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Why artificial intelligence (AI)?

The convergence of large datasets, greater computing power 
and algorithmic advances has opened the door for AI to be 
applied across a wide range of industries. In particular, it is 
the promise of machine learning (ML) which underpins this 
new potential. ML comprises a versatile range of techniques, 
from neural networks that can analyse imaging or text, to 
sophisticated predictive models, and is defined by an ability 
to ‘learn’ from the data it is shown. Rather than following 
rules (e.g., “if blood test X is elevated and blood test Y 
remains static, suggest Z”), a ML algorithm will identify 
the relevant patterns in the data for performing the task at 
hand. These techniques excel at identifying complex, non-
linear relationships within large quantities of data and can 
update their performance as new data are collected. This 
enables the rapid and scalable development of tools that 
previously required laborious manual input or were simply 
not possible. In healthcare, examples where such approaches 
have matched clinician performance include in the screening 
of breast cancer (1), identifying colonic polyps (2) and 
recognising sight-threatening retinal disease (3). In sleep 
medicine, it has shown promise in supporting the diagnosis 
of OSA (4-6) and narcolepsy (7), personalising treatment (8) 
and enhancing pathophysiological understanding.

Utilising all data points through convolutional 
neural networks

As clinicians now move towards a phenotypic approach 
to understanding and offering treatment to patients 
with OSA (9), more factors can be considered prior to 
offering treatment; in addition to the large amounts of 

electrophysiological data recorded by polysomnography 
(PSG). Factors which may help determine treatment for 
sleep patients include the body mass index (BMI), pharyngeal 
critical closing pressure (Pcrit), upper airway dilator muscle 
recruitment (10), respiratory arousal threshold (11) and 
ventilatory feedback control (loop gain) (12), and the success 
of previous treatments as determined by factors such as the 
Apnoea Hypopnoea Index (AHI) and Epworth Sleepiness 
Score (ESS). AI algorithms operate best, by learning from 
large data sets with multiple data points, to determine 
optimal treatment options through constantly developing 
layered mathematical models. More data points help increase 
its accuracy.

Supporting upper airway analysis

The upper airway is a complex structure and partially 
determines treatment options. The pharynx is fully 
collapsible (13), and airway occlusion can occur in 
different degrees in different patients, with a proportional 
worsening with age (14,15). Upper airway anatomy can 
be assessed using endoscopy, magnetic resonance imaging 
and ultrasonography. Convolutional neural networks are 
a relatively novel ML technique which excel at analysing 
images. There is the potential to extract useful information 
from these imaging modalities, if appropriate datasets are 
developed. Computational fluid dynamic modelling is a 
method for analyses of airflow through the human upper 
airway via imaging. Computational analysis of airflow, in 
combination with geometries based on medical imaging 
such at CT or MRI, may provide insights into sleep 
pathology and diagnosis. Yeom et al. [2019] (16), were able 
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to identify the severity of OSA (mild, moderate/severe) 
with a greater than 80% accuracy in 55 patients using this 
approach, in this proof of concept study which used only 
a limited number of upper airway landmarks (7) for their 
computational modelling. 

ML conceptual studies to improve diagnostic 
pathways

Investigations for OSA, including PSG and home sleep 
apnoea testing (HSAT), are resource-intensive. AI may 
enable the development of non-intrusive tools that are 
less resource-intense, supporting diagnosis outside of the 
clinical sleep medicine setting in the future.

Groups have looked at analysing physiological signals 
such as oxygen saturation (SaO2), respiratory rate and 
single-lead ECGs with AI to support OSA screening. 
Papini et al. [2019] used ECG-based features, creating 
algorithms, to help detect OSA-related events, and found a 
good correlation to the AHI (0.72 correlation, estimation 
error 0.56±14.74 events/h), and could screen a large range 
of OSA severities [area under the ROC-curve (AUC) 
≥0.86, Cohen’s kappa ≥0.53 and precision ≥70%] (4). Behar 
et al. trained a logistic regression classifier on SaO2 and 
demographic data to achieve an AUC of 0.94, as well as 
an AUC of 0.92 when using oximetry data alone, at times 
outperforming questionnaires such as the STOP-BANG 
screening questionnaire (5). Other groups have looked at 
multi-class detection of mild, moderate and severe OSA. 
By combining at-home oximetry and airflow recordings, 
Álvarez et al. achieved an intra-class correlation (ICC) 
coefficient of 0.93 between estimated and actual apnoea-
hypopnea index (AHI) score (6). The increasing adoption 
of wearable technology offers exciting potential for new 
approaches to screening. For example, the Apple Watch® 
now offers ECG recording, and other portalable devices 
such as ARES® (Watermark Medical, Southern US) and 
ApneaLink® (ResMed, California) offer measurement of 
oximetry and airflow.

Stretch  e t  a l .  used  pre-HSAT quest ionnaires , 
demographic and health data to build a mixture of ML 
models to predict which patients would have non-diagnostic 
HSAT results. Their best performing model, using a 
random forest algorithm, achieved a sensitivity of 46% and 
a specificity of 95% (17). The most important variables 
for the model, perhaps predictably, were age, weight and 
BMI, but these were combined with scores on the Berlin 
Questionnaire, PHQ-9, STOPBANG and Insomnia 

Severity Index, amongst others.
At present, analysis of PSG recordings requires manual 

feature extraction, as signal must be identified amongst the 
noise. Analysing PSG waveforms using convolutional neural 
networks, which specialise at processing visual data, may 
enable the automatic extraction of features, that can help 
to overcome inter-scorer variability. The algorithm will 
continue to improve its accuracy as it ‘learns’ the more data 
that are channelled through.

Narcolepsy, another common sleep condition, is assessed 
using PSG and a Multi Sleep Latency Test (MSLT). In 
a multicentre study, Stephansen et al. developed a neural 
network capable of automating sleep stage scoring, enabling 
diagnosis of narcolepsy via PSG data alone (7), with the 
model outperforming individual expert scorers by achieving 
a 91% sensitivity and a 96% specificity (70 subjects,  
6 scorers across 3 centres). By utilising the sleep trends 
that deep learning techniques are able to identify, it may 
be possible to significantly reduce the costs associated with 
diagnosis. These techniques can be applied to diagnosing 
OSA from automated PSG analysis in addition to predicting 
adherence to continuous positive airway pressure (CPAP) 
treatment.

Predicting non-adherence and non-responders to 
therapy

CPAP is the gold-standard treatment for patients with  
OSA (18), but non-adherence is as high as 50–60%  
(19-21), due to varying factors including nasal resistance, 
claustrophobia high mask pressures and mucosal dryness 
(19-21). Other factors predicting non-adherence include 
male sex, lower OSA severity, less snoring, lower AHI, 
lower BMI and use of hypnotic drugs (22), and even 
smoking status (20). AI may facilitate personalised treatment 
decisions, by predicting risk of non-adherence by factoring 
in data such as these, in addition to the aforementioned 
anatomical and physiological differences between patients. 
Rafael-Palou et al. [2018] showed that, in theory, it is 
possible to predict CPAP adherence against clinical features 
prior to CPAP achieving an F1-score of 75% (23). (The F1-
score is a common metric for AI models, which essentially 
measures the balance of sensitivity and specificity – with 
100% a perfect score and 0% the worst possible score.)

In mild-to-moderate cases of OSA, oral appliances are 
recommended (24). However, they are not as effective as 
CPAP in improving the objective markers of the AHI, and 
many patients may not derive satisfactory benefit (8). In a 
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prospective study, Remmers et al. developed an AI-powered 
feedback-controlled mandibular positioner test (FCMP) for 
home-use (8). It was able to predict responders and non-
responders with an 85% sensitivity and 93% specificity, 
and also identify the optimal level of mandibular protrusion 
for effective treatment in 86% of cases. These predictive 
accuracy are comparable to similar in-laboratory studies (8).  
Interestingly, the algorithm seemed to suggest optimal 
protrusion lengths without resorting to unnecessarily 
high protrusions, possibly contributing to future long-
term tolerance and side effect reduction. Such a tool may 
empower patients with self-management, which may in turn 
improve treatment adherence.

Important considerations

Though we have touched on some early implementation 
of ML and AI in sleep medicine, careful consideration 
surrounding real-world implementation is needed to ensure 
it is done effectively. Ultimately, studies to date have been 
descriptive in nature, and using well-designed randomised-
controlled trials will be important for providing evidence-
based justification. Additional considerations include 
the logistical challenges of incorporating AI tools into 
workflows, as well as the need for staff training. These will 
require close collaboration between manufacturers and sleep 
disorder centres to ensure the benefits and reliability of AI. 

More broadly, the risks of exacerbating health inequalities 
when using ML-enabled tools must be mitigated by 
ensuring the use of diverse datasets to ‘train’ the algorithm. 
This issue is compounded by the use of non-publicly 
available datasets. Algorithms, particularly in screening 
tools, must be able to generalise to a heterogenous 
population. In addition, any such tool should aim to support 
but not replace clinicians in the decision-making process, as 
they are ultimately responsible for patient care.

Security around healthcare data remains an important 
concern, particularly in the utilisation of ‘Big Data’ from 
consumer devices and Positive-Airway-Pressure treatment 
devices. To ensure patient privacy, data storage methods 
must adhere to strong security measures following 
appropriate consent for data collection. 

Conclusions

A large proportion of the population continue to suffer 
from undiagnosed, yet treatable, sleep conditions. Current 
pathways involve manual processes that are time consuming 

and costly. AI has the potential to identify sleep patients on 
a mass-scale by enabling population-level screening using 
wearable devices, automate analysis of large volumes of data, 
to predict treatment adherence, provide more personalised 
treatment, improve diagnostic rates, accelerate day-to-
day clinical operations, and deepen our understanding of 
complex sleep disorders. While AI may not replace human 
decision making it can augment clinicians to arrive at 
decisions more effectively.

Acknowledgments

Funding: None. 

Footnote

Provenance and Peer Review: This article was commissioned 
and reviewed by the Guest Editors (Joerg Steier and Prof. 
Walter McNicholas) for the “Sleep Section” published 
in Journal of Thoracic Disease. The article has undergone 
external peer review.

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/jtd-21-1569). The series “Sleep Section” was 
commissioned by the editorial office without any funding 
or sponsorship. The authors have no conflicts of interest to 
declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. McKinney SM, Sieniek M, Godbole V, et al. International 
evaluation of an AI system for breast cancer screening. 

https://dx.doi.org/10.21037/jtd-21-1569
https://dx.doi.org/10.21037/jtd-21-1569
https://creativecommons.org/licenses/by-nc-nd/4.0/


6098 Lovejoy et al. An introduction to artificial intelligence in sleep medicine

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(10):6095-6098 | https://dx.doi.org/10.21037/jtd-21-1569

Nature 2020;577:89-94.
2. Wang P, Liu X, Berzin TM, et al. Effect of a deep-

learning computer-aided detection system on adenoma 
detection during colonoscopy (CADe-DB trial): a double-
blind randomised study. Lancet Gastroenterol Hepatol 
2020;5:343-51.

3. De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically 
applicable deep learning for diagnosis and referral in 
retinal disease. Nat Med 2018;24:1342-50.

4. Papini GB, Fonseca P, van Gilst MM, et al. Estimation 
of the apnea-hypopnea index in a heterogeneous sleep-
disordered population using optimised cardiovascular 
features. Sci Rep 2019;9:17448.

5. Behar JA, Palmius N, Li Q, et al. Feasibility of Single 
Channel Oximetry for Mass Screening of Obstructive 
Sleep Apnea. EClinicalMedicine 2019;11:81-8.

6. Álvarez D, Cerezo-Hernández A, Crespo A, et al. A 
machine learning-based test for adult sleep apnoea 
screening at home using oximetry and airflow. Sci Rep 
2020;10:5332.

7. Stephansen JB, Olesen AN, Olsen M, et al. Neural 
network analysis of sleep stages enables efficient diagnosis 
of narcolepsy. Nat Commun 2018;9:5229.

8. Remmers J, Charkhandeh S, Grosse J, et al. Remotely 
controlled mandibular protrusion during sleep predicts 
therapeutic success with oral appliances in patients with 
obstructive sleep apnea. Sleep 2013;36:1517-25, 1525A.

9. Eckert DJ. Phenotypic approaches to obstructive sleep 
apnoea - New pathways for targeted therapy. Sleep Med 
Rev 2018;37:45-59.

10. Jordan AS, White DP. Pharyngeal motor control and the 
pathogenesis of obstructive sleep apnea. Respir Physiol 
Neurobiol 2008;160:1-7.

11. Eckert DJ, Younes MK. Arousal from sleep: implications 
for obstructive sleep apnea pathogenesis and treatment. J 
Appl Physiol (1985) 2014;116:302-13.

12. Hudgel DW, Gordon EA, Thanakitcharu S, et al. 
Instability of ventilatory control in patients with 
obstructive sleep apnea. Am J Respir Crit Care Med 
1998;158:1142-9.

13. Patil SP, Schneider H, Schwartz AR, et al. Adult 

obstructive sleep apnea: pathophysiology and diagnosis. 
Chest 2007;132:325-37.

14. Eikermann M, Jordan AS, Chamberlin NL, et al. The 
influence of aging on pharyngeal collapsibility during 
sleep. Chest 2007;131:1702-9.

15. Kirkness JP, Schwartz AR, Schneider H, et al. 
Contribution of male sex, age, and obesity to mechanical 
instability of the upper airway during sleep. J Appl Physiol 
(1985) 2008;104:1618-24.

16. Yeom SH, Na JS, Jung HD, et al. Computational analysis 
of airflow dynamics for predicting collapsible sites in the 
upper airways: machine learning approach. J Appl Physiol 
(1985) 2019;127:959-73.

17. Stretch R, Ryden A, Fung CH, et al. Predicting 
Nondiagnostic Home Sleep Apnea Tests Using Machine 
Learning. J Clin Sleep Med 2019;15:1599-608.

18. (NICE) NIfHaCE. Continuous positive airway pressure 
for the treatment of obstructive sleep apnoea/hypopnoea 
syndrome. 2016; Available online: https://www.nice.org.
uk/guidance/ta139/chapter/1-Guidance

19. Peppard PE, Young T, Barnet JH, et al. Increased 
prevalence of sleep-disordered breathing in adults. Am J 
Epidemiol 2013;177:1006-14.

20. McArdle N, Devereux G, Heidarnejad H, et al. Long-term 
use of CPAP therapy for sleep apnea/hypopnea syndrome. 
Am J Respir Crit Care Med 1999;159:1108-14.

21. Weaver TE, Maislin G, Dinges DF, et al. Relationship 
between hours of CPAP use and achieving normal levels of 
sleepiness and daily functioning. Sleep 2007;30:711-9.

22. Jacobsen AR, Eriksen F, Hansen RW, et al. Determinants 
for adherence to continuous positive airway pressure 
therapy in obstructive sleep apnea. PLoS One 
2017;12:e0189614.

23. Rafael-Palou X, Turino C, Steblin A, et al. Comparative 
analysis of predictive methods for early assessment of 
compliance with continuous positive airway pressure 
therapy. BMC Med Inform Decis Mak 2018;18:81.

24. Pengo MF, Steier J. Emerging technology: electrical 
stimulation in obstructive sleep apnoea. J Thorac Dis 
2015;7:1286-97.

Cite this article as: Lovejoy CA, Abbas AR, Ratneswaran D. 
An introduction to artificial intelligence in sleep medicine. J 
Thorac Dis 2021;13(10):6095-6098. doi: 10.21037/jtd-21-1569


