that many of these discrepancies in the 
acylcarnitine metabolism can be explained by the severity 

of HF, presence of underlying diabetes or obesity and the 
overall decline in left ventricular function (90). Future 
metabolomics studies need to consider these aspects and 
make distinct comparisons between these subgroups of HF 
patients. 

Glucose metabolism

Glucose transport into myocytes is regulated by specific 
transmembrane glucose transporters (GLUTs) localized 
in the sarcolemma (91). Expression levels of GLUT-1 and 
GLUT-4 correlate positively with glucose uptake (92). 
Progression of HF is characterized by enhanced utilization 
of glucose instead of FA (93), while during end-stage HF the 
heart becomes unable to effectively utilize both substrates 
(94-97). During glycolysis, glucose is rapidly transformed 
into glucose-6-phosphate in the cytoplasm, oxidized to 
pyruvate and transported into the mitochondria producing 
ATP via the tricarboxylic acid (TCA) cycle (76). Several 
studies have reported that mitochondrial glucose oxidation 
is defective in the failing heart (98,99). Elevated circulating 
lactate levels may be the result of increased glycolysis and 
the inability of the failing heart to oxidize the increased 
pyruvate generated from glycolysis (98,99) because pyruvate 
dehydrogenase activity is decreased in HF (Figure 2) (90). 
In a rat model with compensated cardiac hypertrophy, 
cardiac glycolysis but not cardiac glucose oxidation was  
increased (100). In contrast, during compensated phases 
of cardiac hypertrophy in a rat model of left ventricular 
pressure overload, myocardial glucose oxidation rates 
were increased, while during decompensation of HF 
glucose oxidation declined (101). In hamsters with dilative 
cardiomyopathy (DCM) glucose-6-phosphate, fructose-
6-phosphate, fructose-1,6-biphosphate, malate, iso-citrate 
and succinate in myocardial tissues were equal to control 
group at 4 weeks but were all reduced at 16 weeks (102). 
Nowadays, it is accepted that alterations in glucose 
utilization may vary, depending on HF pathology and 
HF stage (103). This hypothesis is supported by reduced 
levels of circulating glucose, glucose-1-phosphate, glucose-
6-phosphate, lactate, citrate, succinate, succinyl-CoA 
and fumarate among patients with end-stage HF. After 
implantation of LVAD, circulating glucose and lactate levels 
increased in the non-failing heart (104). 

Amino acid metabolism

Amino acids appear to contribute little to the overall cardiac 
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energy metabolism (105). In chronic HF patients, lower 
circulating levels of essential and nonessential amino acids 
were found in the plasma, compared to patients without 
any history of HF (106). Optimal HF treatment partially 
normalized circulating levels of amino acids like cysteine, 
glutamate, glycine and tryptophan (107). Furthermore, 
several amino acids such as leucine and isoleucine can be 
hydrolysed and can serve as a basis to generate ketone 
bodies, suggesting there may be a link between ketogenic 
amino acids and ketone bodies in HF (97,108,109). Both 
succinyl-CoA and ketone bodies can serve as fuel for the 
TCA cycle, possibly providing a beneficial effect on cardiac 
metabolism (80,110). In patients with DCM, circulating 
levels of ketogenic amino acids and their metabolites where 
found to be significantly elevated (111). Furthermore, 
circulating phenylalanine and spermidine levels were 
increased in patients with HF, with normalization of those 
amino acids after HF treatment (112). Among patients with 
severe HF, circulating levels of phenylalanine, tyrosine, 
methionine, histidine, threonine, homoserine, alanine and 
glutamine were reduced (104,113). Finally, angiotensin II-
induced cardiac hypertrophy was associated with increased 
myocardial levels of ketogenic lysine and tyrosine (114). 
However, the exact role of altered amino acid metabolism 
during HF is still unclear. 

Another actor in the pathophysiology of HF development 
display branched-chain amino acids (BCAA). The above-
mentioned leucine and isoleucine plasma levels are elevated 
in chronic HF patients (106), irrespective of underlying 
obesity or dyslipidaemia. In mice, pharmacological 
treatment to increase cardiac BCAA catabolism resulted 
in delayed heart failure progression (115), suggesting 
that downregulation of the cardiac BCAA pathway may 
contribute to HF. Furthermore, BCAA may accumulate in 
the heart tissue, interact with insulin receptor-mediated 
signal transduction (116) and impair glucose processing (37). 
However, whether aberrant BCAA metabolism in HF 
patients is due to associated comorbidities such as type 
II diabetes and insulin resistance or a component of 
the metabolic signature of HF itself is still unknown. 
Although BCAA appear as a promising target for HF 
treatment there is also evidence of BCAAs increasing 
cardiac metabolic dysfunction. Branched-chain α-keto 
acids suppress respiratory complex I activity leading to 
reduced mitochondrial respiration and elevated superoxide 
production ultimately resulting in reduced cardiac function 
and promotion of HF in the setting of left ventricular 
pressure overload in a murine model (117) (Figure 2).

Ketone body metabolism

Ketone bodies can be degenerated into acetyl-CoA and thus 
have the possibility to maintain mitochondrial respiration 
in the heart. Under physiological conditions ketone bodies 
play a minor role in the cardiac energy production, but with 
increasing levels of circulating ketones their contribution 
to energy production increases (118). However, previous 
studies showed the altering ability of the human heart to 
extract certain circulating ketone bodies, depending on 
presence of left ventricular dysfunction (119). Among HF 
patients, levels of circulating β-hydroxybutyrate and acetone 
were significantly increased while their concentration in the 
cardiac tissue was reduced (120) (Figure 2). 

On the other hand, serum concentrations of ketones like 
acetoacetate, α-hydroxybutyrate and β-hydroxybutyrate 
were lower in HFrEF patients than in patients without 
HF (121). Also, serum ketone levels were lower in 
HFrEF patients compared to HFpEF (121), potentially 
indicating changes in ketone metabolism depending 
on HF-degree. Accordingly, patients with severely 
reduced left ventricular function (<35%) displayed 
lower plasma levels of β-hydroxybutyrate than patients 
with less reduced left ventricular function and healthy  
controls (122). Furthermore, myocardial tissues from end-
stage HF patients displayed higher β-hydroxybutyryl-
CoA levels, representing the impaired FA oxidation. 
Increased expressions of downstream metabolites of ketone 
body oxidation and contemporaneous upregulation of 
key enzymes in the ketone body pathway hint towards 
increased reliance on ketones for energy in the failing 
heart, compensating the decline in myocardial fatty acid  
oxidation (80). For example, diabetic patients in the EMPA-
REG outcome study, treated with a sodium-glucose 
cotransporter 2 inhibitor, showed a significant reduction 
for HF related rehospitalization. Ketone body elevation 
was discussed as one of the possible cardioprotective 
mechanisms by improving cardiac efficiency (123). 

Atherosclerosis

The desire to identify individuals at great risk for 
atherosclerosis and consecutive ischemic heart disease has 
emerged over the last years. Large numbers of patients 
with clinically diagnosed coronary atherosclerosis present 
metabolic disorders in the myocardial energy production 
(9,11,124). Common tools such as positron emission 
tomography (PET) to illustrate those derangements are 
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expensive and are accompanied by considerable radiation 
exposure (125,126). Hence, blood based diagnostic tools for 
atherosclerosis and ischemic heart disease are warranted. 

Recent studies showed circulating trimethylamine-
N-oxide (TMAO) to be a significant predictor for 
atherosclerosis and increased risk for myocardial infarction 
(MI) and stroke (127,128). The host’s gut microbiome 
plays a critical factor regulating the trimethylamine 
(TMA) production from dietary phosphatidylcholine, 
choline and carnitine. TMA is then released into the 
blood stream and converted to TMAO in the liver (129). 
TMAO potentially interferes with reverse cholesterol 
transport and thereby promotes plaque progression 
and increases the risk of cardiovascular events (127). 
TMAO might also promote platelet hyperreactivity 
since exogenous TMAO enhanced platelet aggregation 
in human platelet-rich plasma (128). Furthermore, in 
a mouse model of atherosclerosis, interfering with the 
microbiome’s ability to convert dietary choline or carnitine 
into TMA resulted in progression of atherosclerotic 
lesions and reduced circulating TMAO levels (91). 
In conclusion, these results support the hypothesis that 
increased circulating levels of phosphatidylcholine or 
choline in combination with increased TMAO could 
serve as a novel biomarker for the diagnosis of coronary 
atherosclerosis.

Other  promis ing  b iomarkers  a re  p la sma 18 :2 
monoglyceride, shown to be associated with higher 
r i sk ,  and 18:2  lysophosphat idylchol ine and 28:1 
sphingomyelin both shown to be associated with lower 
risk for future cardiovascular events (130). Increased 
levels of circulating arginine and decreased levels of 17:0 
lysophosphatidylcholine and 18:2 lysophosphatidylcholine 
were associated with increased risk for MI. Predictive 
value of the Framingham risk score for cardiovascular 
disease increased significantly when combining and adding 
these three metabolites (131). Additionally, circulating 
phosphatidylcholines containing ceramide, sphingomyelin, 
diacylglycerol or palmitic acid were associated with 
increased risk of MI (132).

These lipid intermediates including ceramides and 
sphingomyelins are known to be accumulated in numerous 
tissues among obese and type 2 diabetes patients (133). 
Increased circulating levels of these metabolites possibly 
result in their increased concentration in myocardial, liver 
or skeletal tissue. 

Finally, also circulating BCAAs (leucine/isoleucine, 
valine, glutamate/glutamine, proline and methionine) are 

shown to reflect the risk of future coronary artery disease 
(10,134). A cross-sectional study correlated increased 
BCAAs with carotid intima-media thickness (as index of 
subclinical atherosclerosis) (135). 

Summarizing, changes in these biomarkers might 
identify patients at risk of atherosclerosis and enable us to 
apply therapies earlier.

Ischemic cardiomyopathy

Coronary artery disease (CAD), despite significant 
improvements, remains one of the leading causes of 
death worldwide (136). CAD can be divided into stable 
and unstable angina as well as MI. Unstable angina is 
characterized by a critical coronary stenosis, but without 
following myocardial cell damage. During non-ST-
segment-elevation myocardial infarction (NSTEMI), this 
cell damage is present. ST-segment elevation myocardial 
infarction (STEMI) is characterized by an acute plaque 
rupture with following activation of plasmatic coagulation 
and formation of an occluding thrombus (137). During 
ischemic periods, oxygen and nutrition supply to the 
affected myocardium are markedly decreased, resulting 
in significant changes in the myocardial intermediary 
energy metabolism. Ischemic periods are characterized by 
a reduction in overall oxidative metabolism. To compensate 
this, glycolysis rates are increased. The increase in 
myocardial glycolysis is directly proportional to the severity 
and duration of ischemia (138). 

Fatty acid metabolism

In the ischemic myocardium, FA oxidation rates are 
decreased in proportion to reduced oxygen supply, because 
β-oxidation of FA is dependent in oxygen for energy 
production (139). This was confirmed via paired collection 
of blood from arterial and coronary sinus blood before 
cardiac surgery, showing significant reduction of plasma 
FA in patients with CAD compared to those without  
CAD (140). The same experimental design showed 
increases in short-chain (S-C) dicarboxylacylcarnitines in 
CAD patients, predicting the risk for future cardiovascular 
events (126). Among patients with CAD but without 
heart failure, circulating medium-chain (M-S) and L-C 
acylcarnitines predicted subsequent cardiovascular events, 
independent from established predictors (141). However, 
their source and pathophysiology during CAD progression 
are unknown. One possible explanation might be the 
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participation of peroxisomes in this process. Normally, L-C 
dicarboxylic acids are mostly oxidized in the mitochondria, 
while during CAD progression peroxisomal oxidation of 
L-C acylcarnitines could be a compensatory mechanism 
to metabolize straight medium- and long-chain fatty  
acids (142). In STEMI patients, several plasma FA were 
found to be increased. Among those are palmitic acid, 
stearic acid, linoleic acid and oleic acid, suggesting ischemia-
induced alternations in cardiac energy metabolism (143). 
Elevated FA like eicosatertraenoic acid and eicosatrienoic 
acid during MI might reflect ongoing inflammation (144). 
The β-oxidation machinery of unsaturated FA like linoleic 
acid seems to be hampered during MI, contributing 
to myocardial ischemia (145,146). Accordingly, S-C 
acylcarnitines were elevated and aspartic acid was reduced 
in patients with evident ischemia (147,148). Additionally, 
in patients with MI, higher levels of sphingolipid pathway, 
sphingomyelin and ceramide were found, compared to 
healthy patients and patients with angina (132). These 
results are supported by findings in which sphinganine, an 
intermediate of sphingoid base biosynthesis, is upregulated 
during acute MI (144,145). Sphingolipids and their 
derivates are components of cellular membranes and play 
an important role in vascular maturation, pathophysiology 
during atherosclerosis and wound healing (149). In MI, 
sphingolipid metabolism seems to be compromised, 
also resulting in increased cardiovascular diseases and 
obesity (150-152). Glycerophospholipids are precursors 
of lipid mediators and seem to be reduced during MI, 
namely phosphatidylserine, linoleamidoglycerophosphate 
choline, Lyso-PC (C18:2), Lyso-PC (C16:0), and Lyso-PC  
(C18:1) (145). Phosphatidylcholines can be further 
hydrolyzed and oxidized to prostaglandins, thromboxane 
and prostacyclin by cyclooxygenases and cyctochrome 
P450. These are all well known for their critical role 
during inflammation, immune response and blood pressure  
control (153). In summary, there is strong evidence for an 
altered lipid metabolism during ischemia.

Glucose metabolism

During ischemia, glucose oxidation rates are depressed, 
accompanied by increased glycolytic rates due to stimulated 
glycogenolysis (126,154). Myocardial lactate concentrations 
rise with the severity of the ischemic period (155). 

In patients with acute ischemia due to CAD or alcohol 
septal ablation, increased circulating lactate levels reflect 
enhanced myocardial anaerobic glycolytic metabolism 

(119,156). Interestingly, this effect is also present in patients 
undergoing coronary angioplasty due to stable angina. 
Ischemia for at least 1 minute, due to balloon inflation, 
resulted in increased circulating lactate levels 10 minutes 
later (157). 

Lower oxygen levels during ischemia inhibit aerobic 
oxidation and fewer metabolites enter the TCA cycle 
leading to lower production of its intermediates such as 
fumarate and succinate (158-160). Reperfusion-induced 
production of reactive oxygen species (ROS) seems to be 
regulated through tissue succinate levels (161). A mouse 
model simulating ischemia-reperfusion injury could show 
that succinate accumulates in ischemic heart tissue and 
succinate oxidation is a key actor for mitochondrial ROS 
accumulation and injury (161). 

Amino acid metabolism

The healthy heart’s need for amino acids as ATP source 
is minimal as shown in isolated rat hearts where under 
laboratory conditions leucine oxidations contributes to 
3–5% of overall cardiac oxygen consumption (162). This is 
supported by the finding that infusion of phenylalanine is 
primarily used for anabolic purposes (105). Nevertheless, 
it has been proposed that especially during ischemia amino 
acid metabolism may be important. Comparison between 
arteriovenous differences between CAD patients and 
healthy controls showed that there is a net myocardial 
release of alanine and uptake of glutamate in ischemic heart 
disease (163). Among all amino acids, glutamate might play 
the most important role during ischemia. Due to ischemia, 
cardiomyocytes’ higher levels of glutamic oxaloacetic 
transaminase will be released into the serum, preventing the 
transamination of glutamate into α-ketoglutaric acid, leading 
to net increase of glutamate in the ischemic tissue (164). 
Additionally, higher glutamate levels were shown to 
be associated with ongoing myocardial ischemia (165). 
Glutamate is able to activate ROS production, leading to 
inflammatory and cytotoxic cardiomyocyte death (166). 

Circulating amino acids among patients who underwent 
coronary angiography for suspected CAD have to be shown 
to predict both prevalent and subsequent cardiovascular  
risk (167). Serum BCAA levels were elevated in sex- 
and age-matched CAD patients versus healthy controls, 
independent of other “classic” risk factors such as diabetes, 
hypertension and hyperlipidemia (134). N-phenylacetyl-L-
glutamine was upregulated in acute MI patients compared 
to patients with unstable angina, suggesting a perturbed 
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phenylalanine metabolism during transition from unstable 
angina to acute MI (168). Furthermore, tryptophan-
arginine-leucine were also increased among acute MI 
patients suggesting activated amino acid biosynthesis as an 
indicator for acute MI (156).

To date, myocardial amino acid uptake seems to be of 
little relevance to the ischemic heart compared to other 
substrates (169). However, in ischemic myocardium, several 
amino acids like leucin, alanine and isoleucine are elevated, 
while others like lysine and tyrosine are degraded, compared 
to non-infarcted myocardium (160). This might be related 
to the pathophysiological mechanisms of MI. However, 
our knowledge about the role of amino acid and protein 
metabolism during the progression of ischemic heart disease 
remains poorly understood. 

Non-ischemic cardiomyopathies

Hypertrophic cardiomyopathy (HCM) and DCM reflecting 
major non-ischemic cardiomyopathies are both highly 
prevalent monogenic diseases yet showing remarkable 
clinical heterogeneity (170-172). Both are characterized by 
disproportionate cardiac chamber growth and adjustment 
of ventricular wall thickness, resulting in myocyte cell 
apoptosis and hypertrophy, fibrosis, as well as impaired 

cardiac metabolism (173,174). 
Earlier studies identified increased glycolysis as a 

metabolomic hallmark of pathological HCM (96,175). 
Furthermore, increased glycolysis is uncoupled from glucose 
oxidation and accompanied by lower rates of medium-chain 
fatty acid oxidation (176). In non-pathological HCM in 
contrast to pathological HCM, glucose oxidation and long-
chain fatty acid oxidation is increased (177). In mice with 
transverse aortic constriction, simulating HCM, cardiac 
levels of fatty acids, lysolipids, acylcarnitines and purines 
were upregulated in a time-dependent manner, whereas 
ascorbate, heme and pyrimidines were downregulated (37). 
Furthermore, BCAA and metabolites associated with 
oxidative stress and metabolic remodelling are elevated in 
pressure-overloaded hearts (37). Since the decompensated 
heart forfeits its ability to perform oxidative phosphorylation 
for ATP generation, there is presumably a decrease of the 
glucose and fatty acid flux into the TCA cycle (178). This 
is supported by findings of normal acylcarnitine and lactate 
levels in compensated HCM (179) (Figure 3). Nevertheless, 
these findings provide further evidence that the myocardial 
metabolic profile could reflect stage and aetiology of HF. 

A global metabolomic analysis of DCM-simulated 
hamsters  v ia  δ-sarcoglycan def ic iency revealed a 
compromised TCA cycle and glycolysis. Furthermore, DCM 

hypertrophic cardiomyopathy

• lncreased anaerobic glycolysis

• lncreased BCAA catabolism

• Decreased fatty facid oxidation

• Increased oxidative stress

Laxtate ↑ Pyrimidine ↓ BCAA ↓ M-C acylcarnitines ↑

Figure 3 Hypertrophic cardiomyopathy is characterized by increased glycolysis uncoupled from glucose oxidation and accompanied 
by lower rates of medium-chain fatty acid oxidation. Hence, circulating metabolomic profiles often yield increases in lactate and M-C 
acylcarnitines. Furthermore, BCAA and oxidative stress metabolites are reduced in the circulation. BCAA, branch-chained amino acids; M-C, 
medium-chain.
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hamsters suffered from altered membrane phospholipid 
homeostasis, glutathione biosynthesis, urea cycle and CK 
pathways leading to cardiac contractile dysfunction (102). 
Especially the decrease in glutathione and the compensatory 
increase in ophthalmate suggested that increased oxidative 
stress might play a role in DCM pathogenesis. Increasing 
levels of eicosanoids, ceramides and sphingomyelin suggest 
cellular stress and consecutive activation of protective 
pathways (102) (Figure 4). 

Cardiac energy supply is normally dependent on fatty 
acids. Whether this change is a cause or a consequence 
of cardiac hypertrophy is still unclear. A study with 
mice, deficient in long-chain acyl-CoA synthetase 1 in 
the myocardium, revealed a switch from FA to glucose 
as mitochondrial fuel preference. This switch led to 
mechanistic target of rapamycin (mTOR)-dependent 
alterations in the cardiac metabolism, several genes 
involved in glycolysis as well as changed glutathione-related 
pathways and compensation by mTOR (180). Interestingly, 
for nutrient signalling, inhibition of autophagy and myocyte 
growth mTOR signalling has been reported as a central 
player (181).

In one study, comparing tissue DCM patients versus 
healthy controls decreased glycolysis, TCA cycle and 
malate-aspartate shuttle activities were observed (Figure 4). 
However, only in ischemic DCM patients an increase in 

ketone body oxidation and inflammatory markers was  
seen (182). These studies clearly indicate that a more 
systematic analysis of temporal changes in the cardiac 
metabolome among patients with ischemic and dilative 
cardiomyopathies is needed to reveal precise, disease-
specific signatures, and possibly filter out individuals with 
high risk of SCD.

Current research projects

From the perspective of translational to clinical research, 
prior studies evaluating metabolomics profiles in patient 
cohorts with cardiovascular diseases were limited in different 
aspects: small sample size (183-185), too much pre-specified 
cohorts (183), inconsistent or even unclear inclusion criteria 
for patient selection and control groups, usually not based 
on international guideline-recommendations (186), and lack 
of predefined prognostic endpoints as demanded by these 
guidelines (187-189). 

For example, DeFilippis et al. developed criteria 
for differentiating of thrombotic and non-thrombotic 
myocardial infarction (184). Other studies divided patients in 
normal coronary arteries, non-obstructive coronary arteries, 
stable angina, non-stable angina as well as acute myocardial 
infarction, irrespective of the international universal 
definitions of myocardial infarction (144). Therefore, clearly 

Laxtate ↑ Gluthatione ↓ TCA cycle Activity ↓ Eicosanoids ↑

Dilative cardiomyopathy

• Decreased glycolysis

• Increased cellular stress

• Decreased TCA cycle shuttle

• lncreased oxidative stress

Figure 4 A hallmark of dilative cardiomyopathy is a compromised TCA cycle activity and glycolysis resulting in decreased peripheral lactate 
levels along with metabolites associated with oxidative stress like glutathione. Furthermore, elevated eicosanoids suggest cellular stress with 
consecutive activation of protective pathways with increased sphingomyelin levels. TCA, tricarboxylic acid.
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predefined patient cohorts based on disease consensus 
documents are needed when investigating targeted 
metabolomic approaches in patients with cardiovascular 
diseases (190,191). To translate differential diagnostic 
finding by identifying significant metabolomics clusters, 
hard clinical endpoints in terms of prognosis, such as all-
cause and cardiovascular mortality or heart failure related 
rehopsitalization need to assessed (144,191,192). 

Therefore, we recently investigated in pragmatic 
research project to counterbalance these inconsistencies of 
metabolomics studies. The “Metabolomics and Microbiomic 
in Cardiovascular Diseases” (MEMORIA) study evaluates 
guideline-conform patient cohorts including mid-term and 
long-term follow-up periods (from 6 to 24 months) [https://
clinicaltrials.gov/ct2/show/NCT04146701]. Cardiovascular 
disease cohorts will include a total of 800 patients with acute 
heart failure, acute myocardial infarction, such as non-ST 
and ST segment elevation myocardial infarction, chronic 
heart failure due to progressive non-ischemic and ischemic 
cardiomyopathies and the impact of implanted cardioverter 
defibrillator (ICD), well as sepsis or septic shock. Prognostic 
endpoints are all-cause and cardiovascular mortality, 
heart-failure related rehospitalization, stroke, recurrent 
myocardial infarction, ventricular tachyarrhythmias, 
quality of life. MEMORIA aims to close the gap between 
preliminary to clinically relevant research of targeted 
metabolomics in cardiovascular diseases.

Conclusions and future implications

New -omics platforms such as metabolomics provide great 
opportunities to gain further insights into cardiovascular 
disease risk and pathogenesis. Because most patients with 
cardiovascular diseases additionally suffer from associated 
comorbidities like chronic kidney disease, obesity or 
diabetes, metabolomics, in particular, has improved 
the understanding of the molecular principals of these 
conditions. Furthermore, metabolomics provide a functional 
integration of upstream genetic, transcriptomic and 
proteomic variations in combination with environmental 
factors, thus reflecting molecular processes more proximal to 
the respective disease state. Because clinically confounding 
factors like diet, age, sex and drug effects influence results 
and conclusions, application of metabolomic profiling of 
large population-based epidemiological cohorts has allowed 
statistical adjustment for potential confounders for future 
analyses (9,193). In parallel, advances in computational 
analyses have to continue to provide an integration of 

various-omics data sets to gain a more comprehensive 
view of molecular mechanisms of cardiovascular disease. 
Summarizing, metabolomics constitutes a further step 
towards a personalized medicine enabling us to predict, 
detect and understand a multitude of cardiovascular disease 
states. 
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