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Introduction

Artificial intelligence (AI) can be defined as the science of 
computer algorithms able to perform tasks that imitate 
human cognitive functions and intelligence (1). AI-based 
technologies have recently experienced a widespread 
explosion across many disciplines, and their implementation 
in healthcare settings is accordingly growing (2).

The applications of AI systems in medicine seem 
currently endless, ranging from diagnosis generation and 
risk prediction, to therapy selection and outcome evaluation 
(3,4). The aim of these techniques is to extract relevant 
information from massive healthcare data and to assist 

clinical decision-making, thus reducing medical errors, and 
enhancing the quality and efficiency of care (5).

AI devices mainly fall into two major categories, natural 
language processing (NLP) methods and machine learning 
(ML) techniques, even if some overlapped features are 
common to both technologies (3). NLP methods can 
obtain useful information from unstructured data, such as 
clinical reports, operative notes, and discharge summaries, 
turning narrative texts into data that can be processed 
by computer programs (6). ML techniques construct 
analytical algorithms to iteratively analyze titanic amount 
of structured information, such as imaging and genetic 
data; they can extract meaningful patterns and create 
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prediction models about input variables (7,8) (Figure 1). 
There are three subtypes of ML that have been applied to 
medicine: supervised learning, unsupervised learning, and 
reinforcement learning (RL) (Table 1). 

A supervised ML algorithm uses a dataset that has to 
be labeled by humans, building a relationship between 
the input variables and the outcomes of interest, when the 
outcomes are known. Due to the proficiency to provide the 
best results, supervised techniques such as linear regression, 
logistic regression, Support Vector Machine (SVM), random 
forest, naïve Bayes, decision tree, and neural network (3,9), 
are frequently used in healthcare applications. Although 
considered a subcategory of supervised learning, deep 
learning should be mentioned as an independent part, due 
to its wide application in healthcare setting. This system 
is made of a series of inputs which go through multiple 
interconnected layers of neurons (neural networks), that 
recognize different features independently, and makes 
predictions on a large quantity of information, finally 
providing an output. The use of deep learning techniques in 
medicine have been especially effective if applied to images 
detection and classification. 

In unsupervised ML algorithm, conversely, the only 
inputs are raw features, and the outcomes are unknown, 
therefore the method can be used to find hidden patterns 
in data without human feedback. Principle Component 

Analysis (PCA) and cluster analysis are the main methods 
of unsupervised learning successfully used in healthcare to 
discover new phenotypes of a multifactorial disease (10).

Finally, RL techniques are a family of algorithms that 
maximize return and are the core technique at the heart of 
robotic surgery. RL algorithms iteratively try different series of 
actions until a system can achieve an appropriate performance. 
They can be used to train a surgical robot to perform a 
series of actions promoting positive actions and discouraging 
negative ones, by means of a reward function (11).

The creation and application of a ML method depends 
on four crucial steps: the collection and preparation of data, 
the choice and training of the algorithm according to the 
objective to pursue, the implementation of the software, and 
the analysis and validation of the system for its proper use 
(Figure 2).

Despite the promising results of AI implementation 
in thoracic surgery, its widespread diffusion is far to be a 
common practice. The aim of this article is to review the 
current applications of AI to thoracic surgery, exploring 
the influence of AI-based technologies on each step of the 
clinical pathway, from diagnosis to the Operating Room 
(OR), including the legal and ethical aspects related to AI in 
healthcare (Figure 3).

We present the following article in accordance with the 
Narrative Review reporting checklist (available at: https://

Ability of a computer or machine 

to perfomm tasks generally 

associated with a human being

Machine learning is a subset of AI that provides
systems the abilityto automatically leam and

improve from experience without being explicitly
programmed

Deep Learning is a class of ML algorithms that 

uses multiple layers to progressively extract 

higher-level features from the raw input

Artificial intelligence

Machine learning

Deep learning

BIG DATA

Figure 1 Definitions and relationships of artificial intelligence-based techniques. 
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Table 1 ML algorithms mainly used in healthcare 

Algorithm Definition

Supervised learning Training a model from input variables and their corresponding labels, using a dataset that has to be labeled 
by humans 

Regression models Simple models, can provide great insight into linear relationships

Support vector machine Fast and flexible, its goal is to find an optimal decision boundary between 2 or more classes that put the 
maximum margin between the 2 groups

Random forest A collection of short height data structures called random decision trees, that uses different combination of 
explanatory variables to predict the outcome of interest

Naïve bayes Family of simple “probabilistic classifiers” based on applying Bayes’ theorem with strong (naïve) 
independence assumptions between the features

Deep learning Neural network with many hidden layers, able to handle complex data with various structures to create a 
prediction. The commonly used deep learning algorithms in medicine include convolution neural network, 
recurrent neural network, deep belief network and deep neural network

Unsupervised learning Training a model to find hidden patterns in an unlabeled dataset. Principle component analysis and cluster 
analysis are the main methods used in healthcare

Reinforcement learning Group of algorithms that iteratively try different series of actions until the system is able to appropriately 
perform a reward function

ML, machine learning.

CREATION AND APPLICATION OF A MACHINE LEARNING MODEL

BIG TADA SYSTEM

MACHINE LEARNING
ANALYSIS

CREATION OF

IMPLEMENTABLE SOFTWARE

NEW SYSTEM
IMPACT ANALYSIS

Figure 2 Architectural structure of creation and validation of a 
machine learning model, designed in four points.

Figure 3 Main fields in which artificial intelligence application has provided the most encouraging results, in both clinical, organizational, 
and educational settings of thoracic surgery. AI, artificial intelligence; OR, operating room.

AI in thoracic surgery
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dx.doi.org/10.21037/jtd-21-761).

Methods

We performed a narrative review of the literature on 
Scopus, PubMed and Cochrane databases. All the relevant 
studies published in the last ten years, until March 2021 
were included. The research string comprised various 
combinations of “artificial intelligence”, “machine 
learning”, “lung cancer”, “esophageal cancer”, “pathology”, 
“risk assessment”, “thoracic surgery”, “robotics”, “deep 
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learning”. Papers concerning children and animals, studies 
published after March 2021 or written in languages other 
than English were excluded. Articles of interest that had 
been cited by the articles identified in the initial search were 
also included (Figure 4).

Thoracic lesions management

Due to the weight of early detection of lung malignancies 
on the survival rates, pulmonary nodule management 
has been one of the main fields to be influenced by the 
implementation of AI-based technologies. In fact, the 
substantial variability reported among radiologists in the 
detection of lung nodules and the high false-positive rate in 
screening programs (12), bared the need of tools assisting 
the radiologist in nodule identification, measurement, risk-
stratification, and monitoring.

Various Computer-Aided Diagnosis (CAD) techniques 
have been proposed in pulmonary nodule assessment 
with CT and chest radiography since last decades (13,14).  
Although CAD has revealed to improve detection and 
efficiency, its acceptance in routine clinical practice is 
prevented from the high number of false positives (15). 

More recently,  due to their  abi l i ty to increase 
diagnostic accuracy (16,17), the introduction of deep 
learning techniques gained sparkling attention. The 
turning point was the publication of the paper titled 

“ImageNet Classification with Deep Convolutional 
Networks” by Krizhevsky et al. (18), who first used a 
multilayered convolutional computational model known 
as Convolutional Neural Network (CNN) to identify 
and classify more than one million of images to a level of 
accuracy never seen before. Even if the use of CNNs in this 
paper was not in a radiological setting, the manuscript by 
Krizhevsky et al. paved the way for a wide application of the 
technique. In fact, CNN is a form of neural networks that 
uses convolution filters to extract features from images (18) 
and seem able to detect patterns beyond human perception. 
In comparison to CAD technique, the innovation of CNNs 
is due to its capacity to learn from verified data, and to self-
determine previously unknown features, thus maximizing 
classification with limited direct supervision (16). Thus, 
this architecture of feature extraction by convolutional 
layers proved to be appliable to image classification and 
segmentation (19-21). Since 2012, CNNs have proven to 
be a valid tool in radiologist’ hands in assisting pulmonary 
nodule detection, confirming its superior efficacy 
compared to both human perception and standard CAD 
techniques (22-25). Specifically, they show a reduction 
in the false-positive rate, therefore potentially enabling 
to prevent unnecessary follow-up (26,27). Moreover, 
recently, deep learning reported significative results in 
nodule segmentation and characterization, while only 
few preliminary studies are currently available about the 
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Figure 4 Article selection flow diagram. 
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application of these techniques on monitoring and follow-
up of pulmonary lesions (28). Despite the high sensitivity of 
CNNs in detecting and discriminating pulmonary lesions, 
some limits have still to be overcome. The main advantage 
of CNNs is the ability to self-learn previously unknown 
features, but the learning capacity requires a huge amount 
of high-quality data; moreover, a substantial number of 
studies has been conducted on the same large database; so, 
to validate these techniques for routine clinical use, further 
work is needed (16,27).

Among other supervised ML algorithms, SVM, random 
forest, and decision tree are the most widely used in the 
field of diagnosis of thoracic disease (29). SVM has proven 
to be successful in enhancing the efficiency of diagnosis 
(30,31), while random forest has been able to correctly 
classify non-small cell lung cancer (NSCLC) (32) (Table 2).

Current literature about AI application on the management  
of thoracic disease other than pulmonary nodules is to date 
limited. AI based technologies have been mainly applied in 
the early and accurate detection of esophageal malignant 
lesion (33-35), and in the classification of thymic epithelial 
tumours (36). 

Preoperative evaluation and risk- assessment

In last decades, AI gained attention in the field of 
preoperative risk assessment, resulting in many ML 
algorithms to predict the risk of major complications and 
mortality after surgery (37,38).

Due to the high morbidity rates, it is of utmost 
importance to properly evaluate candidates for a thoracic 
surgical procedure, to assess their individual risk and 
prognosis (39). In this regard, AI-based technologies have 
shown promising results, providing an effective aid in the 
decision-making process, and in the achievement of overall 
integrated risk scores (40-45) (Table 3). Particularly, in 
2002, Esteva et al. used four different probabilistic artificial 
neural network models to estimate post-operative prognosis 
after lung resection (41). Shortly after, Santos-García et al.,  
similarly, evaluated the prediction of cardio-respiratory 
morbidity after pulmonary resection for NSCLC (42).

More recently, Bolourani et al. identified risk factors 
for respiratory failure after lobectomy and introduced two 
machine learning-based techniques to predict respiratory 
failure for quality review and clinical decision-making 
settings (43). Encouraging results were obtained by 
Salati et al. who, by means of an innovative ML approach 
called XGBOOST, developed a model able to define the 

risk of cardiac and pulmonary complications in the early 
postoperative period for patients submitted to anatomic 
lung resection (44). Lastly, an AI prediction model with 
seven supervised ML algorithms was constructed to predict 
whether patients could be weaned immediately after lung 
resection surgery or if they could need a staged weaning 
with transfer to the intensive care unit (45). 

Overall, ML algorithms proved to be effective in a 
tailored optimization of risk definition, increasing the 
efficacy of the pre-anesthetic evaluation, suggesting 
the proper therapeutic planning, and improving the 
communication with patients and family members.

Surgical performance and planning

To date, implementation of AI-based technologies in 
the OR is limited. Still, they have a promising future 
in increasing surgical precision and safety, supporting 
intraoperative decision-making, and predicting postoperative  
outcomes (46,47).

In the last two decades, surgical robotics has experienced 
a relentless growth. Minimally invasive surgery has been 
shown to decrease length of hospital stay and post-operative 
complications and is currently considered as a core issue of 
enhanced recovery programs. 

However, even if it is commonly associated with AI, 
robotic-assisted surgery should not be considered an AI-
based technology, and it requires full supervision by 
human surgeon. The range of robotically assisted thoracic 
procedures is widening and includes lobectomies, resection 
of mediastinal malignancy, and esophagectomies. The 
Da Vinci Robotic Surgical System (Intuitive Surgical 
Inc. Sunnyvale, CA, USA) is the most used platform. 
Robotic tele-manipulators provide three-dimensional 
(3D) and magnified visualization, and are equipped with 
flexible effector instruments, that have a wide freedom 
of motion, thus enhancing surgeon’s dexterity during the  
procedure (48). Nevertheless, the lack of tactile feedback 
might impair surgical outcomes, leading to suture breakage 
or failure. Dai et al. evaluated a biaxial haptic feedback 
system that effectively warns the user when the tension is 
approaching the suture’s failure point (49). Similarly, in 
2016, Shademan et al. proved the feasibility of autonomous 
surgery, evaluating a supervised system compared to robotic, 
laparoscopic, and manual approach, when performing an 
intestinal anastomosis (50). Furthermore, ML models were 
used to develop and enhance contactless interfaces with 
gesture recognition, decreasing the risk of contamination 
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Table 2 Artificial Intelligence studies related to pulmonary nodules management 

Author Objective Algorithm Application Main results

Nam JG,  
et al.

To develop and validate a DLAD for 
malignant pulmonary nodules on 
chest radiographs and to compare its 
performance with physicians including 
thoracic radiologists

Deep learning-
based automatic 
detection 
algorithm

Outperformance 
of radiograph 
classification and 
nodule detection for 
malignant pulmonary 
nodules on chest 
radiographs

Radiograph classification
performances of DLAD were a range 
of 0.92–0.99 (AUROC) and 0.831–
0.924 (JAFROC FOM), respectively

Li W, et al. To design a deep convolutional 
neural networks method for nodule 
classification, with the advantage of 
autolearning representation and strong 
generalization ability

Deep convolutional 
neural networks

Pulmonary nodule 
recognition and 
classification

Results demonstrate the effectiveness 
of the proposed method in terms of 
sensitivity and overall accuracy and 
that it consistently outperforms the 
competing methods

Nibali A,  
et al.

To improve the ability of CAD systems to 
predict the malignancy of nodules from 
cropped CT images of lung nodules

Deep residual 
networks

Pulmonary nodule 
malignancy 
classification

The system achieves the highest 
performance in terms of all metrics 
measured including sensitivity, 
specificity, precision, AUROC, and 
accuracy

Eppenhof 
KAJ, et al.

To develop a deformable registration 
method based on a 3-D convolutional 
neural network, together with a 
framework for training such a network

Convolutional 
neural networks

Pulmonary CT 
registration

This approach results in an accurate 
and very fast deformable registration 
method, without a requirement for 
parameterization at test time or 
manually annotated data for training

da Silva 
GLF, et al.

To proposes a methodology to reduce 
the number of false positives using a 
deep learning technique in conjunction 
with an evolutionary technique

Convolutional 
neural networks

Lung nodule false 
positive reduction on 
CT images

The methodology was tested on 
CT scans with the highest accuracy 
of 97.62%, sensitivity of 92.20%, 
specificity of 98.64%, and AUROC 
curve of 0.955

Naqi SM,  
et al.

To develop a multistage segmentation 
model to accurately extract nodules 
from lung CT images

Support vector 
machine

Lung nodule 
segmentation method

The classification is performed over 
GTFD feature vector, and the results 
show 99% accuracy, 98.6% sensitivity 
and 98.2% specificity with 3.4 false 
positives per scan

Choi W,  
et al.

To develop a radiomics prediction 
model to improve pulmonary nodule 
classification in low-dose CT, and to 
compare the model with the Lung-RADS 
for early detection of lung cancer

Support vector 
machine

Improvement of 
pulmonary nodule 
classification in low‐
dose CT

The model achieved an accuracy of 
84.6%, which was 12.4% higher than 
Lung-RADS

Bashir U,  
et al.

To compare the performance of random 
forest algorithms utilizing CT radiomics 
and/or semantic features in classifying 
NSCLC

Random forest Non-invasive 
classification of non-
small cell lung cancer

Non-invasive classification of NSCLC 
can be done accurately using random 
forest classification models based on 
well-known CT-derived descriptive 
features

DLAD, deep learning-based automatic detection algorithm; CAD, computer-aided diagnosis; CT, computed tomography; AUROC, area 
under the receiver operating characteristic; GTFD, Geometric texture features descriptor; Lung-RADS, Lung CT Screening Reporting and 
Data System of the American College of Radiology; NSCLC, non-small cell lung cancer.
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Table 3 Artificial Intelligence studies related to preoperative evaluation in thoracic surgery

Author Objective AI algorithm Application Main results

Esteva H,  
et al.

Assessment of surgical risk in 
patients undergoing pulmonary 
resection

Neural network Prediction of 
postoperative 
outcomes in lung 
resections

NN can integrate results from multiple 
data predicting the individual outcome for 
patients, rather than assigning them to less-
precise risk group categories

Santos-Garcia 
G, et al.

To propose an ensemble model of 
ANNs to predict cardio-respiratory 
morbidity after pulmonary resection 
for NSCLC

Artificial neural 
network

Prediction of cardio-
respiratory morbidity 
after pulmonary 
resection for NSCLC

In this series an ANN ensemble offered a 
high performance to predict postoperative 
cardio-respiratory morbidity

Bolourani S,  
et al.

To identify risk factors for respiratory 
failure after pulmonary lobectomy

Random forest Predicting of 
respiratory failure 
after pulmonary 
lobectomy

Two ML-based prediction models were 
generated and optimized. The first model, 
with high accuracy and specificity, is suited 
for performance evaluation, and the second 
model, with high sensitivity, is suited for 
clinical decision making

Salati M,  
et al.

To verify if the application of an AI 
analysis could develop a model 
able to predict cardiopulmonary 
complications in patients submitted 
to lung resection

Extreme 
gradient 
boosting

Prediction of 
cardiopulmonary 
complications after 
lung resection

XGBOOST algorithm generated a model 
able to predict complications with an area 
under the curve of 0.75

Chang YJ,  
et al.

To construct a prediction model with 
seven supervised ML algorithms 
to predict whether patients could 
be weaned immediately after lung 
resection surgery

Multiple ML 
algorithms

Prediction of staged 
weaning from 
ventilator after lung 
resection surgery

The AI model with Naïve Bayes Classifier 
algorithm had the best testing result 
and was therefore used to develop an 
application to evaluate risk based on 
patients’ previous medical data, to assist 
anesthesiologists, and to predict patient 
outcomes in pre-anesthetic clinics

ML, machine learning; NN, neural networks; ANNs, artificial neural networks; NSCLC, non-small cell lung cancer; AI, artificial intelligence.

during surgical procedures (51). 
Also, the application of AI could prompt the progression 

of precision surgery and surgical training. ML algorithms 
have been proposed to accurately assess surgical skills, 
therefore providing a feedback during learning curves and 
periodic evaluations (52-54) (Table 4).

Albeit its undisputed advantages, robotic surgery is 
associated with longer procedural times, and substantial 
costs (55,56), hence an accurate scheduling of surgical 
procedures is needed. AI algorithms proved to be a valuable 
tool to properly plan each procedure, improving the 
prediction of case duration, and the detection of surgeries 
with high risks of cancellation (57,58).

The problem of surgical room organization has 
become increasingly important in the last year; the 
current coronavirus disease pandemic challenged us to 
face a disruption of healthcare systems, with considerable 
consequences on surgery waiting lists and scheduling. In 
this context, it was hypothesized that ML models might 

have a substantial role in the optimization of operating 
rooms efficiency, allowing to save costs and maximize 
resources (59,60).

Pathology 

Histopathological diagnosis remains a crucial step for the 
optimal therapeutic planning and prognosis prediction. 
The high variability among pathologists prompted to 
evaluate the application of AI to computational pathology. 
In 2016, Yu et al. successfully used ML methods for 
the prognostic prediction of lung adenocarcinoma and 
squamous cell carcinoma (SCC) patients (61). Comparable 
results were obtained by Coudray et al., who trained a 
CNN to distinguish between adenocarcinoma and SCC 
and to predict mutations from NSCLC histopathology (62).  
Neural networks algorithms were similarly employed to 
distinguish histologic patterns of lung adenocarcinoma 
(63,64), and, more recently, to successfully differentiating 
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between lung carcinoma and non-neoplastic lesion (65) 
(Table 5).

Finally, some studied investigated the application of 
AI on CT scan and PET/CT to provide a pathological 
classification of lung carcinoma (66,67).

Prognosis

Some researchers recently explored the application of AI 
models and radiomics to predict therapy response and 
outcomes in lung malignancies (68,69).

Moreover, machine learning approaches provide 
encouraging results to predict the risk of recurrence of lung 
and esophageal adenocarcinoma (70,71).

Limits, legal and ethical issues

Despite the encouraging results of AI implementation in 
all fields of patient-care settings, before it can be applied to 
daily practice, several issues remain to be addressed.

The widespread application of AI has opened new 
debates about legislative issues and the protection of 
privacy. This aspect has become even more evident in the 
world of healthcare, where progress has to deal with the 
protection of personal and extremely sensitive information. 
For this reason, some scientific societies have developed 
specific guidelines on the subject (72,73). Nevertheless, 
the technology at the moment is spread so fast that the 
legislative paths are not always able to keep its rapidity. An 
example is the General Data Protection Regulation 2018 by 

Table 4 Artificial Intelligence studies related to surgical performance 

Author Objective AI algorithm Application Main results

Dai Y, et al. To develop and validate a novel grasper-
integrated system with biaxial shear 
sensing and haptic feedback to warn 
the operator prior to anticipated suture 
breakage

Biaxial haptic 
feedback system

Improvement of 
outcomes related to 
knot tying tasks in 
robotic surgery

This system may improve outcomes 
related to knot tying tasks in robotic 
surgery and reduce instances of 
suture failure while not degrading the 
quality of knots produced

Shademan A,  
et al.

To demonstrate in vivo supervised 
autonomous soft tissue surgery in an 
open surgical setting, enabled by a near-
infrared fluorescent imaging system and 
an autonomous suturing algorithm

Smart Tissue 
Autonomous 
Robot

Feasibility of 
supervised 
autonomous robotic 
soft tissue surgery

The outcome of supervised 
autonomous procedures is superior 
to surgery performed by expert 
surgeons

Cho Y, et al. To enhance the accuracy of gesture 
recognition for contactless interfaces

Support vector 
machine classifier 
and Naïve Bayes 
classifier

Enhancement of the 
accuracy of gesture 
recognition

Overall accuracy of the five 
gestures was 99.58%±0.06%, 
and 98.74%±3.64% on a personal 
basis using SVM and Naïve Bayes 
classifiers

Wang Z, et al. To propose an analytical deep learning 
framework for skill assessment in surgical 
training

Convolutional 
neural network

Objective skill 
evaluation in robot-
assisted surgery

The proposed learning model 
achieved competitive accuracies of 
92.5%, 95.4%, and 91.3%, in the 
standard training tasks: suturing, 
needle-passing, and knot-tying

Fard et al. To build a classification framework to 
automatically evaluate the performance  
of surgeons with different levels of 
expertise

Multiple ML 
algorithms

Automated robot-
assisted surgical  
skill evaluation

The proposed framework can classify 
surgeons’ expertise as novice or 
expert with an accuracy of 82.3% for 
knot tying and 89.9% for a suturing 
task

Ershad M,  
et al.

To propose a sparse coding framework for 
automatic stylistic behavior recognition 
in short time intervals using only position 
data from the hands, wrist, elbow, and 
shoulder

Support vector 
machine

Evaluation of 
technical skills in 
robotic surgery

The proposed dictionary learning 
method can assess stylistic behavior 
performance in near real time using 
user joint position data with improved 
accuracy

SVM, support vector machine.
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the European Union. (EU-GDPR), which despite having 
been drawn up to meet new requirements, not explicitly 
insert the term “artificial intelligence” in the text (74). 
Furthermore, by not specifically addressing the subject 
of AI, often the indications provided are sometimes too 
stringent to allow adequate progress of these technologies 
and escape strategies are needed to be able to continue 
developing them (75). If on the one hand AI in medicine 
is offering many promises, on the other hand the rights 
of citizens must always be able to be considered; it is a 
very delicate balance between progress and privacy (76). 
A specific regulation of AI in healthcare will probably be 
necessary. Furthermore, a legislative expert should be also 
included in each multidisciplinary research group dealing 
with this topic in order to be in line with current legislation. 

The efficacy, validation, and improvement of ML 
algorithms depend on the amount and supply of high-
quality data (4). Data need to be available in a standard 
format and accurately labeled to be shared across centers, 

thus raising concerns about data protection, informed 
consent, and cybersecurity (77,78). Furthermore, data used 
for ML training models can be easily biased, hence the 
publication of consensus guidelines to assess the validation 
of AI-based technologies is needed (79). Still, the different 
geographic distribution of AI implementation remains a 
major ethical concern; a mindful effort should be made to 
ensure that all population can receive equal access to the 
benefits provided by ML models (11).

Finally, due to the huge influence that the implementation  
of AI algorithms can exert on clinical practice, a primary 
focus should be the involvement of physicians and 
researchers, who need to be adequately educated on 
these technologies, their proper use, and limitations (80). 
Recently, several prestigious Universities and Scientific 
Societies are offering specialized courses regarding the use 
of Big Data, AI and ML in healthcare. It will be essential 
that healthcare professionals reach a certain degree of 
digital literacy that will enable them to interface with these 

Table 5 Artificial Intelligence studies related to lung pathology 

Reference Objective AI algorithm Application Main results

Yu KH, et al. To improve the prognostic prediction of 
lung adenocarcinoma and squamous 
cell carcinoma patients through 
objective features distilled from 
histopathology images

Elastic net-Cox 
proportional 
hazards model

Prediction of the prognosis of lung 
cancer by automated pathology 
image features and thereby 
contribution to precision oncology

Automatically derived 
image features can 
predict the prognosis of 
lung cancer patients 

Coudray N,  
et al.

To train a deep convolutional neural 
network on whole-slide images 
obtained from The Cancer Genome 
Atlas to accurately and automatically 
classify them

Deep 
convolutional 
neural network

Detection of cancer subtype or gene 
mutations and mutation prediction 
from non-small cell lung cancer 
histopathology

Deep-learning models 
can assist pathologists 
in the detection of 
cancer subtype or gene 
mutations

Wei JW,  
et al.

To propose a deep learning model that 
automatically classifies the histologic 
patterns of lung adenocarcinoma on 
surgical resection slides

Deep neural 
network

Improvement of classification of lung 
adenocarcinoma patterns

All evaluation metrics for 
the model and the three 
pathologists were within 
95% confidence intervals 
of agreement

Gertych A,  
et al.

To a pipeline equipped with a CNN 
to distinguish four growth patterns of 
pulmonary adenocarcinoma (acinar, 
micropapillary, solid, and cribriform) 
and separate tumor regions from non-
tumor

Convolutional 
neural network

To assist pathologists in improving 
classification of lung adenocarcinoma 
patterns by automatically pre-
screening and highlighting cancerous 
regions prior to review

The overall accuracy of 
distinguishing the tissue 
classes was 89.24%

KanavatI F,  
et al.

To train a CNN, using transfer learning 
and weakly-supervised learning, to 
predict carcinoma in Whole Slide 
Images

Convolutional 
neural network

Development of software suites 
that could be adopted in routine 
pathological practices and 
potentially help reduce the burden on 
pathologists

Highly promising results 
for differentiating 
between lung carcinoma 
and non-neoplastic 
lesion

CNN, Convolutional Neural Network.
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new technologies and to extrapolate the maximum use for 
their patients (81). This will allow for parallel growth and 
prevent the physician from succumbing to this technological 
revolution.

Conclusions

Technologies are becoming more and more present in 
health-care settings. In the perioperative medicine, ML 
algorithms implementation could prompt a multidisciplinary 
approach, particularly in preoperative assessment, risk 
stratification, and postoperative outcomes. AI along with 
the last innovations of the Health-Technology Assessment 
(HTA) and Telemedicine, will be the cornerstone of the 
future of perioperative medicine. Several applications 
in thoracic surgery have been described, both clinical, 
organizational, and educational. However, further validation 
studies are needed to understand the real impact of AI in 
this specific surgical context.
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