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Background: Lung adenocarcinoma (LUAD) is the most common type of lung cancer, and has a dismal 
mortality rate of 80%, mainly due to diagnosis at an advanced stage. Biomarkers with high specificity and 
sensitivity for the early diagnosis of LUAD are sparse. This study aimed to identify markers for the early 
diagnosis of LUAD.
Methods: The GSE32863 and GSE75037 data sets were standardized and merged to screen for 
differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes  
(KEGG) analyses were conducted. The intersected DEGs from the least absolute shrinkage and selection 
operator (LASSO) and support vector machine (SVM) regression analyses were considered the hub 
genes. Then the diagnostic ability and expression of hub genes was tested in GSE63459 data set, Finally, 
CIBERSORT was used to analyze the correlation between the immune-infiltrating cells and hub genes.
Results: The following 7 DEGs were intersected by the LASSO and SVM regression analyses: 
Locus 401286 (LOC401286), flavin-containing monooxygenase 2 (FMO2), XLKD1, Ras homolog family 
member J (RHOJ), scavenger receptor Class A member 5 (SCARA5), heat shock protein beta-2 (HSPB2), 
and serine incorporator 2 (SERINC2). The area under the receiver operating characteristic curve (AUC) of 
LOC401286, FMO2, XLKD1, RHOJ, SCARA5, HSPB2, and SERINC2 was 0.99, 1.00, 0.99, 1.00, 0.99, 0.99, 
and 0.98, respectively in the training groups. The AUC of LOC401286, FMO2, XLKD1, RHOJ, SCARA5, 
HSPB2, and SERINC2 was 0.97, 0.96, 0.94, 0.88, 0.85, 0.94 and 0.89, respectively in the validation group. The 
immune-cell infiltrations of naive B cells, memory B cells, plasma cells, naive cluster of differentiation (CD) 
4 T cells, T follicular helper cells, regulatory T cells, gamma delta T cells, monocytes, M0 macrophages, 
M1 macrophages, resting mast cells, activated mast cells, and neutrophils were different between the 
normal and tumor tissues. Notably, these immune cells were correlated with the above-mentioned 7 
diagnostic genes. 
Conclusions: We identified 7 DEGs in LUAD tissue that can be considered diagnostic genes based on 
2 machine-learning regression methods, which could be very helpful for the early diagnosis of LUAD in 
clinical practice.
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Introduction

It is widely acknowledged that early detection and treatment 
can improve patient outcomes for any disease, and cancer 
is no exception. Lung adenocarcinoma (LUAD) is the most 
common type of lung cancer, and has a dismal mortality 
rate of 80% (1). Significant progress in the screening and 
diagnostic methods, such as computed tomography (CT) 
imaging, has been made in recent years (2). However, 
most patients still miss the optimal therapeutic window, 
as they are only diagnosed at an advanced stage (3). 
Previously reported non-invasive approaches for early 
diagnosis of LUAD included microRNAs (4), DNA 
methylation markers (5), and autoantibody combined with 
CT (6). Nevertheless, biomarkers with high specificity, 
simplicity, and convenience for test in clinical practice are 
sparse. Thus, novel biomarkers need to be explored and  
identified.

Immune cells and the immune response have been 
shown to play very important roles in the occurrence and 
development of LUAD (7,8). As reported in the literature, 
tumor cells and immune cells interact with the tumor 
microenvironment (TME) and affect tumorigenesis (8,9). 
Notably, different levels of immune-cell infiltration have 
various effects on prognosis (10). In recent years, machine 
learning has been used to screen diagnostic genes, which 
has the ability to decipher complicated connections between 
multiple sets of test data and diseases (11). However, in 
some studies, the screened genes were not associated with 
the absolute value and proportion of the infiltrating immune 
cells (12,13) and only 1 type of machine-learning method 
was used (14).

The aim of the present study is to screen the diagnostic 
genes and analyze their relationship with immune-cell 
infiltration based on machine-learning in patients with 
lung adenocarcinoma. We hypotheses that novel diagnostic 
genes for LUAD could be identified. We present the 
following article in accordance with the STARD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-206/rc).

Methods

Data download and preliminary process

The Gene Expression Omnibus (GEO) data sets GSE32863 
and GSE75037 were downloaded, normalized, and merged 
using R packages “limma” and “Sva.” The differential 
expression analysis was conducted on the merged data using 
the screening criteria |logFC| >2, and an adjusted P value 
<0.05. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Functional analysis

The di f ferentia l ly  expressed genes  (DEGs) were 
analyzed by GO, KEGG and GSEA R packages with 
“clusterProfiler”, “org.Hs.eg.db” and “c5.go.v7.4.symbols.
gmt”. GO (http://geneontology.org) is a standard 
recognized classification system for defining the biological 
processes (BPs), molecular functions (MFs), and cellular 
components (CCs) of DEGs (15). The KEGG (https://
www.kegg.jp/) is a database that provides a manual curation 
of the pathways associated with genes (16). The screening 
conditions for the GO annotation and KEGG analysis 
included P values <0.05 and adjusted P values <0.05. The 
enrichment of the upregulated or downregulated sets 
of genes from the REACTOME pathway database was 
computed by running GSEA against the fold-change 
ranked list of genes in the experiment (17) The filter 
conditions were a P value <1 and, and an adjusted P value 
filter <0.05.

Immune-cell infiltration analysis and the correlations 
between the immune cells and DEGs

The CIBERSORT deconvolution algorithm is a method 
used to characterize the cell composition of complex tissues 
from their gene expression profiles (18). The immune-
cell infiltration of the GSE32863 data set was analyzed. 
The correlations between the immune cells and DEGs are 
displayed in a lollipop chart. The abscissa represents the 
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Figure 1 Study flowchart. GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;  
GSEA, gene set enrichment analysis; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; ROC, receiver 
operating characteristic.

GEO databases (GSE32863 and GSE75037) were downloaded 

Standardize and merged with R 
package “limma” and “Sva”

Expression difference analysis
GO, KEGG, DO, GSEA 

enrichment analysis

LASSO and SVM regression

Seven diagnostic genes

Differential expression of diagnostic genes between 
tumor group and normal group was observed, and the 
diagnostic ability of each gene was observed by ROC 

curve and validation in GSE63459

Immune cell infiltration analysis 
with CIBERSORT 

Correlation between immune 
cells and differential genes

correlation coefficient, the left ordinate represents the 
names of immune cells, and the right ordinate represents 
the P values. The size of the lollipop head indicates the 
correlation coefficient, and the color of the lollipop head 
indicates if the differences were significant (green indicates 
a P value <0.05, and yellow indicates a P value >0.05). 

Statistical analysis

The diagnostic performance of the genes was assessed 
using area under the receiver operating characteristic curve 
(AUC). The distribution of the differentially expressed 
genes was shown by heatmap and volcano map. The 
differences of gene expression between the two groups 
were compared by t-test and expressed by boxplot. All the 
statistical analyses were performed by using R software 
(Version 4.1.1). A P value <0.05 was considered as statistical 
significance. 

Results

Results of the DEG analysis

In total, 384 DEGs were identified from the GSE32863 
data set, including 91 upregulated and 293 downregulated 
genes. The flowchart of the study is shown in Figure 1. The 
expression of the screened DEGs and the differences in 
details in each sample showed in https://cdn.amegroups.cn/
static/public/jtd-22-206-1.xls, https://cdn.amegroups.cn/
static/public/jtd-22-206-2.xls.

The top 50 DEGs are shown in Figure 2A (heat map) 
and Figure 2B (volcano map). We found that the genes 
recombinant glutathione peroxidase 2 (GPX2), Purkinje 
cell  protein 4 (PCP4) ,  locus649841 (LOC649841) , 
fucosyltransferase 3 (FUT3), and transmembrane protein 
45B (TMEM45B) were upregulated, while the genes 
intelectin 1 (ITLN1), metallothionein 1M (MT1M), 
nterleukin-6 (IL-6), surfactant protein A (SFTPA), and 

https://cdn.amegroups.cn/static/public/jtd-22-206-1.xls
https://cdn.amegroups.cn/static/public/jtd-22-206-1.xls
https://cdn.amegroups.cn/static/public/jtd-22-206-2.xls
https://cdn.amegroups.cn/static/public/jtd-22-206-2.xls
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Figure 2 Heatmap (A) and volcano map (B) of the top 50 DEGs. DEGs, differentially expressed genes.

ficolin 3 (FCN3) were downregulated in the tumor group.

GO, KEGG and GSEA enrichment

During the GO annotation, the DEGs were found to 
be significantly enriched in terms of the CCs, including 
the endocytic vesicles, extracellular matrix, and collagen-
containing extracellular matrix, BPs, including the 
extracellular matrix organization, humoral-immune 
response and neutrophil activation, and the MFs, including 
glycosaminoglycan binding, oxygen carrier activity, and 
haptoglobin binding  (see Figure 3A). The KEGG analysis 
showed that these genes were significantly enriched in 
the signaling pathways related to malaria, complement 
and coagulation cascades, and leukocyte transendothelial 
migration (see Figure 3B). GO and KEGG pathway 
enrichment analyses were conducted by GSEA, and the GO 
terms “adaptive-immune-response”, “humoral-immune-
response”, and “extracellular-signal-regulated kinases 
(ERK) 1 and 2 cascade” were significantly expressed in 
the normal group (see Figure S1A), while the GO terms 
“nuclear-chromosome”, “DNA-conformation-change”, 
and “chromosomal region” were significantly expressed in 
the tumor group (see Figure S1B). In the KEGG pathway 
analysis, the terms “chemokine-signaling-pathway”, 
“cytokine-cytokine-receptor-interaction”, and “graft-
versus-host-disease” were significantly expressed in the 
normal group (see Figure S1C), while the terms “base-

excision-repair”, “cell-cycle”, and “DNA-replication” were 
significantly expressed in the tumor group (see Figure S1D).

Screening of the diagnostic genes by LASSO and SVM 
regression analyses and the validation

The intersection results of the LASSO (see Figure 4A) and 
SVM (Figure 4B) regression analyses revealed 7 DEGs that 
were considered diagnostic genes (see Figure 4C); that is, 
LOC401286, flavin-containing monooxygenase 2 (FMO2), 
XLKD1, RHOJ, SCARA5, HSPB2, and serine incorporator 2 
(SERINC2) (see Table 1). There were significant differences 
in the expression of these 7 genes between the normal and 
tumor groups (see Figure 4D). SERINC2 was significantly 
upregulated in the tumor group, but the remaining 6 genes 
were significantly downregulated.

The diagnostic performance of LOC401286, FMO2, 
XLKD1, RHOJ, SCARA5, HSPB2, and SERINC2 for 
LUAD was assessed by a ROC curve analysis, which yielded 
area under the curve (AUC) values of 0.99, 1.00, 0.99, 1.00, 
0.99, 0.99, and 0.98, respectively (see Figure 5). Similar 
results were obtained during the validation using the 
GSE63459 data set (see Figure 6). Consistently, SERINC2 
was significantly upregulated in the tumor group, while 
the remaining 6 genes were significantly downregulated. 
The ROC curve analyses for LOC401286, FMO2, XLKD1, 
RHOJ, SCARA5, HSPB2, and SERINC2 yielded AUC values 
of 0.97, 0.96, 0.94, 0.88, 0.85, 0.94 and 0.89, respectively.

https://cdn.amegroups.cn/static/public/JTD-22-206-supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-22-206-supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-22-206-supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-22-206-supplementary.pdf
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Figure 3 The GO (A) and KEGG (B) analyses of the diagnostic genes. BP, biological processes; CC, cellular component; MF, molecular 
function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Immune-cell infiltration analysis and the correlations 
between immune cells and DEGs

The proportion of immune cells infiltrated in normal and 
tumor tissues (see Figure 7A), and the correlation between 
the immune cells (see Figure 7B) was analyzed. Significant 
differences in the content of the immune cells, naive B cells, 
memory B cells, plasma cells, naive cluster of differentiation 
(CD) 4 T cells, T follicular helper cells, regulatory T cells 
(Tregs), gamma delta T cells, monocytes, M0 macrophages, 
M1 macrophages, resting mast cells, activated mast cells, 
and neutrophils were found in normal and tumor tissues 
(see Figure 7C). The correlations between the infiltrating 
immune cells and the expression of the 7 diagnostic genes 
are shown in Figure 8. A negative correlation was found 
between M0 macrophages, and monocytes and resting mast 
cells (r=−0.66 and −0.73), while a positive correlation was 
found between monocytes and resting mast cells (r=0.64). 
LOC401286, FMO2, XLKD1, RHOJ, SCARA5, and HSPB2  

were positively correlated with monocytes and resting mast 
cells, and negatively correlated with Tregs and macrophages. 
The opposite results were found for SERINC2. 

Discussion

In the present study, the functional enrichment analysis 
showed that the identified DEGs were enriched in the 
GO terms of extracellular matrix, glycosaminoglycan 
binding, complement and coagulation cascades, and 
leukocyte transendothelial migration. The intersection 
of the LASSO and SVM regression results identified 7 
diagnostic genes (i.e., LOC401286, FMO2, XLKD1, RHOJ, 
SCARA5, HSPB2, and SERINC2), which shown significant 
performance for the early diagnosis of LUAD in clinical 
practice. We also estimated the infiltration of immune 
cells, and analyzed their correlations with the 7 diagnostic 
DEGs.

The SVM and LASSO regression methods are machine-



Wang et al. Diagnostic and immune infiltration of lung adenocarcinoma704

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(3):699-711 | https://dx.doi.org/10.21037/jtd-22-206

−5	 −4	 −3	 −2	 −1
Log (λ)

Normal	 Tumor

Normal	 Tumor Normal	 Tumor Normal	 Tumor

Normal	 Tumor Normal	 Tumor Normal	 Tumor

Normal	 Tumor Normal	 Tumor Normal	 Tumor Normal	 Tumor

Normal	 Tumor Normal	 Tumor Normal	 Tumor

8.2e–15

2.7e–07 7.9e–10 4.2e–09

3e–13 6.6e–12 1.1e–08

0	 100	 200	 300
Variables

LASSO

18 7 33

SVM-RFE

N=40

Average number of the predictors

B
in

om
ia

l d
ev

ia
nc

e
LO

C
40

12
86

 e
xp

re
ss

io
n

S
C

A
R

A
5 

ex
pr

es
si

on

H
S

P
B

2 
ex

pr
es

si
on

S
E

R
IN

C
2 

ex
pr

es
si

on

FM
O

2 
ex

pr
es

si
on

X
LK

D
1 

ex
pr

es
si

on

R
H

O
J 

ex
pr

es
si

on

R
M

S
E

 (c
ro

ss
-v

al
id

at
io

n)

25	25	25	23	22	18	15	12	10	9	 8	 8	 6	1
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

10

9

8

7

9.0

8.5

8.0

7.5

7.0

6.5

9.5

9.0

8.5

8.0

7.5

10

9

8

12

11

10

9

8

7

9.0

8.5

8.0

7.5

7.0

9.5

9.0

8.5

8.0

7.5

7.0

0.070 

0.065 

0.060 

0.055 

0.050 

0.045

B CA

D

Figure 4 The intersection of genes obtained from the LASSO regression and SVM regression analyses, and the comparison of the 
expression of the diagnostic genes between the normal and tumor groups in the training (GSE32863) and validation data sets (GSE75037). 
(A) Venn plot of the intersecting genes from the LASSO regression and SVM regression; (B) comparison of the expression of the diagnostic 
genes between the normal and tumor groups; (C) Venn of LASSO and SVM regression; and (D) the differences of seven heat genes between 
normal group and tumor group. LASSO, least absolute shrinkage and selection operator; SVM, support vector machine.

learning methods that have been extensively used to screen 
diagnostic and prognosis-related indicators in recent years. 
In the present study, we integrated and intersected the 
regression results. Ultimately, 7 DEGs (i.e., LOC401286, 
FMO2, XLKD1, RHOJ, SCARA5, HSPB2 and SERINC2) 
were identified. Consistent with the literature (19), only 
SERINC2 was upregulated in the tumor group. SERINC2 
is a member of the SERINC family of transmembrane 
proteins that incorporates serine into membrane lipids, 
including phosphatidylserine, and sphingolipids, during 
synthesis. These membrane lipids thus act as important 

indicators of tumorigenesis and cancer progression 
(20,21). Further, SERINC2 reportedly promotes LUAD 
proliferation, migration, and invasion, and may involve the 
phosphatidylinositol 3 kinase (PI3K)/serine threonine kinase 
(Akt) signaling pathway (22) Additionally, SERINC2 has 
been correlated with alcohol dependence in Europeans (23). 
Interestingly, the knockdown of SERINC2 in hepatocellular 
carcinoma reportedly inhibits cell-cycle progression via the 
transcriptional activation of Kirsten rat sarcoma (k-Ras) (22). 
However, the role of SERINC2 in cancer has been largely 
understudied; thus, further studies and animal experiments 
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Table 1 The 7 intersection genes of the LASSO and SVM 
regression models

Different genes of the 
LASSO regression model

Different genes of the 
SVM regression model

Intersection 
genes

FABP4 HBA2 LOC401286

LOC401286 MFAP4 FMO2

FMO2 FAM107A XLKD1

XLKD1 AGER RHOJ

RHOJ XLKD1 SCARA5

MMRN1 TEK HSPB2

SCARA5 HSPB2 SERINC2

LGI3 JAM2

ETV4 RASL12

HSPB2 HBB

C10orf67 LDB2

SOX17 TCF21

CCL23 RHOJ

MT1M STX11

IGSF9 SH3GL3

C5AR1 STX1A

MGC34774 FMO2

SERINC2 LOC401286

PROM2 C2orf32

GCNT3 MS4A7

RHBDL1 ANKRD47

DES EDG1

IL6 PECAM1

C18orf34 LOC653463

SPDEF LIMS2

SERINC2

FHL1

SCN4B

NAP5

MMP11

CAV2

DNASE1L3

COX7A1

CFD

Table 1 (continued)

Table 1 (continued)

Different genes of the 
LASSO regression model

Different genes of the 
SVM regression model

Intersection 
genes

GIMAP5

ADH1A

SCARA5

DPEP2

PLAC9

GSTM5

LASSO, least absolute shrinkage and selection operator; SVM, 
support vector machine.

need to be conducted to assess the value of SERINC2 as an 
early diagnostic or therapeutic marker for LUAD.

Human FMO2 is expressed in the lungs in 2 isoforms 
(i.e., FMO2*2A and FMO2*1) (24), and acts as a tumor 
suppressor in LUAD. XLKD1, RHOJ and SCARA5 are 
reportedly downregulated in patients with LUAD, and their 
high expression can inhibit the occurrence and development 
of cancer (25,26). Additionally, HSPB2 has been shown 
to be correlated with pancreatic cancer and hepatocellular 
carcinoma (27) via the activation of protein 53. To the best 
of our knowledge, no study has uncovered a relationship 
between HSPB2 and LUAD; thus, further investigations 
need to be conducted.

Over the years, due to unprecedented technological 
progress, the focus of research has shifted from tumor cells 
to the TME, and our understanding of tumorigenesis has 
been refined (28). It is now well established that immune-
cell infiltration is an important part of the TME (29,30), 
and the immune system plays a dual role in tumor cells. At 
present, immunosuppressive therapy, such as programmed 
cell death protein 1 (PD-1) inhibitor therapy, has become 
the mainstay of LUAD treatment along with chemotherapy 
and surgery (29,31)

Consistent with the literature (28), our immune-cell 
infiltration analysis showed that naive B cells, memory 
B cells, plasma cells, naive CD4 T cells, T follicular 
helper cells, Tregs, gamma delta T cells, monocytes, M0 
macrophages, M1 macrophages, resting mast cells, activated 
mast cells, and neutrophils were significantly different 
between LUAD and healthy subjects. CD4+ and CD8+ T 
cells and their secreted cytokines participate in adaptive 
immunity; PD-1 inhibition has been reported to result 
in the increased proliferation of all T cell subsets and 
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Figure 5 ROC curves of the diagnostic genes in the training data set. AUC, area under the receiver operating characteristic curve; ROC, 
receiver operating characteristic.

effector cytokine production by CD4+ T helper 1 cells (32). 
Our study found that M0 macrophages were negatively 
correlated with monocytes and resting mast cells (r=−0.66 
and −0.73), but a positive correlation was found between 
monocytes and resting mast cells (r=0.64). LOC401286, 
FMO2 ,  XLKD1 ,  RHOJ ,  SCARA5 ,  and HSPB2  were 

positively correlated with monocytes and resting mast cells, 
and negatively correlated with Tregs and macrophages. 
Interestingly, the opposite results were observed for 
SERINC2 .  These results are consistent with other  
reports (33), but further experimental research at the  
in-vivo and in-vitro levels needs to be conducted to increase 



Journal of Thoracic Disease, Vol 14, No 3 March 2022 707

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(3):699-711 | https://dx.doi.org/10.21037/jtd-22-206

Normal	 Tumor Normal	 Tumor Normal	 Tumor Normal	 Tumor

Normal	 Tumor Normal	 Tumor Normal	 Tumor

Normal	 Tumor Normal	 Tumor Normal	 Tumor Normal	 Tumor

Normal	 Tumor Normal	 Tumor Normal	 Tumor

8.2e–15 3e–13 6.6e–12 1.1e–08

2.7e–07 7.9e–10 4.2e–09

LO
C

40
12

86
 e

xp
re

ss
io

n

FM
O

2 
ex

pr
es

si
on

X
LK

D
1 

ex
pr

es
si

on

R
H

O
J 

ex
pr

es
si

on

S
C

A
R

A
5 

ex
pr

es
si

on

H
S

P
B

2 
ex

pr
es

si
on

S
E

R
IN

C
2 

ex
pr

es
si

on

10

9

8

7

12

11

10

9

8

9.0

8.5

8.0

7.5

7.0

9.5

9.0

8.5

8.0

7.5

7.0

9.0

8.5

8.0

7.5

7.0

6.5

9.5

9.0

8.5

8.0

7.5

10

9

8

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
1–Specificity

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
1–Specificity

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
1–Specificity

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
1–Specificity

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
1–Specificity

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
1–Specificity

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
1–Specificity

AUC: 0.974
95% CI: 0.935–0.998

AUC: 0.850
95% CI: 0.743–0.936

AUC: 0.957
95% CI: 0.907–0.991

AUC: 0.944
95% CI: 0.877–0.992

AUC: 0.939
95% CI: 0.869–0.991

AUC: 0.891
95% CI: 0.784–0.973

AUC: 0.883
95% CI: 0.785–0.966

LOC401286

SCARA5

FMO2

HSPB2

XLKD1

SERINC2

RHOJ

S
en

si
tiv

ity
S

en
si

tiv
ity

S
en

si
tiv

ity
S

en
si

tiv
ity

S
en

si
tiv

ity
S

en
si

tiv
ity

S
en

si
tiv

ity

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

A

B

Figure 6 Comparison of the expression of the diagnostic genes between the normal and tumor groups (A) and the ROC curves of the 
diagnostic genes in the validation data set (GSE63459) (B). AUC, area under the receiver operating characteristic curve; ROC, receiver 
operating characteristic.

the robustness of our finding. The limitation of this study 
was that the stage of patients from validation dataset was 
not exactly the same as the stage in training dataset, because 
the paper needs to identify the diagnostic gene, which was 
more meaningful in the early stages, and therefore made up 
for this deficiency.

In conclusion, we identified 7 DEGs in LUAD tissue that 
can be considered diagnostic genes based on 2 machine-
learning regression methods (i.e., the SVM and LASSO 

regression models). Our findings were successfully validated 
using another independent data set that contained data from 
patients with stage I LUAD. Importantly, the infiltrating 
immune cells were analyzed, and a significant correlation 
was found to the 7 DEGs, which suggests that these genes 
affect the occurrence and development of tumors via their 
interaction with immune cells. Accordingly, our findings 
could be very helpful for the early diagnosis of LUAD in 
clinical practice.
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Figure S1 The GO and KEGG pathway enrichment analysis was conducted by GSEA. (A) GSEA enrichment of GO terms in the normal 
group; (B) GSEA enrichment of GO terms in the tumor group; (C) GSEA of the KEGG pathways in the normal group; and (D) GSEA 
of the KEGG pathways in the tumor group. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set 
enrichment analysis.
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