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Background: Accurate evaluation of pulmonary nodule malignancy is important for lung cancer 
management. This current study aimed to develop risk models for small solid and subsolid pulmonary 
nodules based on clinical and quantitative radiomics features.
Methods: This study enrolled 5–20 mm pulmonary nodules detected on thoracic high-resolution 
computed tomography (HRCT), which were all confirmed pathologically. There were 548 solid nodules 
(242 malignant vs. 306 benign) and 623 subsolid nodules (SSNs 519 malignant vs. 104 benign). Relevant 
clinical characteristics were recorded. The CT image prior to the initial treatment was chosen for manual 
segmentation of the targeted nodule using the ITK-SNAP software. Subsequently, the marked image was 
processed to quantitatively extract 1218 radiomics features using PyRadiomics. We performed five-fold 
cross-validation to select potential predictors from clinical and radiomics features using the LASSO method 
and to evaluate the performance of the established models. In total, four types of models were tried: random 
forest, XGBOOST, SVM, and logistic models. The established models were compared with the Mayo 
model.
Results: Lung cancer risk models were developed among four nodule groups: all nodules (410 benign vs. 
761 malignant; 1:1.86), nodules ≤10 mm (185 benign vs. 224 malignant; 1:1.21), solid nodules (306 benign 
vs. 242 malignant; 1.26:1), and SSNs (104 benign vs. 104 malignant; 1:1 matched). Significant clinical and 
radiomics predictors were selected for each group. The accuracy, area under the ROC curve, sensitivity, and 
specificity of the best model on validation dataset was 0.86, 0.91, 0.93, 0.73 for all nodules (XGBOOST), 
0.82, 0.90, 0.86, 0.76 for nodules ≤10 mm (XGBOOST), 0.80, 0.89, 0.78, 0.82 for solid nodules (XGBOOST) 
and 0.70, 0.73, 0.73, 0.67 for SSNs (Random Forest). Except for the SSN models, the established clinical-
radiomics models were superior to the Mayo model.
Conclusions: Predictive models based on both clinical and radiomics features can be used to assess the 
malignancy of small solid and subsolid pulmonary nodules, even for nodules that are 10 mm or smaller.
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Introduction

The International Agency for Research on Cancer reported 
that lung cancer was the most commonly diagnosed cancer 
(11.6% of the total cases) and the leading cause of cancer 
death (18.4% of the total cancer deaths) for both sexes 
in 2018 (1). Hence, efficient strategies are necessary to 
manage the disease. Early stage lung cancer usually presents 
as a solitary pulmonary nodule on thoracic computed 
tomography (CT), namely, a rounded lesion measuring less 
than 30 mm in diameter, which is completely surrounded 
by pulmonary parenchyma without other pulmonary 
abnormalities (2). According to its texture, nodules can be 
classified into subsolid nodules (SSNs) or solid nodules (3). 
Accurate characterization of pulmonary nodules, especially 
regarding their likelihood of malignancy, can be very 
important in lung cancer management. 

Traditionally, thoracic radiologists and clinicians 
rely largely on qualitative morphological features such 
as texture, spiculation, lobulation, calcification, pattern 
of enhancement, presence of blood vessels, impact on 
adjacent structures, and so on, to evaluate the nature 
of pulmonary nodules (4). For example, a smoothly 
marginated solid nodule with internal fat and calcification 
can be a hamartoma, and a solid triangular subpleural 
nodule with a linear extension to the pleural surface 
is typical of an intrapulmonary lymph node, where no 
further CT follow-up is recommended (3). In addition, 
nodule size, nodule type, spiculation, upper lobe location, 
18F-fluorodeoxyglucose uptake, and volume doubling time 
(VDT) could be independent predictors of malignancy 
(5-8). However, morphological features can sometimes 
overlap between benign and malignant nodules, so the 
morphological features are not sufficient to assess the 
likelihood of malignancy (9). In addition, inter- and 
intraobserver agreement in evaluating nodule features was 
found to be highly variable (10). Moreover, nodules less 
than 10 mm in size, which account for approximately 80% 
of all non-calcified nodules, are less amenable than larger 
nodules when it comes to characterization (11). 

At present, a rapidly evolving field called radiomics, 
which enables digital decoding of images into quantitative 
features, including descriptors of size, shape, and textural 
features, has shown promise in characterizing lung 
cancers (12). For example, previous radiomics studies were 
successfully performed to identify epidermal growth factor 
receptor mutations, classify tumor histologic subtype, and 
predict tumor invasiveness as well as lymph node and distant 

metastasis (13). Therefore, the current study aimed to 
develop risk models for small solid and subsolid pulmonary 
nodules (5–20 mm) based on clinical and quantitative 
radiomics features. 

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/jtd-21-80).

Methods

Patient enrollment 

Data were retrospectively collected from the West China 
Hospital of Sichuan University between January 2010 and 
July 2017. Patients were enrolled if there was an untreated, 
pathologically confirmed, 5–20 mm, dominant, noncalcified 
SSN, or solid nodule on thoracic high-resolution CT 
(HRCT). The study included incidental pulmonary nodules 
and annually screen detected nodules. Patients were 
excluded if (I) multiple pulmonary nodules were observed, 
where nodules distributed diffusely or multiple nodules 
were confirmed to be tumors or if there were several 
problematic nodules; (II) pleural effusion, atelectasis, 
or lymph node enlargement was observed; and (III) the 
pathological diagnosis was not clear or it was a metastatic 
tumor. Pathological diagnoses of all nodules were based on 
sputum cytology or pathologic examination of lung tissues 
obtained from bronchoscopy, CT-guided percutaneous lung 
biopsy, or thoracic surgery. In total, 1,855 patients with 
5–20 mm pathologically confirmed nodules were found, 
and 1,171 patients were enrolled for further analysis, as the 
segmentation of two patients failed and 682 patients did not 
have HRCT.

Collection of clinical variables

Clinical characteristics were recorded, including age, sex, 
smoking status, history of malignancy, and family history 
of lung cancer (demographic); diameter, location, shape, 
spiculation, lobulation (radiologic), red blood cells, white 
blood cells, blood platelets, neutrophil to lymphocyte ratio 
(NLR), prothrombin time, activated partial thromboplastin 
time (APTT), carcinoembryonic antigen (CEA), cytokeratin 
19 fragment (CYFRA21-1) and neuron specific enolase 
(NSE, laboratory). This study was approved by the 
institutional review board of the West China Hospital of 
Sichuan University, and the requirement to obtain informed 
consent was waived as the privacy and identity information 
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of the subjects were guaranteed. There were some missing 
data regarding CEA, CYFRA21-1, and NSE tests, which 
were populated by the median value. The data were not 
available as some of the patients did not undergo testing.

CT image acquisition 

The CT image chosen was the one prior to the initial 
treatment. All images were acquired using several models 
of multi-row spiral CT scans from GE, Siemens or Philips 
scanners. Most CT scans were obtained between 100 and 
120 kV. The pixel size was 0.7 to 0.9 mm, and the axial 
slice thickness was less than 1.25 mm, with 1 mm being 
the most common. Reconstruction was performed using a 
standard convolution kernel. Some patients underwent non-
contrast CT examination while others underwent contrast-
enhanced CT. All images were analyzed in both lung (width,  
1,500 HU; level, −700 HU) and mediastinal (width =350 HU;  
level =40 HU) settings. During patient selection and 
radiologic feature evaluation, two specialists who were 
blinded to the pathological results of lesions evaluated all 
CT scans and resolved discrepancies by consensus. 

Nodule segmentation and feature extraction

The target nodules were manually segmented in 3D using 
the ITK-SNAP software by one clinician in pulmonary 
and critical care medicine, with four years of experience 
in pulmonary nodule evaluation (14). The author was 
also blinded to the pathological results of all the lesions. 
Radiomics feature extraction was performed using the open-
source platform Pyradiomics (version 2.0.0), which enables 
quantitative features to be extracted from HRCT images (12). 
Extracted from Pyradiomics were 14 shape features, 18 first-
order features, 22 gray-level co-occurrence matrix (GLCM) 
features, 16 gray-level size zone matrix (GLSZM) features, 
16 gray-level run length matrix (GLRLM) features, and 14 
gray-level dependence matrix (GLDM) features. Except for 
shape features, other features were also calculated from the 
filtered images (LoG with five sigma levels and wavelet with 
eight derived images). In total, 1,218 radiomics features [14 
shape features + 86 other features × (1 original image + 13 
filtered images)] were generated for each nodule. A detailed 
list of the extracted features is provided in Table S1.

Model establishment 

All risk models were established in two steps: feature 

selection and model development. The least absolute 
shrinkage and selection operator (LASSO) method was 
applied to select the most significant predictors from clinical 
and radiomics features simultaneously. Then, four types of 
models were tried for each nodule group based on selected 
features, including random forest, XGBOOST, SVM, and 
logistic model. We normalized the data using the Z-score to 
allow all the coefficients to be based on the same scale and 
performed five-fold cross-validation during both steps. 

Performance of models

The model performance was evaluated using metrics 
such as the area under the ROC curve (AUC), accuracy, 
F1 score, recall, precision, sensitivity, and specificity. 
The performance of the models was compared with the 
predictive ability of the Mayo model (5). All cases in each 
group were utilized to validate the Mayo model, and the 
corresponding AUC, accuracy, sensitivity, and specificity 
were calculated. 

Statistical analysis

The numerical data were presented as mean ± standard 
deviation and compared using Student’s t-test, while 
categorical data were described as percentages and 
compared using the chi-square test. All statistical tests were 
two-sided, and differences were considered statistically 
significant at P<0.05. All statistical analyses were performed 
with R version 3.6, and all models were established using 
Python 3.7.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the institutional review board of the West 
China Hospital of Sichuan University (No.59). Informed 
consent was waived as this was a retrospective study and 
the privacy and identity information of the subjects were 
guaranteed.

Results

Patient enrollment and pathology of nodules

Figure 1 presents the flowchart of the study process. A 
total of 1,171 patients who met the inclusion criteria 
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were enrolled, including 548 patients with solid nodules 
(malignant, 242; benign, 306) and 623 patients with 
SSNs (malignant, 519; benign, 104). All nodules were 
confirmed pathologically. The benign group included 
inflammatory nodules (62.20%), benign tumors (20.00%), 
and other lesions (17.80%). Malignant nodules were mainly 
adenocarcinomas (97.37%), while 1.97% were squamous 
carcinomas and 0.66% were other types (Table S2). 

Patient clinical characteristics

The clinical characteristics of the patients are summarized 
in Table 1. In patients with solid nodules, the benign and 
malignant groups exhibited some differences in age, history 
of malignancy, diameter, shape, spiculation, lobulation, 
white blood cell count, NLR, APTT, and CEA (P<0.05). 
As for SSNs, there was no difference in the proportion of 
history of malignancy, white blood cell count, NLR, and 
CEA between the benign and malignant groups. However, 
significant differences in age, diameter, location, shape, 
spiculation, lobulation, APTT, CYFRA21-1, and NSE 
were observed between the malignant and benign groups 
(P<0.05). Details of missing data for CEA, CYFRA21-1, 
and NSE are described in Table S3.

Model establishment and selected radiomics features

We developed lung cancer risk models among four nodule 
groups: all nodules (n=1,171), nodules ≤10 mm (n=409), solid 
nodules (n=548), and SSNs (n=208). To avoid overfitting of 
models in the SSN group, only 104 malignant SSNs were 
included, which were 1:1 matched with benign SSNs.

Table S4 summarizes the selected features from LASSO 
analysis in detail for all nodules (α=0.00955, n=74 features), 

nodules ≤10 mm (α=0.0152, n=67 features), solid nodules 
(α=0.0152, n=51 features), and SSNs (α=0.12328, n=3 
features). Figure 2 describes the top ten features sorted by the 
absolute value of coefficients and the rad-score distribution 
based on selected features for all nodules (Figure 2A,B,C)  
and nodules ≤10 mm (Figure 2D,E,F). In addition, the 
top ten features for solid nodules, all three features for 
SSNs, and the corresponding rad-score distribution for 
solid nodules (Figure 3A,B,C) and SSNs (Figure 3D,E,F) 
are shown in Figure 3. There was a higher proportion of 
radiomics features selected for nodules ≤10 mm (83.6% of 
67 features and 80% of the top ten features).

Performance of risk models

We performed five-fold cross-validation to evaluate the 
predictive performance of the lung cancer risk models. 
According to the accuracy of the training dataset, the top 
three models for each nodule group were recorded. For 
all nodules (410 benign vs. 761 malignant; 1:1.86), nodules 
≤10 mm (185 benign vs. 224 malignant; 1:1.21), and solid 
nodules (306 benign vs. 242 malignant; 1.26:1), the top 
three models were XGBOOST, random forest, and SVM, 
respectively. However, it was the XGBOOST, random 
forest, and logistic model for SSNs (104 benign vs. 104 
malignant; 1:1). The performance of the established models 
on the validation dataset is summarized in Table 2, while 
that of the training dataset is shown in Table S5. 

In addition, the ROC curves of the top three models 
in the training and validation datasets, as well as the 
performance of the best model in each fold on the validation 
dataset are shown in Figure 4 (all nodules, Figure 4A,B,C;  
nodules ≤10 mm, Figure 4D,E,F) and Figure 5 (solid 
nodules, Figure 5A,B,C; SSNs, Figure 5D,E,F). The 

Figure 1 The workflow of the current study. PN, pulmonary nodule.
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performance of risk models for SSNs was quite weak (AUC 
in validation dataset, 0.65–0.76) and the XGBOOST 
model was even unstable (AUC, 1.00 in training vs. 0.65 in 
validation); therefore, the ROC curves of the random forest 
model are shown in Figure 5F.

Comparison of established clinical-radiomics models with 
Mayo model

The Mayo model was validated in all cases in each nodule 
group and was compared with the best corresponding 
clinical-radiomics model. Table 3 summarizes the detailed 
predictive results. We found that the Mayo model, which 
was based on only six clinical characteristics, showed 
comparable discriminating ability with our clinical-
radiomics model for SSNs (accuracy, 0.73 vs. 0.70; AUC, 

0.75 vs. 0.73). However, it was inferior to the clinical-
radiomics models for the other three nodule groups 
(accuracy, 0.55–0.67 vs. 0.80–0.86; AUC, 0.59–0.70 vs. 
0.89–0.91).

Discussion

Accurate evaluation of the malignancy of pulmonary 
nodules plays an important role in lung cancer management. 
Moreover, solid nodules and SSNs exhibit different clinical 
courses, and guidelines for the management of pulmonary 
nodules have provided separate recommendations for the 
two types of nodules (9). Therefore, the current study 
based on clinical and radiomics features has established four 
models for all nodules (5–20 mm), nodules ≤10 mm, solid 
nodules, and SSNs.

Table 1 Clinical characteristics of patients in the solid and subsolid group

Characteristics
Solid group Subsolid group

Benign (n=306) Malignant (n=242) P value Benign (n=104) Malignant (n=519) P value

Age, years 52±12 59±10 0.000 51±10 57±11 0.000

Sex, female 47.7 53.3 0.193 67.3 71.1 0.439

Smoking 35.0 38.8 0.350 21.2 16.2 0.218

History of malignancy 5.2 10.7 0.016 5.8 8.7 0.325

Family history of LC 4.9 7.9 0.155 8.7 10.6 0.551

Diameter, mm 13±4 14±4 0.000 9±3 12±4 0.000

Location, upper lobe 45.4 50.0 0.287 54.8 66.5 0.023

Shape, irregular 55.6 82.6 0.000 53.8 68.0 0.005

Spiculation 32.7 58.7 0.000 12.5 33.7 0.000

Lobulation 38.6 52.1 0.002 16.3 35.5 0.000

Red blood cell, 1012/L 4.62±0.55 4.54±0.49 0.059 4.53±0.47 4.54±0.50 0.838 

White blood cell, 109/L 5.75±1.60 6.12±2.01 0.015 5.87±1.65 5.79±1.75 0.702 

Blood platelet, 109/L 176.68±56.73 177.11±56.96 0.930 172.81±53.63 177.12±57.96 0.484 

NLR 2.06±1.24 2.34±1.70 0.023 2.27±1.49 2.17±1.43 0.518 

PT, s 11.16±0.83 11.25±1.12 0.306 11.07±0.82 11.24±1.15 0.167 

APTT, s 28.07±3.70 27.18±3.61 0.005 28.07±3.89 27.07±3.96 0.018 

CEA, ng/mL 1.91±0.98 4.07±12.02 0.006 1.77±0.88 2.44±6.98 0.329 

CYFRA21-1, ng/mL 1.96±0.73 2.04±0.87 0.242 1.85±0.60 2.09±1.05 0.001 

NSE, ng/mL 12.78±4.46 13.26±4.24 0.200 12.71±4.06 14.57±5.14 0.001 

Numeric variables were presented as mean ± standard deviation, category variables were presented in proportion. LC, lung cancer; 
NLR, neutrophil to lymphocyte ratio, PT, prothrombin time; APTT, activated partial thromboplastin time; CEA, carcinoembryonic antigen; 
CYFRA21-1, cytokeratin 19 fragment; NSE, neuron specific enolase.
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Figure 2 Feature selection based on LASSO analysis for all nodules (A,B,C) and the nodules less than 10 mm (D,E,F). A,D, top ten 
predictors sorted by absolute value of coefficients; B,C,E,F, rad-score boxplots of all selected features. LRLGLE, long run low gray level 
emphasis; SZNN, size zone nonuniformity normalized.
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Figure 3 Feature selection based on LASSO analysis for solid nodules (A,B,C) and subsolid nodules (D,E,F). A, top ten predictors for solid 
nodules sorted by absolute value of coefficients; D, selected three predictors for subsolid nodules; B,C,E,F, rad-score boxplots of all selected 
features. SRLGLE, short run low gray level emphasis. 
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We previously established lung cancer risk models solely 
based on the clinical features of solid nodules and SSNs of 
different sizes (15). The clinical models showed an AUC of 
0.70 and 0.71 for SSNs and solid nodules <15 mm, 0.72 and 
0.81 for SSNs and solid nodules between 15 and 30 mm, 
respectively (15). It was obvious that the current models 
combining clinical and radiomics features exhibited greater 
discrimination ability, especially for nodules ≤10 mm 
(highest AUC, 0.90) and solid nodules (highest AUC, 0.89), 
while there was only a slight improvement for SSNs (highest 
AUC, 0.76). Similarly, when compared to the Mayo model 
(six predictors: age, smoking, history of cancer, diameter, 
spiculation, and upper lobe location), the established 
models demonstrated absolute superiority for all nodules, 
nodules ≤10 mm, and solid nodules, whereas the diagnostic 
advantages for SSNs were not obvious. The possible 
reason was that there were only a small number of benign 
SSNs available, and for data balance, the same number of 
malignant cases were matched. Therefore, due to the small 
sample size (208), trained SSN models can be unstable, of 
which only three risk predictors were selected.

An increasing number of SSNs have been encountered 
in routine clinical practice. Most early stage lung 
adenocarcinomas can manifest as SSNs with different 
degrees of invasion (16). Consequently, previous radiomics 
studies for SSNs focused more on identifying the 
invasiveness of lung adenocarcinomas (16-18). However, 
Gong et al.  studied 182 histopathology-confirmed 

SSNs using radiomics analysis for nodule diagnosis 
[59 benign nodules, 50 adenocarcinoma in situ (AIS),  
32 minimally invasive adenocarcinoma (MIA), and 41 
invasive adenocarcinoma] (19). Their results showed an 
average AUC of 0.75 in distinguishing benign and malignant 
SSNs, which was consistent with the current study (AUC, 
0.65–0.76). Moreover, their models also demonstrated 
poor performance in benign and AIS nodules (AUC, 0.55), 
and benign and MIA nodules (0.77), respectively (19).  
Nevertheless, a high AUC of 0.93, was observed for 
benign nodules and invasive adenocarcinomas (19). Hence, 
radiomics features have shown potential in predicting the 
malignancy of SSNs, but sufficient data is a priority to train 
a good model.

We noticed that the clinical characteristics could be 
as important as radiomics features in lung cancer risk 
prediction for solid nodules. Sixty percent of the top 
ten selected features were clinical variables, which have 
been identified in previous studies (7,20-22). The clinical 
variables were age, spiculation, sex, shape, smoking, and 
history of malignancy. When predicting malignancy of solid 
nodules, the clinical-based models exhibited an AUC of 0.81 
to 0.89 (7,20-22), and one study pointed out that a VDT 
of 25–400 days was highly suggestive of malignancy (7).  
On the other hand, quantitative radiomics models have 
also demonstrated potential for diagnosing solid nodules, 
especially radiomics models created from gross tumor 
volume instead of peritumoral volumes (23). Therefore, the 

Table 2 Performance of established models on validation dataset

Group Methods Accuracy F1 Score Recall Precision Sensitivity Specificity AUC

All nodules XGBOOST 0.86 0.89 0.93 0.87 0.93 0.73 0.91 

Random Forest 0.83 0.88 0.96 0.81 0.96 0.59 0.89 

SVM 0.77 0.83 0.88 0.79 0.88 0.55 0.81 

Nodules≤10 mm XGBOOST 0.82 0.84 0.86 0.82 0.86 0.76 0.90 

Random Forest 0.81 0.84 0.88 0.81 0.88 0.74 0.90 

SVM 0.74 0.78 0.83 0.74 0.83 0.64 0.80 

Solid nodules XGBOOST 0.80 0.78 0.78 0.77 0.78 0.82 0.89 

Random Forest 0.79 0.76 0.73 0.79 0.73 0.85 0.88 

SVM 0.71 0.66 0.65 0.68 0.65 0.75 0.77 

Subsolid nodules XGBOOST 0.62 0.63 0.64 0.62 0.64 0.60 0.65 

Random Forest 0.70 0.71 0.73 0.70 0.73 0.67 0.73 

Logistic 0.73 0.71 0.69 0.77 0.69 0.76 0.76 

AUC, area under the ROC curve.
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combination of clinical and quantitative radiomics features 
improved the performance of the clinical models developed 
in our previous study (15).

The Brock model, which is based on two screening 
cohorts (PanCan and BCCA; rates of cancer, 5.5% and 
3.7%, respectively) demonstrated good discrimination and 
calibration for nodules ≤10 mm, with an AUC of 0.89 to 

0.94 (8). Predictors of cancer in the model were all clinical 
variables, including older age, female sex, family history 
of lung cancer, emphysema, larger nodule size, upper lobe 
location, part-solid nodule type, lower nodule count, and 
spiculation (8). Regarding incidental pulmonary nodules 
≤10 mm, Xu et al. predicted the malignancy of 127 sub-
centimeter nodules using radiomics features and achieved 

Figure 4 Receiver operating characteristic curves of established models for all nodules (A,B,C) and the nodules less than 10 mm (D,E,F). 
A,B,D,E, performance of top three models; C,F, performance of the XGBOOST model in each fold.

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Training 

XGBOOST (Validation) 

Validation 

XGBOOST (1.00)

Random forest (0.98)

SVM (0.95)

Fold-1

Fold-3

Fold-5

Fold-2

Fold-4

Fold-mean

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Training 

XGBOOST (validation)

Validation 

XGBOOST (1.00)

Random forest (0.99)

SVM (0.98)

Fold-1

Fold-3

Fold-5

Fold-2

Fold-4

Fold-mean

XGBOOST (0.91)

Random forest (0.89)

SVM (0.81)

XGBOOST (0.90)

Random forest (0.90)

SVM (0.80)

A

C

E

B

D

F



4165Journal of Thoracic Disease, Vol 13, No 7 July 2021

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(7):4156-4168 | https://dx.doi.org/10.21037/jtd-21-80

an AUC of 0.84 (24). However, in the current study of 
incidental pulmonary nodules, 67 clinical and radiomics 
features were selected for nodules ≤10 mm, and the risk 
models showed the highest AUC of 0.90. It is worth noting 
that radiomics features played a more important role in 

lung cancer risk prediction for incidental nodules ≤10 mm, 
with a high proportion of 80% among the top ten features, 
which were completely different from the other three 
nodule groups. Hence, radiomics features are meaningful 
in malignancy prediction for nodules ≤10 mm in routine 
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Figure 5 Receiver operating characteristic curves of established models for solid nodules (A,B,C) and subsolid nodules (D,E,F). A,B,D,E, 
performance of top three models; C, performance of the XGBOOST model in each fold for solid nodules; F, performance of the Random 
Forest model in each fold for subsolid nodules. 



4166 Zhang et al. Malignancy of small solid and subsolid pulmonary nodules

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(7):4156-4168 | https://dx.doi.org/10.21037/jtd-21-80

clinical practice.
This study had some general and study-specific 

limitations. First, the study was carried out in a single 
medical center, in which bias could exist. In addition, this 
was a retrospective case-control study, which resulted in 
different scanner machines and non-uniform imaging 
protocols across patients. The difference should have a 
relevant impact on radiomics feature stability and thus 
prevented the establishment of robust risk models. Second, 
the growth rate of pulmonary nodules is one of the key 
characteristics associated with lung cancer probability, but 
we failed to apply the relevant parameters to build risk 
models in the current study. Usually, at least two thoracic CT 
scans prior to treatment are needed to calculate the growth 
rate of a nodule, but most of the patients we studied did not 
meet the criteria. Third, only a small number of SSNs were 
available for modeling; therefore, the performance of the 
established SSN models was unstable. Increasing the sample 
size, especially for benign SSNs, is warranted in future 
research. Last but not the least, we performed five-fold 
cross validation to evaluate the performance of established 
risk models, whereas the external validation is necessary. 

Conclusions

In conclusion, based on both clinical and radiomics features, 
the current study established risk models to predict the 
malignancy of 5–20 mm pulmonary nodules. The models 
were developed for four nodule groups, including all 
nodules, nodules ≤10 mm, solid nodules, and SSNs. All 
models demonstrated excellent discrimination ability except 
for those of SSNs. Further studies are warranted to develop 

robust SSN models.
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Supplementary

Table S1 Extracted radiomics features

First order (N=18) Shape (N=14) GLDM (N=14) GLRLM (N=16) GLSZM (N=16) GLCM (N=22)

Interquartile Range Voxel Volume Gray Level Variance Short Run Low Gray 
Level Emphasis

Gray Level Variance Joint Average

Skewness Maximum 3D 
Diameter

High Gray Level 
Emphasis

Gray Level Variance Zone Variance Joint Entropy

Uniformity Mesh Volume Dependence Entropy Low Gray Level Run 
Emphasis

Gray Level Non-
Uniformity Normalized

Cluster Shade

Median Major Axis 
Length

Dependence Non-
Uniformity

Gray Level Non-
Uniformity 
Normalized

Size Zone Non-
Uniformity Normalized

Maximum 
Probability

Energy Sphericity Gray Level Non-
Uniformity

Run Variance Size Zone Non-
Uniformity

Idmn

Robust Mean 
Absolute Deviation

Least Axis 
Length

Small Dependence 
Emphasis

Gray Level Non-
Uniformity

Gray Level Non-
Uniformity

Joint Energy

Mean Absolute 
Deviation

Elongation Small Dependence High 
Gray Level Emphasis

Long Run Emphasis Large Area Emphasis Contrast

Total Energy Surface Volume 
Ratio

Dependence Non-
Uniformity Normalized

Short Run High Gray 
Level Emphasis

Small Area High Gray 
Level Emphasis

Difference 
Entropy

Maximum Maximum 2D 
Diameter Slice

Large Dependence 
Emphasis

Run Length Non-
Uniformity

Zone Percentage Inverse Variance

Root Mean Squared Flatness Large Dependence Low 
Gray Level Emphasis

Short Run Emphasis Large Area Low Gray 
Level Emphasis

Difference 
Variance

90 Percentile Surface Area Dependence Variance Long Run High Gray 
Level Emphasis

Large Area High Gray 
Level Emphasis

Idn

Minimum Minor Axis 
Length

Large Dependence High 
Gray Level Emphasis

Run Percentage High Gray Level Zone 
Emphasis

Idm

Entropy Maximum 
2D Diameter 
Column

Small Dependence Low 
Gray Level Emphasis

Long Run Low Gray 
Level Emphasis

Small Area Emphasis Correlation

Range Maximum 2D 
Diameter Row

Low Gray Level 
Emphasis

Run Entropy Low Gray Level Zone 
Emphasis

Autocorrelation

Variance High Gray Level Run 
Emphasis

Zone Entropy Sum Entropy

10 Percentile Run Length 
Non-Uniformity 
Normalized

Small Area Low Gray 
Level Emphasis

Sum Squares

Kurtosis Cluster 
Prominence

Mean Imc2

Imc1

Difference 
Average

Id

Cluster Tendency
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Table S2 Histopathological diagnosis of enrolled nodules

Pathological diagnosis All nodules (N=1171) Solid nodules (N=548) Subsolid nodules (N=623)

Malignant nodules 

Adenocarcinomas 741 (97.37) 223 (92.15) 518 (99.81)

Squamous carcinomas 15 (1.97) 14 (5.78) 1 (0.19)

Other types 5 (0.66) 5 (2.07) 0 (0.00)

In total 761 (100.00) 242 (100.00) 519 (100.00)

Benign nodules 

Inflammatory nodules 255 (62.20) 182 (59.48) 73 (70.19)

Benign tumors 82 (20.00) 80 (26.14) 2 (1.92)

Other types 73 (17.80) 44 (14.38) 29 (27.89)

In total 410 (100.00) 306 (100.00) 104 (100.00)

Table S3 Details of missing data for CEA, CYFRA21-1 and NSE

CEA CYFRA21-1 NSE

Malignant nodules (N=761)

Effective cases 562 537 513

Missing cases 199 224 248

Percentage of missing 0.26 0.29 0.33 

Median, ng/ml 1.80 1.87 13.27

Benign nodules (n=410)

Effective cases 241 228 227

Missing cases 169 182 183

Percentage of missing 0.41 0.44 0.45 

Median, ng/ml 1.71 1.86 12.06

CEA, carcinoembryonic antigen; CYFRA21-1, cytokeratin 19 fragment; NSE, neuron specific enolase.
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Table S4 Selected features for all nodules, nodules ≤10 mm, solid and subsolid nodules.

Feature Coefficient Count

All nodules (features, n=74)

texture –0.1523835 1

age 0.06533589 2

wavelet_lll_firstorder_root mean squared –0.04389031 3

spiculation 0.042131495 4

original_shape_major axis length –0.04090707 5

diameter 0.036909364 6

shape 0.033710454 7

history of malignancy 0.03174518 8

log_3mm_glszm_size zone nonuniformity 0.0308566 9

wavelet_hlh_glrlm_long run low gray level emphasis 0.030578818 10

wavelet_hll_glcm_maximum probability –0.030241398 11

wavelet_lhh_glcm_idmn 0.027672501 12

sex 0.024286829 13

log_2mm_glcm_cluster prominence –0.023833996 14

wavelet_hlh_glcm_idmn –0.022335792 15

wavelet_llh_glcm_correlation –0.022032931 16

family history of lung cancer 0.02008666 17

wavelet_hlh_firstorder_median 0.0199771 18

location 0.019024547 19

neuron specific enolase (NSE) 0.017194185 20

carcinoembryonic antigen (CEA) 0.0162424 21

aprothrombin time –0.016034134 22

log_3mm_glszm_small area emphasis 0.015090621 23

wavelet_hlh_glcm_inverse variance –0.01478048 24

wavelet_hlh_glcm_cluster prominence –0.013684566 25

wavelet_hhh_firstorder_skewness –0.013468539 26

log_4mm_gldm_small dependence high gray level emphasis 0.013222083 27

original_gldm_small dependence low gray level emphasis 0.011755479 28

log_1mm_firstorder_robust mean absolute deviation –0.01169028 29

wavelet_lhh_glrlm_short run low gray level emphasis –0.011426748 30

wavelet_hhh_firstorder_median –0.011410688 31

wavelet_lhh_glszm_large area high gray level emphasis 0.011297441 32

wavelet_lll_glcm_correlation 0.011281525 33

wavelet_lhh_gldm_small dependence low gray level emphasis –0.011063043 34

wavelet_hll_firstorder_skewness –0.010512063 35

blood platelet 0.009993129 36

wavelet_lll_firstorder_skewness 0.009779177 37

wavelet_hlh_firstorder_skewness 0.009215213 38

log_4mm_glszm_size zone nonuniformity normalized –0.008668284 39

wavelet_lhh_firstorder_mean 0.008643762 40

log_5mm_gldm_large dependence high gray level emphasis 0.008336597 41

log_3mm_glcm_imc1 0.008259805 42

wavelet_lhh_glszm_small area low gray level emphasis –0.008223074 43

log_5mm_glszm_gray level variance 0.00729779 44

log_1mm_gldm_dependence nonuniformity normalized –0.006937272 45

log_4mm_glszm_small area low gray level emphasis 0.00678647 46

log_5mm_glcm_idn 0.006554504 47

prothrombin time 0.006366947 48

log_5mm_glszm_size zone nonuniformity 0.00632784 49

wavelet_llh_glcm_cluster tendency –0.005792676 50

wavelet_hhh_gldm_small dependence low gray level emphasis –0.005367769 51

wavelet_lhl_glszm_large area high gray level emphasis –0.005241822 52

log_3mm_gldm_large dependence low gray level emphasis –0.004694483 53

log_3mm_gldm_small dependence low gray level emphasis –0.004678963 54

wavelet_hhl_glcm_correlation –0.004455136 55

wavelet_lhh_glcm_joint average 0.004391401 56

log_2mm_glszm_low gray level zone emphasis –0.004090064 57

log_2mm_glcm_cluster shade 0.003950946 58

wavelet_lll_firstorder_10 percentile –0.003925614 59

original_firstorder_kurtosis 0.003857596 60

wavelet_hlh_glcm_correlation –0.003388095 61

log_5mm_glcm_difference variance 0.002327749 62

wavelet_lhh_glcm_cluster shade –0.002186119 63

log_2mm_glszm_large area emphasis 0.002185869 64

wavelet_lhl_firstorder_median –0.001794971 65

log_1mm_glszm_large area low gray level emphasis 0.000774499 66

log_2mm_glszm_small area low gray level emphasis –0.000730023 67

lobulation 0.000719328 68

wavelet_hlh_firstorder_mean –0.000579703 69

log_5mm_glszm_large area low gray level emphasis 0.000499966 70

log_5mm_glszm_zone percentage 0.00046101 71

log_5mm_firstorder_kurtosis 0.000458805 72

log_5mm_firstorder_maximum 0.000431416 73

log_3mm_glszm_small area low gray level emphasis –0.000344796 74

nodules≤ 10 mm (features, n=67)

wavelet_lll_firstorder_root mean squared –0.085387975 1

wavelet_lll_firstorder_10 percentile –0.052760538 2

wavelet_lhl_firstorder_skewness 0.04368638 3

wavelet_lll_glcm_autocorrelation –0.037189778 4

wavelet_llh_glcm_cluster tendency –0.036917366 5

log_4mm_glszm_size zone nonuniformity normalized –0.03664406 6

wavelet_hlh_glcm_idn –0.03649864 7

cytokeratin 19 fragment (cyfra21_1) 0.03539686 8

original_firstorder_skewness 0.030780079 9

neuron specific enolase (NSE) 0.03052495 10

wavelet_llh_glcm_correlation –0.029156856 11

log_5mm_glszm_large area low gray level emphasis 0.028894316 12

texture –0.028710542 13

diameter 0.027427517 14

spiculation 0.027001955 15

wavelet_lhl_gldm_dependence variance 0.025864117 16

log_4mm_glszm_small area low gray level emphasis 0.025831908 17

wavelet_lhl_firstorder_kurtosis –0.024995528 18

lobulation 0.02439137 19

log_1mm_glcm_idmn 0.024272965 20

carcinoembryonic antigen (CEA) 0.024164213 21

wavelet_hhl_firstorder_mean 0.023521949 22

wavelet_lll_glcm_idmn 0.023353273 23

history of malignancy 0.021469418 24

wavelet_hll_glcm_idmn –0.01970135 25

wavelet_hlh_firstorder_median 0.019359384 26

wavelet_hlh_glcm_correlation –0.018328678 27

log_1mm_gldm_large dependence low gray level emphasis –0.018173037 28

wavelet_hhl_firstorder_skewness –0.016232854 29

wavelet_hhh_firstorder_median –0.015945809 30

wavelet_hlh_glcm_cluster shade 0.015767435 31

log_2mm_firstorder_kurtosis –0.014968184 32

wavelet_lhh_firstorder_skewness 0.014899718 33

wavelet_llh_gldm_large dependence low gray level emphasis –0.013667205 34

log_5mm_glcm_idn 0.013578288 35

wavelet_llh_firstorder_skewness –0.013431707 36

log_4mm_gldm_large dependence high gray level emphasis 0.012531875 37

log_3mm_glszm_low gray level zone emphasis –0.012381748 38

log_5mm_glcm_cluster prominence 0.012375816 39

original_shape_maximum 2d diameter slice –0.0119441 40

log_2mm_gldm_large dependence low gray level emphasis 0.011709016 41

prothrombin time 0.011531907 42

log_3mm_glcm_imc1 0.010953448 43

wavelet_hlh_glcm_autocorrelation –0.010753098 44

wavelet_lhh_glszm_zone entropy 0.010242574 45

log_4mm_glcm_inverse variance 0.009940656 46

log_4mm_glcm_cluster prominence 0.009320633 47

wavelet_hlh_gldm_large dependence high gray level emphasis –0.009075509 48

wavelet_llh_firstorder_interquartile range –0.008467706 49

age 0.007606886 50

red blood cell –0.007256369 51

wavelet_hhl_glcm_correlation –0.007253644 52

log_4mm_firstorder_kurtosis 0.007172 53

wavelet_hll_firstorder_skewness –0.007003864 54

wavelet_hhh_gldm_large dependence high gray level emphasis 0.004918731 55

log_5mm_glszm_small area low gray level emphasis –0.004511342 56

original_shape_elongation –0.004177442 57

wavelet_lhh_gldm_large dependence high gray level emphasis 0.003418303 58

wavelet_hhl_glszm_large area high gray level emphasis 0.003053799 59

original_shape_flatness –0.002683324 60

log_2mm_glszm_gray level variance –0.002040724 61

log_1mm_glcm_correlation 0.001979248 62

wavelet_hll_glszm_large area low gray level emphasis 0.001149169 63

log_2mm_glszm_gray level nonuniformity 0.00089789 64

wavelet_lhh_glszm_gray level nonuniformity normalized –0.000575396 65

log_3mm_firstorder_kurtosis –0.000409742 66

original_glcm_cluster shade 6.95E–06 67

Solid nodules (features, n=51)

age 0.08456472 1

spiculation 0.078593165 2

sex 0.061542835 3

wavelet_llh_glcm_correlation –0.055488173 4

shape 0.052257538 5

wavelet_lhh_glrlm_short run low gray level emphasis –0.04648701 6

log_5mm_glcm_inverse variance –0.044164747 7

smoking 0.04239887 8

history of malignancy 0.037123434 9

wavelet_hll_glcm_maximum probability –0.031502098 10

original_firstorder_10 percentile –0.0312687 11

log_1mm_firstorder_interquartile range –0.027092805 12

wavelet_hhl_firstorder_median –0.027003296 13

wavelet_hlh_firstorder_median 0.024898052 14

carcinoembryonic antigen (CEA) 0.024303196 15

red blood cell –0.021868914 16

original_shape_sphericity 0.021541847 17

aprothrombin time –0.020654099 18

wavelet_hhh_glcm_cluster shade –0.019607673 19

cytokeratin 19 fragment (cyfra21_1) –0.018995605 20

wavelet_hhh_glcm_cluster prominence –0.01898479 21

log_5mm_glszm_large area low gray level emphasis –0.018560542 22

wavelet_hhh_glszm_large area emphasis 0.018066432 23

wavelet_llh_glszm_large area low gray level emphasis 0.01795587 24

wavelet_lll_firstorder_root mean squared –0.017841883 25

log_1mm_glszm_large area low gray level emphasis –0.01751925 26

wavelet_lhl_firstorder_median –0.017030738 27

wavelet_llh_gldm_large dependence high gray level emphasis –0.014039104 28

wavelet_lll_glcm_correlation 0.013814446 29

log_5mm_glszm_gray level nonuniformity normalized –0.010168748 30

log_5mm_firstorder_maximum 0.010164706 31

original_gldm_ low gray level emphasis 0.009151111 32

original_shape_elongation 0.009042126 33

log_1mm_gldm_large dependence low gray level emphasis –0.008320518 34

wavelet_hll_firstorder_skewness –0.008298235 35

log_3mm_glszm_gray level nonuniformity 0.008272954 36

log_1mm_firstorder_skewness –0.007213732 37

neuron specific enolase (NSE) 0.007036805 38

wavelet_hlh_firstorder_skewness 0.006946954 39

log_2mm_glcm_maximum probability –0.006592018 40

wavelet_hlh_glcm_cluster prominence –0.005666115 41

log_5mm_glszm_gray level variance 0.005162543 42

log_3mm_firstorder_skewness 0.005006426 43

log_2mm_glszm_large area low gray level emphasis –0.004775111 44

log_5mm_glszm_zone percentage 0.004358722 45

diameter 0.003045135 46

white blood cell 0.001779955 47

wavelet_lll_firstorder_uniformity –0.000929418 48

log_4mm_gldm_small dependence high gray level emphasis 0.000884861 49

wavelet_lhh_firstorder_mean 0.000590627 50

wavelet_lhl_glcm_cluster prominence 0.000421362 51

Subsolid nodules (features, n=3)

diameter 0.071469665 1

original_glcm_joint entropy 0.061700333 2

wavelet_HHH_gldm_dependence entropy 0.001622507 3
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Table S5 Performance of established models on training dataset

Group Methods Accuracy F1 Score Recall Precision Sensitivity Specificity AUC

All nodules XGBOOST 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Random Forest 0.92 0.94 0.99 0.90 0.99 0.79 0.98 

SVM 0.90 0.92 0.97 0.88 0.97 0.76 0.95 

Nodules ≤10 mm XGBOOST 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Random Forest 0.98 0.98 1.00 0.97 1.00 0.97 0.99 

SVM 0.93 0.94 0.97 0.91 0.97 0.88 0.98 

Solid nodules XGBOOST 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Random Forest 0.98 0.98 0.99 0.98 0.99 0.98 0.99 

SVM 0.88 0.87 0.90 0.85 0.90 0.87 0.94 

Subsolid nodules XGBOOST 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Random Forest 0.80 0.81 0.83 0.79 0.83 0.78 0.93 

Logistic 0.73 0.72 0.70 0.74 0.70 0.76 0.78 

AUC, area under the ROC curve.


