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Integrated gene expression profiling analysis reveals SERPINA3, 
FCN3, FREM1, MNS1 as candidate biomarkers in heart failure and 
their correlation with immune infiltration
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Background: The purpose of this study was to identify possible diagnostic indicators for heart failure (HF) and 
to investigate the function of immune cell infiltration in this pathophysiology. 
Methods: HF datasets from the Gene Expression Metascape database were utilized. R software was used to 
the identify differentially-expressed genes (DEGs) and perform functional correlation analysis. Least absolute 
shrinkage and selection operator (LASSO) and Boruta algorithms elimination algorithms were then employed 
to screen and validate the HF diagnostic variables. Finally, Single-sample Gene Set Enrichment Analysis 
(ssGSEA) was utilized to assess immune cell infiltration in HF tissues, and the Spearman association between 
gene expression and immune cell concentration was investigated. 
Results: A total of 239 DEGs were screened in this study. SERPINA3 (area under the curve, AUC =0.958), 
FCN3 (AUC =0.972), FREM1 (AUC =0.954), and MNS1 (AUC =0.948) were identified as diagnostic factors of 
HF. The gene set differentiation analysis (GSVA) (R package “GSVA”) results showed that the high expression 
of FREM1 and MNS1 genes was involved in bile acid, fatty acid, and heme metabolism, suggesting that the core 
gene affects the progression of HF by regulating metabolism. Meanwhile, the high expression of FCN3 and 
SERPINA3 was related to xenobiotic metabolism, inflammatory response, and adipogenesis. 
Conclusions: Given the importance of immune cell infiltration in the genesis and progression of HF, 
SERPINA3, FCN3, FREM1, and MNS1 may be used as diagnostic variables for HF.
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Introduction

As a complex clinical syndrome, heart failure (HF) has 
become the most common cause of adult hospitalization 
in developed countries (1) HF is generally regarded as an 
irreversible manifestation of long-term heart disease. HF 
is most often caused by ischemic heart disease (IHD) or 
dilated cardiomyopathy (DCM) (HF). Cardiac insufficiency 
is present in different syndromes, however, they do not 
have the precise symptoms and indications of a specific 
condition. The most common cause of persistent congestive 
HF is DCM, which is characterized by nonischemic left 
ventricular enlargement and alterations in cardiac structure 
and function. HF develops as a result of dilatation of the 
heart’s chambers, which is brought on by IHD’s chronic 
ventricular remodeling. Currently, therapeutic methods 
are limited to delaying the development of the disease and 
treating symptoms of volume congestion. Chronic HF may 
lead to frequent hospitalization and long-term treatment 
with cardiac assistance devices or even a heart transplant, 
based on the clinical course of the disease. Myocardial gene 
expression disorder has been shown to be the mediator of 
common end-stage diseases. In the end-stage, the heart 
responds to multiple developmental pathways. Although 
the central regulatory mechanism leading to cardiac 
transcriptional reprogramming remains unclear, epigenetic 
contributions may exist. Therefore, regardless of the 
etiology, we are committed to identifying the common 
molecular mechanism of the pathogenesis of end-stage 
cerebral infarction.

HF is characterized by overall  changes in gene 
expression in the myocardium, including the reactivation 
of developmental pathways (2). Family sequencing analysis 
and genome-wide association study (GWAS) (3) have 
identified numerous single-gene mutations and gene 
variations, respectively, which are sufficient to make HF 
diagnosis easily . Although environmental stimulation 
alters cardiac gene expression, the molecular mechanism 
remains unknown. Ecological variables such as diet and 
exercise have been thought to be regulators of genetic risk. 
Epigenetics is well suited to explain how changes in the 
cardiac milieu cause persistent but changing transcriptional 
responses (4). Any number of ischemia and nonischemic 
pathophysiological events may have an impact on the 
myocardium. In the majority of cases, irreversible HF 
follows acute ischemia damage or a gradual decline in 
cardiac function as a result of numerous clinicopathological 
factors. Ischemic injury is the main cause of myocardial 

injury. Tissue-resident immune and non-immune cells are 
activated when damaged and necrotic cardiomyocytes die 
as a result of an ischemia shock to the myocardium. The 
expansion of neutrophil and macrophage populations results 
in the release of cytokines and growth factors that promote 
the creation of highly vascularized granulation tissue (i.e., 
connective tissue and new vasculature). Adhesion molecule 
expression and the corresponding immune cell infiltration 
might improve disease diagnostics and improve treatment 
targets via a better knowledge of their expression (5).

In this study, we initially obtained HF biochip data 
from the Gene Expression Omnibus (GEO) database (6) 
to analyze differentially-expressed genes (DEGs). Next, a 
machine learning algorithm was used to further screen and 
identify the diagnostic factors of HF (7). We present the 
following article in accordance with the STARD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-22/rc).

Methods

Data download

GSE 76701 and Series Matrix File data files from the NCBI 
(The National Center for Biotechnology Information 
advances science and health by providing access to 
biomedical and genomic information.) GEO public database 
(http://www.ncbi.nlm.nih.gov/geo/) was downloaded using 
the R package “GEOquery” (version 3.6.1, http://r-project.
org/) (8) and the “GEOquery” package of R software 
(version 3.6.1, http://r-project.org/) (9). The study was 
conducted in accordance with the Helsinki Declaration (as 
revised in 2013). 

Data preprocessing

A comparison between the Series Matrix and GSE76701 
of the NCBI GEO public database was performed using 
the annotation platform GPL570 (Genome). A total of 
eight transcriptome data sets were obtained, including 
four from the normal group and four from the illness 
group. GSE57338 and Series Matrix File data files were 
downloaded with the annotation platform GPL11532, 
derived from myocardial array data, with a total of 231 
transcriptomic data sets, including both normal (n=136) and 
disease (n=95) groups, which were used for data correction 
between microarrays with the System Verilog assertion 
(SVA) algorithm, in order to explore the differences 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-22/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-22/rc
http://www.ncbi.nlm.nih.gov/geo/
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between disease-related molecular mechanisms. We also 
downloaded the GSE16499 dataset (annotation platform: 
GPL5175), with a total 30 sets of transcriptome data, 
including both normal (n=15) and disease (n=15) groups for 
subsequent validation.

Functional correlation analysis

We used the Metascape databases (https://www.metascape.
org) to obtain the biological functions and signaling 
pathways involved in disease development. Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses were performed on specific 
genes. A minimum overlap ≥3 and P≤0.01 were considered 
statistically significant.

Screening and verification of diagnostic factors

We used least absolute shrinkage and selection operator 
(LASSO) logistic regression and Boruta algorithms for 
feature selection of diagnostic factors of disease. The 
LASSO algorithm was applied using the “glmnet” R 
package. Furthermore, Boruta is a feature selection 
algorithm that randomly disrupts the order of each real 
feature and evaluates the importance of each feature, 
iteratively removing features with low correlation to find 
the best variables. A total of 500 trees were built to further 
identify the diagnostic value of the biofactors for the illness 
using the “Boruta” program on a selection of features.

Evaluation of immune cell infiltration

We used ssGSEA to quantify the level of immune cell 
infiltration in each sample and evaluate the effect of genes 
on immune infiltration. Sixty-four immunological and 
stromal cell types were studied using xCell (http://xCell.
ucsf.edu/) and thorough in silico studies that were also 
compared with immunophenotyping. The link between 
gene expression and the content of the immune cells was 
examined.

Gene set differentiation analysis (GSVA)

Gene enrichment of transcriptome gene sets may be 
assessed using the non-parametric unmonitored GSVA 
approach. GSVA converts the gene level change into a 
pathway level change and then evaluates the sample’s 
biological function by synthetically scoring the relevant 

gene set. The GSVA method was used to thoroughly 
assess each gene set to assess the possible physical function 
alterations in various samples downloaded from the 
Molecular signatures database (v7.0 edition).

Statistical analysis

The statistical analysis is carried out in R language 
(version 3.6). All statistical tests were bilateral. P<0.05 was 
statistically significant.

PPI network analysis and hub gene searching

For DEGs, we used the Search Tool for the Retrieval of 
Interacting Genes (STRING) to anticipate functional 
protein interactions. Through Molecular Complex 
Detection (MCODE) analysis, we can identify the most 
strongly linked cluster from the PPI network. The genes 
in the retrieved network with a high Maximal Clique 
Centrality (MCC) score determined by CytoHubba were 
designated as hub genes.

ROC curve analysis

It is possible to compress and preserve critical variables 
using the glmnet (Binomial LASSO) tool available in the 
R programming language. To calculate the area under 
the curve (AUC) and construct the receiver operating 
characteristic (ROC) curves for each cohort independently, 
we utilized PRISM8.0 (Network Analysis Tools) to perform 
a regression of the AUC. As a result, we looked at the 
potential of hub genes to forecast via the use of the AUC 
value.

Results

Data preprocessing and DEGs screening

We downloaded the GSE76701 and GSE57338 HF-related 
data sets from the GEO database, with a total of 239 groups 
of patients, including both normal (n=140) and disease 
(n=99) groups. The SVA algorithm was used to correct the 
chip, and a principal component analysis (PCA) chart was 
used to show the difference before and after correction. 
The results showed that the batch effect between chips 
was eliminated after SVA correction (Figure 1). We further 
used the limma package to calculate the differential genes 
between the two groups. The differential gene screening 

https://www.metascape.org
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http://xCell.ucsf.edu/
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conditions were P<0.05 and |log2fc| >1. A total of 43 
differential genes were screened out, including 24 up-
regulated genes and 19 down-regulated genes (Figure 1C). 

Functional correlation analysis

We then analyzed the pathways of differential genes. We 
observed that the primary enrichment for differential genes 
is the collagen-containing extracellular matrix, myeloid 
leukocyte activation, cell-substrate adhesion, growth factor 
response, and extracellular matrix structural constituent 
conferring compression resistance (Figure 2). An interaction 
diagram between the genes is shown in Figure 2C.

Screening and verification of diagnostic factors

LASSO regression and Boruta feature selection algorithms 
were employed to identify essential genes in the differential 
gene, and distinctive HF genes were screened out using 
these methods. Four critical genes associated with HF were 
discovered using the LASSO logistic regression technique 
(Figure 3A,3B). The Boruta algorithm identified 38 
significant genes related to HF (Figure 3C). 

The core genes were verified by external data sets

Four key genes were selected after the intersection: 
SERPINA3, FCN3, FREM1, and MNS1. We further 

downloaded the GSE16499 HF data sets from the GEO 
public database and corresponding clinical data. Through 
validation of key gene differential analysis, where FCN3 
(P=2.579e−08), FREM1 (P=7.121e−05), MNS1 (P=0.019), 
and SERPINA3 (P=3.868,07), we determined that all had 
differential significance (Figure 4).

ROC diagnostic efficacy of core genes

The ROC curve was validated by diagnostic efficacy; the 
higher the AUC, the better  diagnostic efficacy. The results 
showed that the AUC values of the four core genes were 
FCN3 [0.972 (0.952–0.992)], FREM1 [0.954 (0.927–0.982)], 
MNS1 [0.948 (0.922–0.975)], and SERPINA3 [0.958 (0.933–
0.982)] (Figure 5).

Correlation analysis between SERPINA3, FCN3, FREM1, 
MNS1 and infiltrating immune cells

Disease detection and therapy are made much more 
sensitive when the milieu is in place. The microenvironment 
includes immune cells, extracellular matrix, and growth 
factors, as well as other physical and chemical properties. By 
analyzing the relationship between core genes and immune 
infiltration in the HF data set, the potential molecular 
mechanism of core genes affecting the progression of HF 
was further explored. All four genes exhibited a strong 
correlation with immune cell content (Figure 6), and the 
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Figure 1 Two-dimensional PCA cluster plot before and after sample correction and volcano map of DEGs. (A) PCA plot of the sample 
batching effect between chips was eliminated before SVA correction. (B) PCA plot of the instance batching effect between chips was 
eliminated after SVA correction. (C) Volcano map of DEGs; genes that were up-regulated differentially are represented by the red dots, 
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GO:0062023: collagen-containing extracellular matrix
GO:0002274: myeloid leukocyte activation
GO:0031589: cell-substrate adhesion
GO:0070848: response to growth factor
GO:0030021: extracellular matrix structural constituent conferring compression resistance
GO:0032103: positive regulation of response to external stimulus
ko04610: complement and coagulation cascades
GO:0031674: I band
GO:0006898: receptor-mediated endocytosis
GO:0098542: defense response to other organism
GO:0004175: endopeptidase activity
GO:0016491: oxidoreductase activity
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Figure 2 Pathway analysis of differential genes. We use the Metascape database, annotation, visualization, GO, and KEGG analysis of 
differential genes. (A) Represents the enriched GO and KEGG pathways, and (B) represents the pathways. (C) PPI network diagram 
of differential genes. The PPI network diagram derived from distinct genes was produced utilizing String data in order to build a gene 
interaction network and show it using the Cytoscape software program. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; PPI, protein protein interaction.
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results were in line with expectations. With a P value cutoff 
of 0.05, the estimated proportions of immune and stromal 
cell types were derived for each cardiac tissue sample using 
xCell and the Wilcoxon technique for variance assessment. 
Cells were categorized as lymphoid [Tregs, B cells, Th1 
cells, Th2 cells, NK cells, NK T cells, activated dendritic 
cells (aDCs), CD4+ effector memory T cells (Tem), CD8+ 
naive T cells, CD8+ T cells, macrophage M1, macrophage 
M2, immature dendritic cells (iDCs), and others (epithelial 
cells, sebocytes, keratinocytes, mesangial cells, hepatocytes, 

melanocytes, astrocytes, neurons)] (10).

GSVA analysis of key genes

To explore the potential molecular mechanism of core genes 
affecting the progression of HF, we studied the specific 
signaling pathways involved in the four core genes. The 
GSVA results showed that the high expression of FREM1 
and MNS1 was involved in bile acid, fatty acid, and heme 
metabolism (11), suggesting that the core gene affects the 
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Figure 4 External data sets verified the core genes.

progression of HF by regulating metabolism. Meanwhile, 
the high expression of FCN3 and SERPINA3 was found 
to be related to xenobiotic metabolism, inflammatory 
response, and adipogenesis (Figure 7). 

Expression control of core genes correlation diagram

We used the “circlize” and “corrplot” packages to draw 
interaction maps expressing positively and negatively 
correlated core genes, where green represents a negative 
correlation and red represents a positive correlation (Figure 8).

Discussion

Congestive HF (CHF) (12) is the ultimate common 
outcome of multiple hearts diseases. Increases in the 
incidence of cardiovascular disorders such as hypertension, 
coronary heart disease, and stroke are associated with 
the aging of the population. The incidence of the disease 

is growing, and in the occurrence of symptoms, the 
5-year survival rate is fewer than half of those who are 
diagnosed. The mortality rate is comparable to some 
common malignancies. Therefore, the treatment and 
drug development for HF are crucial. The pathogenesis, 
initiation, and progression of CHF are complex (13). 
Cardiac-respiratory, cardiopulmonary, cardiac-circulation, 
and cardioneurohumoral patterns have been seen in 
the HF hypothesis. As these theories evolve, CHF drug 
development and treatment strategies are also changing, 
especially neuroendocrine blockers. The curative effect of 
HF has been considerably improved. Recent research (14) 
has shown that endocrine blockers have reached their limits 
(ceiling effect). As of yet, no new approaches or medications 
have been discovered for treating HF or reducing mortality. 
Therefore, identifying new therapeutic drugs and methods 
is urgently needed. Therapeutic target intervention of 
HF has become an essential approach to the treatment of  
HF (15). In recent years, with the deepening understanding 
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Figure 5 ROC diagnostic efficacy of core genes. The ROC curve of diagnostic efficacy verification; the higher the AUC value, the better 
diagnostic efficacy. ROC, receiver operating characteristic; AUC, area under curve.

of the pathophysiological process of HF, new potential drug 
intervention targets have emerged as a cure for HF. At the 
same time new drug research and development to provide 
ideas (16).

We used GSEA to analyze the KEGG pathways 
associated with immunological infiltration. There is strong 
evidence that the core gene, FREM1 and MNS1, impacts the 
course of HF by controlling the metabolism of bile, fat, and 
heme, according to GSVA data. Adipogenesis, xenobiotic 
metabolism, and inflammation were all associated with 

the elevated expression of FCN3 and SERPINA3. FCN3 is 
linked to the development of HF. MNS1, SLCO4A1, and 
FREM1 were added in a support vector machine-based risk 
prediction model. In our training and validation cohorts, 
these conventional biomarkers performed well in predicting 
the risk of HF.  

With the accumulation of large-scale omics data, 
experimental methods alone can no longer satisfy data 
analysis and drug target discovery (17). It is necessary to 
develop effective bioinformatics methods to store, analyze, 
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the genes and immune cells; the more significant the issues, the stronger the correlation, and the smaller the issues, the weaker the 
correlation. The P value, the greener the color, the lower the P value, and the purpler the color, the higher the P value. P<0.05 indicated 
statistical significance.
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process, and integrate multi-omics data, in order to improve 
drug target discovery and verification efficiency. At present, 
bioinformatics methods have been successfully used in 
all aspects of drug target discovery, which has provided 
essential contributions to storing disease-related medical 
data, discovering a large number of potential drug targets, 
revealing the mechanism of drug action, and evaluating the 
drug availability of action targets (18). Furthermore, it is 
helpful to design more targeted biological experiments and 
promote the development of modern drugs. The benefits 
of bioinformatics (19) compared with other methods in 
predicting potential drug targets are as follows: (I) it is not 
limited to specific technologies or types of information and 
is particularly suited to integrating differing information 
into a comprehensive system for evaluating the performance 
of potential drug targets; (II) networked drug discovery 
target platforms improve overall drug goal screening and 
common goal identification; and (III) the process of drug 

targeting and the effect on the entire system on a computer 
may be correctly simulated with the accumulation of 
dynamically precise biological Spatio-temporal data to 
significantly improve drug efficiency development (20).

Traditional HF biofactors, such as Brain Natriuretic 
Peptide (BNP) or NT-proBNP, have a high value in 
predicting or referring to the diagnosis and severity 
of acute or chronic HF and are widely used in clinical  
work (21). However, they still lack some specificity. BNP 
or NT-proBNP also increases to a certain extent in diseases 
such as pneumonia, asthma, pulmonary embolism, and 
interstitial lung disease, and the diagnosis of HF is difficult 
at present (22). Therefore, the exploration and discovery of 
more specific biofactors are beneficial to the early screening 
and diagnosis of HF. Also, determining the initial imbalance 
and potential mechanism of the disease is urgently needed.

HF is the consequence of the systolic and/or diastolic 
malfunction of the heart, which causes the venous blood 
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Figure 7 GSVA analysis of key genes. In order to identify the pathway that shows significant variation between samples, the median value of 
gene expression was used as the tangent point, and gene expression levels were placed into two groups based on their positions: those with 
high expression in the high-expression group and those with low expression in the low-expression group. This method was used to show the 
molecular mechanism of the core genes that are linked to disease progression. GSVA, gene set differentiation analysis.
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volume to remain in the heart, while the arterial system 
lacks enough blood perfusion, leading to the buildup 
of blood in the veins and inadequate blood flow in the 
arteries (23), resulting in heart and circulatory disease. 
Immune activation, inflammation, oxidative stress, and 
mitochondrial biology changes are considered to be 
important pathophysiological events in this process. The 
immune system consists of a variety of cellular components, 
such as granulocytes, mast cells, monocytes, macrophages, 
dendritic cells, and natural killer (NK) cells (24). A wide 
range of inflammatory reactions is triggered in the body 
when damaging stimuli, infections, or tissue damage are 
present. T and B lymphocytes, which form part of the 
adaptive immune system, have been found to improve gene 
coding in HF models. These cytokines can directly promote 
the development of some pathological states, such as HF, 
cardiorenal syndrome, pulmonary fibrosis, and cirrhosis. 
The inflammatory response in HF is closely related to the 

activation of the immune system. We applied new scientific 
methods, such as the Boruta algorithm and LASSO logistic 
regression algorithm, to test the diagnostic factors of 
HF and analyze the leakage of immune cells in HF (25). 
However, this study has certain limitations that should be 
noted. Due to the limited genetic data available, the results   
may depart from heterotypic cell interactions, disease-
induced disorders, or phenotypic plasticity, among other 
things (26). We also re-examined previously available data 
sets for the second time as part of our research.

Conclusions

In this study, a total number of 240 transcriptomic data sets  
were analyzed. We found that SERPINA3 (AUC =0.958) > 
FCN3 (AUC =0.972) > FREM1 (AUC =0.954) > MNS1 (AUC 
=0.948) were diagnostic factors of HF. In GSVA, it was shown 
that FREM1, MNS1, and FCN3 all have a role in bile acid, 

MNS1

SERPINA3

FREM
1

FCN3

−1

0

1

Figure 8 Correlation diagram of expression regulation of core genes. An interaction map of positive and negative related core genes was 
drawn; green represents negative correlation and red represents positive correlation.



Jiang et al. The new candidate biomarkers in HF1118

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(4):1106-1119 | https://dx.doi.org/10.21037/jtd-22-22

fatty acid, and heme metabolism, all of which support the 
theory that central genes have an impact on HF progression 
through controlling metabolism. In conclusion, SERPINA3-
FCN3-MNS1 can be used as a diagnostic factor of HF, and 
the immune cells in the leakage play an important role in the 
occurrence and development of HF. Further investigation 
of these immune cells may help to identify the target of HF 
immunotherapy and may also aid in the improvement of 
immunomodulatory treatment for HF  patients in the future.

Limitations

Missing experimental data was the biggest short board. So, it 
was necessary to validate the expressions and its functions of 
representative genes in HF by real world experimental data.
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