
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(12):6943-6962 | https://dx.doi.org/10.21037/jtd-21-1342

Introduction

Artificial intelligence (AI) techniques have shown promising 

performance in medicine, particularly in the field of medical 

image analysis. Convolutional neural network (CNN)-

based deep learning (DL) models have shown performance 
equal to or even surpassing that of experts in various tasks, 
including the detection of retinal pathologies in fundus 
photographs (1-4), interpretation of echocardiography (5-7) 
and screening mammography (8), and the diagnosis of major 
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thoracic diseases on chest radiographs (CXR) and computed 
tomography (CT) (9-27). 

Radiology in respiratory medicine is a particularly 
important field for which a variety of AI applications are 
actively being developed. Major thoracic diseases such as 
lung cancer and tuberculosis are among the leading causes 
of death worldwide (28,29), and numerous radiologic studies 
have been performed to diagnose them. For example, CXR, 
which is often the first imaging study acquired to diagnose 
pathologies in the thorax, remains the most commonly 
performed radiologic exam worldwide, with an average of 
238 CXRs acquired per 1,000 population annually (30). 
For this reason, even though DL research in medicine is 
notoriously data-hungry, DL in the thoracic radiology 
field, which has relatively large imaging databases, has been 
actively researched.

Recently, Nam et al. showed that a DL algorithm 
detecting 10 common abnormalities on CXR could improve 
radiologists’ performance and shorten the reporting time for 
critical and urgent cases (18). Similarly, Seah et al. showed 
that a DL algorithm significantly improved the classification 
accuracy of radiologists for 102 clinical findings (31). In 
2021, more than 13 US Food and Drug Administration–
cleared AI algorithms developed for pulmonary diseases 
are available (32), and they are expected to be implemented 
sooner or later in daily clinical practice.

This review will focus on how AI (specifically, DL) can 
be applied to complement aspects of the current healthcare 
system. We included peer-reviewed research articles on 
AI in the thorax published in English between Jan 2015 
and July 2021. A PubMed literature search performed on  
July 16, 2021, using the search terms “(artificial intelligence 
OR machine learning OR deep learning) AND (thorax 
OR pulmonary OR respiratory OR chest OR lung) AND 
medicine”. Under these search terms, more than 3,600 
papers were searched, so given the narrative nature of this 
review, articles were carefully selected by reviewing their title 
and abstracts to provide a general understanding of this topic 
(Table 1).

The rest of the paper is organized as follows. In 
“Application schemes of AI tools in clinical practices” 
section, we describe how AI-based tools can augment 
existing clinical workflows by discussing the applications 
of AI to worklist prioritization and patient triage, the 
performance-boosting effects of AI as a second reader, 
and the use of AI to facilitate complex quantifications. 
We also introduce prominent examples of recent AI 
applications, such as tuberculosis screening in resource-

constrained environments, the detection of lung cancer 
with screening CT, and the diagnosis of coronavirus disease 
2019 (COVID-19) in “Potential examples of AI-assisted 
clinical practice for thoracic diseases practices” section. 
We also provide examples of prognostic predictions and 
new discoveries beyond existing clinical practices in the 
“Prognostic prediction and new discoveries” section. Lastly, 
we close our review with a discussion of challenges and 
future directions of AI applications in thoracic radiology.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/jtd-21-1342).

Application schemes of AI tools in clinical 
practices

It is now well known that AI shows expert-level performance 
in interpreting medical images, but how AI-based tools 
can help physicians in clinical practice has not been yet 
established. One of the classic ways of integrating AI-based 
tools into the existing clinical workflows is the triage scenario, 
in which an AI system makes a provisional analysis and 
prioritizes the worklist in terms of the urgency of detected 
findings (11). It has been mainly investigated in the field 
of emergency medicine, in which the timely diagnosis and 
management of acute diseases are critical. Another major use 
of AI in clinical workflows is the add-on scenario (11). In this 
scenario, physicians check the results of the AI system during 
or after their interpretation to improve their diagnostic 
performance. The results of the AI system could include the 
probability value of a certain radiologic study being abnormal 
and localization of a specific disease. Alternatively, the results 
could be quantification values for further quantitative analysis 
of pathologies in imaging studies. 

AI-based triage and worklist prioritization

Worklist prioritization is an important application of AI in 
thoracic radiology. It is clinically relevant, especially in the 
ED, where the timely diagnosis and management of acute 
diseases can often be critical. In the United States, there 
were over 130 million total visits to EDs in 2011, accounting 
for approximately 15% of all hospital visits (45-47). As 
pneumonia and respiratory symptoms have become one of 
the most common reasons for ED visits, radiologic studies—
particularly CXR, a primary examination tool for evaluations 
in the ED—have shown a significant increase in use over 
the past two decades (48). Since the number of physicians, 
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including radiologists, is not sufficient compared to the 
increasing number of imaging tests, provisional analysis 
and prioritization by AI systems can directly improve the 
clinical outcomes of patients whose timely diagnosis is 
critical. Nam et al. (18) performed simulated reading tests 
for CXRs from ED patients with and without AI assistance, 
and they found that radiologists detected significantly more 
critical (29.2% to 70.8%) and urgent (78.2% to 82.7%) 
abnormalities when aided by the AI system; furthermore, AI 
assistance shortened the time-to-report for CXRs of critical 
and urgent cases (from 3,371.0 to 640.5 s and from 2,127.1 
to 1,840.3 s, respectively). Figure 1 shows an example of 
utilizing AI tools for worklist prioritization.

Prioritization of CT images is another important topic in 
the ED. For example, the usage of computed tomography 
pulmonary angiography (CTPA) in the ED to diagnose 
pulmonary embolism (PE) has increased 27-fold over the 
past two decades (49,50). A triage tool to automatically 
identify clinically important PEs and prioritize CT images 
of PE patients can improve care pathways via more efficient 
diagnoses. Huang et al. (33) developed a DL algorithm to 
automatically detect PE on volumetric CTPA scans as an 
end-to-end solution. Without requiring computationally 
intensive and time-consuming preprocessing, it achieved 
AUCs of 0.84 and 0.85 on detecting PE in the internal test 
set and external dataset, respectively.

Aortic dissection (AD) is another common emergency that 
is often fatal. Contrast-enhanced CT is the most commonly 
used diagnostic modality for AD (51), but detection and 
prioritization of acute AD on non-contrast-enhanced CT 
is also useful in the ED. Hata et al. (34) developed a DL 
algorithm to detect AD on non-contrast-enhanced CT. 
The developed DL algorithm provided accuracy, sensitivity, 
and specificity of 90.0%, 91.8%, and 88.2%, respectively, 
with a cutoff value of 0.400. For the radiologists, the 
median accuracy, sensitivity, and specificity were 88.8%, 
90.6%, and 94.1%, respectively. There was no significant 
difference in performance between the DL algorithm and the 
average performance of the radiologists, demonstrating the 
potential of the DL algorithm for provisional analysis and 
prioritization of CT images in the ED.

AI as a second reader

Many recent studies have compared radiologists ’ 
performance in image interpretation with and without AI 
assistance. For identifying abnormalities on CXRs, such as 
active tuberculosis (20), malignant nodules (21), or major 

thoracic diseases (19), AI assistance led to meaningful 
improvements in physician readers’ performance. In this 
scheme, the AI system provides probability values of specific 
diseases with or without localization information, and 
physicians check these results during or after their image 
interpretation. An example of this type of clinical workflow 
is presented in Figure 2.

 Nam et al. (18) developed a DL algorithm detecting 
10 common abnormalities (pneumothorax, mediastinal 
widening, pneumoperitoneum, nodule/mass, consolidation, 
pleural effusion, linear atelectasis, fibrosis, calcification, 
and cardiomegaly) on CXRs, as well as providing a visual 
localization of the abnormality. Similarly, Seah et al. (31) 
conducted a study in which 20 radiologists reviewed CXRs 
across 127 clinical findings with and without the assistance of 
a DL algorithm, and found that radiologists assisted by the 
DL algorithm showed much better reading performances, 
with higher areas under the curve (AUCs) when assisted 
by the DL algorithm (AUC, 0.808; 95% CI, 0.763–0.839) 
than when not assisted (AUC, 0.713; 95% CI, 0.645–0.785). 
The DL algorithm significantly improved the classification 
accuracy of radiologists for 102 (80%) of 127 clinical findings 
and was statistically non-inferior for 19 (15%) findings; 
furthermore, no findings showed a decrease in accuracy when 
radiologists used the DL algorithm.

The added value of AI assistance is particularly prominent 
in specific situations such as emergencies. CXR is a simple 
and widely accessible imaging modality; however, its 
interpretation is not easy and often requires a high quality of 
expertise and experience. Many studies have found substantial 
discordances in CXR interpretation in the emergency 
department (ED), ranging from 0.3% to 17% (52-54). This 
kind of misinterpretation and discordant interpretation of 
critical cases could directly influence patients’ clinical courses 
and outcomes. Furthermore, physicians in the ED often have 
limited time or opportunity to reach an on-call radiologist 
for consultations (55). Hwang et al. (16) investigated whether 
the application of a commercially available DL algorithm 
could enhance clinicians' reading performance for clinically 
relevant abnormalities on CXRs in the ED setting. Assistance 
from the DL algorithm improved the sensitivity of radiology 
residents' interpretation from 65.6% to 73.4%. Later, in 
2020, Kim et al. (12) also reported that with the support 
of a DL algorithm, physicians' diagnostic performance 
for pneumonia improved (sensitivity: 53.2% to 82.2%; 
specificity: 88.7% to 98.1%). 

It is commonly understood that AI assistance brings 
synergistic effects because it finds missed findings or 



6948 Kim et al. AI in thoracic radiology

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(12):6943-6962 | https://dx.doi.org/10.21037/jtd-21-1342

Figure 1 Implementation of AI CAD into a PACS system for prioritization of chest radiographs. An AI-integrated PACS system can display 
the results of analysis by AI CAD on the exam list (A). It can provide not only the presence of any abnormal finding, but also the presence 
of urgent findings requiring timely interpretation (e.g., pneumothorax), along with the corresponding probability scores. An interpreting 
radiologist can sort chest radiographs by the presence and type of urgent findings or corresponding probability scores to interpret chest 
radiographs with urgent findings first. A chest radiograph of a 73-year-old female patient shows left hydropneumothorax (B). The AI CAD 
system identified the pneumothorax with a probability score of 96% (C). CAD, computer aided diagnosis; PACS, picture archiving and 
communication system.
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possible mistakes, like a second reader in double-reading. 
Double-reading is generally considered to be of added 
value in diagnostic radiology (56), and high-accuracy AI 
can act as a competent second reader to reduce perceptual 
errors (57). However, the interaction between AI systems 
and physicians is still poorly understood (58), and further 
research is needed to maximize the synergistic effects of AI.

Automatic quantification for complex quantitative analysis

AI applications in the add-on scenario can provide 
quantification results from medical images. Many studies 
have been conducted to find quantitative biomarkers from 
chest CT for lung cancer, chronic obstructive pulmonary 

disease (COPD), and interstitial lung disease (ILD) (59-62). 
However, manual quantification is extremely time-consuming 
and practically impossible in routine clinical practice. In this 
context, AI-based quantification has been actively conducted, 
and several recent studies have shown that AI could improve 
the quantitative analysis in a highly accurate and time-
efficient manner through automatic segmentation of lung 
parenchyma (63,64), pulmonary lobes (65), airways (66), 
and pulmonary pathologies (67,68). Hasenstab et al. (35) 
developed a DL algorithm to stage the severity of COPD 
through quantification of emphysema and air trapping on 
chest CT images. They proposed five CT-based COPD 
stages based on the percentage of emphysema and total 
lung involvement. The proposed stages correlated with the 

Figure 2 Identification of a lung nodule on chest radiograph using an AI CAD system A chest radiograph of a 71-year-old male patient 
shows a nodular opacity in the right upper lung field (A, arrow). The AI CAD system identified the nodule with a probability score of 90% (B). 
Chest CT of the patient shows an irregular nodule with air-bronchogram and a ground-glass opacity component in the right upper lobe of 
the lung (C,D). The nodule was proven to be lung cancer after surgery. CAD, computer aided diagnosis.

Ndl 90%
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predicted spirometry-based Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) criteria, with AUCs of 
0.86–0.96, and predicted disease progression (odds ratio, 
1.50–2.67) and mortality (hazard ratio, 2.23; P<0.001) both 
with and without the GOLD criteria. Similarly, Chassagnon 
et al. (36) developed a multicomponent deep neural network 
(AtlasNet), a DL algorithm for the automatic assessment 
of the extent of systemic sclerosis–related ILD on chest 
CT images. AtlasNet performed similarly to radiologists 
for disease-extent contouring, which is correlated with 
pulmonary function, to assess CT images from patients with 
systemic sclerosis–related ILD. The median dice similarity 
coefficients (DSCs) between the readers and the deep 
learning ILD contours ranged from 0.74 to 0.75, whereas 
the median DSCs between the contours from radiologists 
ranged from 0.68 to 0.71. Figure 3 and Figure 4 present 
examples of automatic quantification of COPD and ILD on 
CT, respectively.

Radiomics feature is another important quantitative 
biomarker that has recently emerged as a new field of 
radiologic research (69). There are studies that these 
measures can be strong indicators for lung cancer prognosis 
and phenotyping (70,71), but at the same time, challenging 
components of radiomics such as accurate segmentation 
and reproducibility over various devices institutions 
(69,71,72). DL is considered a promising method to solve 
these problems, as it has shown excellent performance 
in segmentation in chest CTs that can automate time-
consuming manual segmentation, and ability to generates 
various image styles while maintaining the content that can 
improves radiomics reproducibility (73).

Potential examples of AI-assisted clinical 
practice for thoracic diseases

This section describes some prominent applications 
of AI-assisted systems for major thoracic diseases. We 
cover tuberculosis screening in resource-constrained 
environments, lung cancer detection on chest CT, and the 
diagnosis of COVID-19 through imaging studies.

Tuberculosis screening in resource-constrained 
environments

Although displaced by COVID-19 in 2020, tuberculosis was 
the leading cause of death among infectious diseases until 
2019 (29). Because of the high proportion of undetected 
patients and the potential to reduce mortality through early 

detection and treatment, the World Health Organization 
(WHO) has recommended systematic screening for 
tuberculosis for people at risk since 2013 (74). CXR is an 
effective screening tool for both children and adults due to 
its reasonably high sensitivity and specificity for tuberculosis 
detection (75). 

However, in low- and middle-income countries (LMICs), 
CXR often shows lower sensitivity and specificity for 
tuberculosis detection than expected, which is related to 
the lack of well-trained radiologists. In fact, the sensitivity 
and specificity of tuberculosis diagnosis through CXR in a 
Nepalese center were 78% and 51%, respectively, and in 
Yogyakarta, Indonesia, the sensitivity and specificity were 
88.6% and 82.9% (76,77). Furthermore, van't Hoog et al. 
compared the sensitivity and specificity of each tuberculosis 
screening method in seven countries including Kenya, 
Cambodia, and Vietnam. Although CXR outperformed 
symptom-based screening, there was substantial variation 
across countries (78).

Various attempts have been made to overcome this 
limitation, and computer-aided diagnosis (CAD) has 
emerged as a potential solution for tuberculosis screening. 
Because tuberculosis presents heterogeneous radiologic 
findings, early AI models with human-derived features 
did not show satisfactory performance and thus were not 
applied in practice for screening. However, in recent years, 
the application of DL has led to remarkable improvements 
in tuberculosis screening models. In 2016, Hwang et al. (79)  
developed a tuberculosis screening model by applying 
a deep CNN, which was in the spotlight in the image 
processing field at the time. They trained the model with 
10,848 CXR images and tested it with datasets from Korea, 
the United States, and China to obtain AUCs of 0.964, 0.88, 
and 0.93, respectively. In 2019, Hwang et al. (20) developed 
a 27-layer deep CNN model and validated it with six 
external multicenter, multinational datasets. The created 
model showed sensitivity of 94.3–100% and specificity 
of 91.1–100%, with significantly higher performance 
in both classification and localization than a group of 
physicians consisting of non-radiology physicians, board-
certified radiologists, and thoracic radiologists. Figure 5  
shows an example of identifying tuberculosis using a DL-
based AI solution in clinical practice.

Driven by these advances in deep learning technology, 
the updated WHO guideline in 2020 recommended the 
use of CAD for tuberculosis screening for individuals aged 
15 years and older in populations in which tuberculosis 
screening is recommended (75). The performance of 
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Figure 3 Fully automated quantification of non-enhanced chest CT using AI software in a 67-year-old man with chronic obstructive 
pulmonary disease (FEV1/FVC =33%, FEV1 =37%). (A) Axial, sagittal, coronal, and volume rendering images of fully automated lung and lobe 
segmentation results using an AI engine (Aview, version 1.1.39.6; Coreline Soft, Seoul, South Korea). (B) Coronal image with a LAA (under 
−950 HU) mask (red box) and a results table (red box) of the quantification analysis, with results such as volume, the LAA under −950 HU,  
mean lung density, and percentile index based on the lung and lobe segmentation. (C) Volume-rendering image (red box) and results table (yellow 
box) of a segmented airway with quantification results, including bronchus level, wall thickness, wall area, wall area percent, lumen diameter, lumen 
area, and tapering ratio. FEV1/FVC, forced expiratory volume in one second/forced vital capacity; LAA, low attenuation area. 

A

B

C



6952 Kim et al. AI in thoracic radiology

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(12):6943-6962 | https://dx.doi.org/10.21037/jtd-21-1342

Figure 4 Fully automated quantification of non-enhanced chest CT using AI software in 66-year-old man with usual interstitial pneumonia 
(FEV1/FVC =74%, FVC =53%, FEV1 =56%). (A) Axial, sagittal, coronal, and volume-rendering images of fully automated lung and lobe 
segmentation results using an AI engine (Aview, version 1.1.39.6; Coreline Soft, Seoul, South Korea). (B) Axial images with/without a lung 
texture segmentation mask [red = honeycombing (H), orange = reticular opacity (R), cyan = ground glass opacity (G), blue = consolidation (C), 
yellow = emphysema (E)]. (C) Pie chart (red box) and results table (yellow box) with quantification of texture analysis, based on the lung and 
lobe segmentation. FEV1/FVC, forced expiratory volume in one second/forced vital capacity.
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commercialized CAD systems was found to be non-inferior 
to that of physicians when applied in various regions, 
including LMICs. Qin et al. (80) tested three deep learning 
systems with the Xpert MTB/RIF assay-proven dataset 
from Nepal and Cameroon and obtained AUCs of 0.92, 
0.94, and 0.94, respectively. When the sensitivity was 
matched with that of the radiologists, the specificity of two 
out of three systems was significantly higher than that of 
the radiologists. Khan et al. (81) applied commercial DL 
algorithms in Pakistan and showed that the sensitivity and 
specificity satisfied the WHO guidelines of 90% and 70%, 
respectively. CAD in LMICs can perform tuberculosis 

screening, thereby improving health equity and accessibility 
and reducing mortality due to tuberculosis. 

Lung cancer screening programs

In 2020, 2.21 million people were newly diagnosed with 
lung cancer, making it the second most diagnosed cancer 
after breast cancer. The number of cancer deaths due to lung 
cancer was 1.79 million, the highest among all cancers (28). 
The US National Lung Screening Trial (NLST) research 
team found that screening for lung cancer with low-dose CT 
(LDCT) in high-risk populations could reduce mortality 

Figure 5 Identification of a chest radiograph from a patient with active pulmonary tuberculosis using an AI CAD system. (A) chest 
radiograph of a 52-year-old male patient with a cough shows clustered consolidation and nodules at the left lung apex (A, arrows). The 
AI CAD system identified the lesion with a probability score of 86% (B). Chest CT of the patient shows irregular consolidation and 
micronodules with bronchiectasis in the left upper lobe of the lung (C,D). The patient was diagnosed with active pulmonary tuberculosis by 
sputum acid-fast bacilli culture. CAD, computer aided diagnosis.
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from lung cancer by 20% (82). The US Preventive Services 
Task Force currently recommends lung cancer screening 
with LDCT for adults aged 50 to 80 years with a smoking 
history of 20 pack-years or more, who are currently smoking 
or who have quit smoking within the past 15 years (83). 
The European Society of Radiology and the European 
Respiratory Society also recommend lung cancer screening 
in routine clinical practice at certified multidisciplinary 
medical centers (84). However, the increased number of CT 
scans is beyond the amount that radiologists can handle, and 
the high false-positive rate puts a strain on the lung cancer 
management system.

In this context, CAD could be an option for dealing 
with personnel shortages and false positives in lung cancer 
screening programs. There are two ways of utilizing 
CAD for lung cancer screening programs. The first is to 
mark the location of pulmonary nodules, and the second 
is to determine whether detected pulmonary nodules are 
malignant. In terms of nodule detection, CAD models 
before the use of DL techniques showed insufficient 
performance to be implemented in clinical practice (85-87). 
The performance gradually improved with the application 
of CNN-based DL models, and in 2016, the LUng 
Nodule Analysis (LUNA) challenge was held for complete 
nodule detection and false-positive reduction based on 
888 annotated images. The best model of the challenge 
achieved a sensitivity of 93% for the individual model and a 
sensitivity of 95% or more for the combined model (88).

Recent studies focus on determining whether a detected 
nodule is malignant or not beyond simple detection of 
pulmonary nodule. Ciompi et al. (37) developed a DL 
model that classified lung nodules into solid, non-solid, 
part-solid, calcified, perifissural, and spiculated, which 
showed improved accuracy (39.9% vs. 79.5%) compared to 
conventional machine learning. Its accuracy was not inferior 
to that of six physician observers (69.6% vs. 72.9%). Ardila 
et al. (38) developed a model to predict the risk of lung 
cancer based on CT scans from the National Lung Cancer 
Screening Trial cases. The model had an AUC of 0.94, with 
an 11% reduction in false-positive rates and a 5% reduction 
in false-negative rates compared to radiologists when no 
prior CT images were provided. An example of a lung 
nodule identified on screening low-dose chest CT using an 
AI system is presented in Figure 6.

Diagnosis of COVID-19 in pandemic areas

Since its emergence in late 2019, COVID-19 has spread 

worldwide, with more than 202 million confirmed patients 
and more than 4.2 million deaths worldwide as of August 
8, 2021 (89). Healthcare workers have also been devoting 
more time and energy to COVID-19-related medical 
duties, facing shortages of equipment and supplies, as 
well as staffing shortages (90). To address these problems, 
researchers have rushed to develop AI models to support 
clinicians.

The primary diagnostic method for COVID-19 is 
the detection of SARS-CoV-2 via real-time reverse 
transcriptase-polymerase chain reaction (RT-PCR) in 
respiratory specimens. Although RT-PCR is the gold 
standard to diagnose COVID-19, imaging can complement 
its use to achieve greater diagnostic certainty and even serve 
as an alternative method in some regions where RT-PCR 
is not readily available. In some cases, CXR may exhibit 
findings of abnormalities in patients who initially had a 
negative RT-PCR test (91), and several recent studies have 
shown that chest CT has a higher sensitivity for COVID-19 
than RT-PCR and can be considered as a screening tool for 
COVID-19 in pandemic areas (92-94).

Applying AI methods to COVID-19 radiologic imaging 
might enhance the accuracy of the diagnosis compared with 
RT–PCR, while also resolving the shortage of healthcare 
workers in pandemic areas. For example, AI can assist in 
the automated diagnosis and screening of COVID-19 using 
image analysis from CXR (95), CT scans (96-98) and lung 
ultrasonography (99). Harmon et al. (39) showed that a 
DL algorithm could achieve up to 90.8% accuracy, with 
84% sensitivity and 93% specificity in the detection of 
COVID-19 pneumonia on chest CT using multinational 
datasets. In addition, some studies have suggested that AI 
can assist radiologists in distinguishing COVID-19 from 
other pulmonary infections on CXR (22) and chest CT 
(100,101). AI models have the potential to exploit the vast 
amount of multimodal data collected from patients and, if 
successful, could transform the detection, diagnosis, and 
triage of patients with suspected COVID-19. Figure 7 
shows an example of an AI-assisted interpretation of CXR 
with COVID-19-associated pneumonia.

Despite the potential of AI-assisted practice, there 
are still many limitations in deploying AI tools into the 
clinical workflow. Roberts et al. (102) found that none of 
the 415 papers selected for their study had a sufficiently 
documented manuscript describing a reproducible method, 
a methodology that followed best practices for developing 
AI models, and sufficient external validation. Further studies 
are required to address these issues before AI can take its 
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place in the clinic.

Prognostic prediction and new discoveries

Most AI systems regarding thoracic diseases have focused 
on assisting the detection and diagnosis of radiologic 
abnormalities or diseases on imaging studies. Since the 
radiologic findings associated with specific thoracic diseases 
are well understood, AI systems are trained and evaluated 
to mimic the clinical practices of detecting disease-related 
findings. However, radiologists rarely know the outcome 
of patients undergoing radiologic examinations a decade 

later; therefore, it is difficult to determine the imaging 
features with long-term prognostic value. DL algorithms 
can independently extract features from a large amount 
of data, and they have the potential to find novel imaging 
biomarkers. Thus, prognostication and therapeutic response 
prediction may be another important application of AI for 
thoracic diseases.

Early attempts to use AI for prognostic prediction 
were based on clinical information of patients (such as 
demographics, laboratory test results, treatment types, or 
gene expression data), and machine learning techniques 
have already shown superior performance over the existing 

Figure 6 Identification and classification of a lung nodule on screening low-dose chest CT using an AI system. A screening low-dose chest 
CT scan of a 57-year-old ex-smoker (45 pack-years, quit smoking 7 years before) shows a small nodule with a cystic appearance at the left 
lower lobe of the lung (A). An AI system automatically identified the nodule. The average diameter of the nodule measured by the AI system 
was 10.2 mm, corresponding to Lung-RADS category 4A (B). A chest CT obtained 2 years later shows growth of the nodule, which was 
proven to be lung cancer (C).
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survival prediction models (103,104). However, unlike 
mortality prediction models based on structured clinical 
information, the usage of image data for prognostic 
prediction is challenging. In this context, human-derived 
feature extractions from images can be advantageous, but 
the loss of important information during these procedures 
is unavoidable.

Hence, in 2017, González et al. (40) introduced a 
CNN-based DL model for acute respiratory disease 
event prediction (C-index, 0.64 and 0.55 for internal and 
external validation, respectively) and mortality prediction 
(C-index, 0.72 and 0.60, respectively) in smokers relying 
only on CT image data. To compare the performance of 

conventional machine learning techniques with a DL-
based prognostication model utilizing imaging data alone, 
Hosny et al. (41) presented a DL model for 2-year mortality 
prediction of non-small-cell lung cancer (NSCLC) 
patients. The model, which was trained and evaluated 
on seven independent NSCLC patient datasets across 
five institutions, outperformed existing structured data–
based techniques, with AUCs of 0.70 and 0.71 for 2-year 
mortality after the start of radiotherapy and after surgery, 
respectively. Lu et al. (42) presented CXR-risk, a CNN-
based DL model for 12-year mortality prediction from a 
single CXR. The high performance of CXR-risk proved 
the ability of CNN models to extract hidden prognostic 

Figure 7 Identification of pneumonia associated with COVID-19 on chest radiograph using an AI CAD system. A chest radiograph of a 
54-year-old male patient with COVID-19 shows diffusely increased opacities in both lung fields (A). The AI CAD system identified the 
opacities with a probability score of 99% (B). Chest CT of the patient shows regions of ground-glass opacities in both peripheral lungs, 
suggesting pneumonia associated with COVID-19 (C,D). COVID-19, coronavirus disease 2019; CAD, computer aided diagnosis.
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information from medical images. Additionally, in a recent 
study of Chao et al. (43), a CNN and Tri2D-Net based 
DL model successfully predicted cardiovascular mortality 
with LDCT images (AUC, 0.768), outperforming existing 
DL models.

DL can be used to find new discoveries for applications 
that are not part of current clinical practices. Raghu 
et al. (44) developed a DL algorithm that can estimate 
biological age (CXR-Age) from a chest radiograph to 
predict longevity beyond chronological age. Interestingly, 
their external validation tests performed on the PLCO and 
NLST populations showed significant improvements in the 
prediction of both long-term all-cause and cardiovascular 
mortality when CXR-age was used instead of chronological 
age (44).

Challenges and future directions of AI in 
pulmonary medicine

Applications of AI for thoracic diseases have demonstrated 
promising results in augmenting existing clinical systems, and 
prognostic prediction. However, there are still substantial 
limitations. For augmenting existing systems, as in the add-
on scenario, it is not clear how to effectively integrate AI 
tools with physician decision-makers. Indeed, some studies 
showed no improvement of clinical outcomes with AI 
assistance in randomized controlled trials (105,106). The 
interaction between AI models and human users is poorly 
understood and little work has evaluated the potential impact 
of such systems. Interestingly, Gaube et al. (58) reported that 
radiologists rated advice as lower-quality when that advice 
seemed to come from an AI system, while non-radiology 
physicians with less task-expertise did not. Diagnostic 
accuracy was significantly worse when participants received 
inaccurate advice, regardless of the purported source. Their 
work raised the importance of the quality of advice and the 
importance of how advice (both from AI and non-AI sources) 
should be delivered in clinical environments.

Studies on DL models that can ingest multimodal 
data, including imaging data, clinical information and 
hopefully, genetic information, are also needed. Currently, 
the most advanced DL model for radiology applications 
only considers pixel value information, without data on the 
clinical background (107). However, in practice, relevant 
clinical information allows clinicians to interpret imaging 
results in the appropriate clinical context, providing 
information relevant for clinical decision-making and 
improving the diagnosis and prognosis. Apart from 

the prognostic prediction of thoracic diseases, several 
DL models have demonstrated improved performance 
of prognostic prediction based on imaging data when 
complemented by other multimodal data. For example, in a 
study by Cheerla et al. (108), a pancancer survival prediction 
model integrating clinical, mRNA, miRNA, and whole-
slide imaging data exhibited a C-index of 0.78. As asserted 
by Warth et al. (109), there exists a definite correlation 
between the morphological features of pathological images 
and genetic data in adenocarcinomas. This implies that 
integrating clinical and genetic data into image-based DL 
models may improve their performance.

Reproducibility and generalizability are also important 
issues. In many studies reporting excellent results, AI 
systems were only tested with internal validation data, 
which are retrospectively and non-rigorously collected (110). 
In this case, validation data may have an enriched disease 
prevalence and a narrow disease spectrum. In contrast, the 
population in real-world situations may have a much lower 
disease prevalence and a much broader spectrum of diseases, 
potentially hindering the performance of the DL algorithm. 
Thus, AI system needs to be further validated in real-world 
situations before they are implemented in clinical practice.

AI systems also need to be appropriately explained, 
with a particular focus on the logical background of their 
output. In order for a DL algorithm to receive credit or 
acceptance from physicians, it should appropriately explain 
the logical basis of the output (111). In particular, if a DL 
algorithm is used for prognostic prediction beyond existing 
clinical systems, clinicians may want to know why the 
algorithm provides certain outcomes based on their existing 
knowledge. AI systems should provide interpretability to 
receive credibility from physicians and be implemented in 
clinical practice.

Conclusions

AI has shown considerable potential for many thoracic 
diseases, particularly in the field of thoracic radiology. 
This promising technique is expected to effectively address 
various clinical problems that have not been solved due 
to a lack of clinical resources or technological limitations. 
AI could be a cost-effective and excellent second reader, 
providing automated quantification and prioritization. In 
addition, AI models could be used to improve screening 
for tuberculosis and lung cancer, as well as for prognostic 
prediction. It is necessary not only to advance the 
performance of AI systems, but also to understand and 
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discuss how to use AI in clinical practice. With advances in 
technology and appropriate preparation of physicians, AI 
could transform current medical practices and contribute to 
improving human health.
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