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Background: The purpose of our study was to differentiate between thymoma and thymic carcinoma using 
a radiomics analysis based on the computed tomography (CT) image features.
Methods: The CT images of 61 patients with thymic epithelial tumors (TETs) who underwent contrast-
enhanced CT with slice thickness <1 mm were analyzed. Pathological examination of the surgical specimens 
revealed thymoma in 45 and thymic carcinoma in 16. Tumor volume and the ratio of major axis to minor 
axis were calculated using a computer-aided diagnostic software. Sixty-one different radiomics features in the 
segmented CT images were extracted, then filtered and minimized by least absolute shrinkage and selection 
operator (LASSO) regression to select the optimal radiomics features for predicting thymic carcinoma. 
The association between the quantitative values and a diagnosis of thymic carcinoma were analyzed with 
logistic regression models. Parameters identified as significant in univariate analysis were included in 
multiple analyses. Receiver-operating characteristic (ROC) curves were assessed to evaluate the diagnostic 
performance.
Results: Thymic carcinoma was significantly predominant in men (P=0.001). Optimal radiomics features 
for predicting thymic carcinoma were as follows: gray-level co-occurrence matrix (GLCM)-homogeneity, 
GLCM-energy, compactness, large zone high gray-level emphasis (LZHGE), solidity, size of minor axis, 
and kurtosis. Multiple logistic regression analysis of these features revealed solidity and GLCM-energy 
as independent indicators associated with thymic carcinoma [odds ratio, 14.7 and 14.3; 95% confidence 
interval (CI): 1.6–139.0 and 3.0–68.7; and P=0.045 and 0.002, respectively]. Area under the curve (AUC) for 
diagnosing thymic carcinoma was 0.882 (sensitivity, 81.2%; specificity, 91.1%). Multivariate analysis adjusted 
for sex similarly revealed two features (solidity and GLCM-energy) as independent indicators associated 
with thymic carcinoma (odds ratio, 14.6 and 23.9; 95% CI: 2.4–89.2 and 1.9–302.8; P=0.004 and 0.014, 
respectively). Adjusted AUC for diagnosing thymic carcinoma was 0.921 (95% CI: 0.82–0.97): sensitivity, 
62.5% and specificity, 100%.
Conclusions: Two texture features (GLCM-energy and solidity) were significant predictors of thymic 
carcinoma.
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Introduction

Thymic epithelial tumors (TETs) account for 47% of 
anterior mediastinal tumors (1). According to the World 
Health Organization (WHO) classification (2-4), TETs 
are divided into three histological types: type A thymoma, 
consisting of oval and spindle-shaped tumor cells; type B 
thymoma, consisting of round and polygonal tumor cells; 
and type AB thymoma, consisting of a mixture of these cell 
types. Type B thymoma is further divided into B1, B2, and 
B3 subtypes according to the morphology of the tumor cells 
and the number of immature T lymphocytes associated 
with the tumor. Subtypes A, AB, and B1 have low risk of 
malignancy, whereas subtypes B2 and B3 have high risk of 
malignancy. Thymomas in the low-risk group are likely to 
be completely resected and require no additional therapy 
at stage III. However, thymic carcinomas and those in the 
high-risk groups require multidisciplinary treatment with 
a combination of surgical resection, radiation therapy, 
and chemotherapy. This may include preoperative 
chemotherapy for thymoma, and chemotherapy or 
chemoradiotherapy for thymic carcinoma.

Preoperative evaluation of TETs is generally performed 
by computed tomography (CT). Previous studies that have 
attempted to predict the TET subtype using CT have 
reported that the features of lobulated or irregular tumor 
contour, capsule, septum, and heterogenous enhancement 
were helpful in distinguishing low-risk thymoma from high-
risk thymoma and carcinoma (5-7). However, these visual 
features were evaluated subjectively and there may have 
been variability among the observers.

Radiomics features extracted from CT and magnetic 
resonance (MR) image data have been used in several 
recent studies (8-10). Tumor size and the difference in 
contrast compared with surrounding tissue are useful in 
determining tumor staging and for distinguishing between 
benign and malignant tumors in diagnostic imaging. 
However, radiomics analysis can extract and quantify a 
large number of high-dimensional features that cannot be 
observed visually, leading to clinical benefits for diagnosis 
and prediction of prognosis (11). To date, few studies have 
evaluated TET using radiomics analysis (12,13).

Tissue biopsy is essential in modern medicine for 
examining the genetic status of a tumor. However, because 
tumor contents are non-uniform spatially and temporally, 
there remain problems with the accuracy and reliability of 
biopsy as only some of the tissue is sampled. In addition, 
only a limited number of facilities are capable of genetic 

testing, and the time and financial burdens on patients 
are large. In contrast, CT is a simple and non-invasive 
examination, and is widely available. In addition, medical 
imaging has a major advantage in enabling characterization 
and evaluation of the entire tumor.

We hypothesized that more TET information could be 
obtained with radiomics analysis than visual CT analysis, 
and that this additional information could improve 
diagnostic performance in patients with TET. The purpose 
of this study was to evaluate whether thymic carcinoma and 
thymoma can be differentiated preoperatively by texture 
analysis. We present the following article  in accordance 
with the STARD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-21-1948/rc).

Methods

Study population

All procedures performed were approved by the ethical 
committee of Osaka University Hospital (No. 18096-2) and 
were conducted in accordance with the principles of the 
Declaration of Helsinki (as revised in 2013). The need for 
informed consent was waived due to the retrospective review 
of patient records and images. We searched the records of 67 
patients with suspected TETs (27 men, 40 women; mean age 
± SD, 59±14 years; range, 27–81 years) from 196 consecutive 
patients who underwent CT for the mediastinal between 
January 2010 to December 2013. The inclusion criteria were 
as follows (Figure 1): (I) thymectomy (n=51) or biopsy (n=12) 
performed between January 2010 to December 2013 with 
the diagnosis proven histologically, and (II) availability of CT 
images that were obtained with slice thickness of <1 mm. Of 
the 67 patients excluding follow-up (n=129), 4 were excluded 
because of CT slice thickness ≥5 mm, for which the software 
program cannot calculate the TET volume; and 2 because 
the pathological slides were not available to confirm the 
diagnosis and classify the tumors based on Masaoka staging. 
A final total of 61 patients with TETs were included in our 
study (Table 1).

Histopathological data

Pathological specimens were stained with hematoxylin 
and eosin and classified by pathologists at our institution 
into one of six subtypes, including thymic carcinoma based 
on the 4th edition of the 2015 WHO classification (4). In 
addition, we classified all tumors into low-risk thymoma, 

https://jtd.amegroups.com/article/view/10.21037/jtd-21-1948/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-21-1948/rc
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high-risk thymoma, and thymic carcinoma according to 
the prognostic value of WHO histologic classification, as 
described previously (4,14,15).

Chest CT protocol

CT of the chest was acquired using 64-detector row CT 
scanners: CT750HD (General Electric Medical Systems, 
Milwaukee, WI, USA), n=50, LightSpeed VCT (General 

Electric Medical Systems), n=8, and Aquilion ONE (Toshiba 
Medical Systems, Otawara, Japan), n=3. The following 
parameters were used: collimation, 0.5 or 0.625 mm; pitch, 
0.828–1.375; rotation time, 0.4–0.5 s per rotation; field of 
view, 345 mm; tube voltage, 120 kVp with automatic tube 
current control. All CT images of 0.5–0.625 mm section 
thickness were reconstructed with a standard kernel using 
30% adaptive statistical iterative reconstruction. All images 
were obtained 60 s after injection of 2 mL/kg bodyweight of 

Figure 1 Flowchart of patient selection. CT, computed tomography.

Table 1 Patient demographics and tumor characteristics

Characteristic Types N Age (years) P value Sex P value

WHO classification

Low risk thymoma A 2 60 [27–76] 0.433* Male 9; female 19 0.001#

AB 13

B1 13

High risk thymoma B2 11 65 [31–81] Male 3; female 14

B3 6

Thymic carcinoma 16 62.5 [30–79] Male 12; female 4

Total 61 59 [27–81] Male 24; female 37

Comorbidities in patients with thymoma

Myasthenia gravis 11

Rheumatoid arthritis 1

Systemic sclerosis 1

Data are presented as the number or the mean [range]. *, there were no significant differences in the distribution of age between thymoma 
(low risk and high risk) and thymic carcinoma; #, there was a significant difference in the distribution of sex between thymoma (low risk and 
high risk) and thymic carcinoma. WHO, World Health Organization.

CT for the mediastinum between  
January 2010 to December 2013 (n=196)

follow-up (n=129)

Final study population (n=61)

CT slice thickness ≥5 mm (n=4)

pathological slides were not available (n=2)

CT with a slice thickness of less than  1 mm, and patients 
who underwent for the mediastinum thymectomy (n=51) or 

biopsy (n=12) and histology diagnosis 
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contrast material (IOHEXOL, 300 mg I/cc; Daiichi Sankyo 
Company, Limited, Tokyo, Japan).

Volumetric and radiomic feature extraction

We developed a texture analysis software by customizing 
a commercially available software (WatchinGGO; LISIT, 
Co., Ltd., Tokyo, Japan) (15). Our developed software 
enables extraction of radiomics features from selected 
two dimensional (2D) CT images as well as volumetric 
measurements. In terms of statistics-based features, we 
used Gray-Level, developed by Vallières et al. (16), in first-
order statistics employing the following algorithm features: 
gray-level co-occurrence matrix (GLCM), neighborhood 
gray-tone-difference matrix (NGTDM), and grey-level 
run length matrix (GLRLM). Size and Shape Index 
features were calculated as morphology-based features. 
All feature classes installed in our developed software 
enabled calculation of both 2D and three dimensional (3D) 
computable indexes. Segmentation software was equipped 
with general segmentation tools such as manual drawing of 
region of interest (ROI), 2D ROI segmentation by the level 
set method, thresholding, and morphological opening and 
closing.

In this study, tumor volume and the ratio of major axis 
to minor axis were calculated by one chest radiologist using 
our developed software without being informed of any 
clinical information. The volume was calculated in the same 
way as in the previous study (15). The radiomics features 
were divided into the following seven classes: shape, size, 
intensity, histogram, GLCM, NGTDM, and GLRLM. 
A total of 61 radiomics features were calculated in the 
segmented CT images using the software (Figure 2). The 
image showing the maximal cross-sectional for each tumor 
was selected independently by two chest radiologists (MY 
and AH). In the case of difference between the radiologists, 
the final decision was made in consensus. Semi-automatic 
segmentation was performed in the maximum cross-
sectional image of each tumor, which was as large as 
possible to minimize inter-tumor variability.

Statistical analysis

The relationship between age and sex distribution and WHO 
classification was analyzed by Mann-Whitney U test and chi-
square test, respectively. Radiomics features in the low-risk 
thymoma, high-risk thymoma, and thymic carcinoma groups 
were filtered through Pearson correlation coefficient analysis 

to agglomerate redundant features and were subjected to least 
absolute shrinkage and selection operator (LASSO) logistic 
regression with a 100-time repeated 10-fold cross validation. 
The hyper-parameter of LASSO regression (weight 
parameter for the regularization term) was determined by 
the internal cross validation within each fold. Features with 
non-zero regression coefficients were considered important 
and importance of a feature was determined by counting how 
many times the feature was considered important through 
the repeated cross validation. We created the radiomics 
features via linear combination of the chosen features. 
A radiomics score was calculated for each patient, using 
the linear combination of the chosen features, weighted 
according to their coefficients. We selected the most relevant 
radiomics features in each of the three groups. Moreover, 
we added volume as one of the explanatory factors because 
tumor size has been reported to be one of the characteristic 
factors for histological subtypes of TETs (17-19). For each 
feature, the cutoff value that yielded the largest difference in 
numbers of patients with and without thymic carcinoma was 
determined using the receiver-operating characteristic (ROC) 
method. Optimal thresholds were determined for each 
variable separately using the Youden index (the highest sum 
of sensitivity and specificity). Associations between thymic 
carcinoma and each binary group designated by the cutoff 
value for the seven radiomics features were evaluated by 
univariate logistic regression analysis. Significant parameters 
identified by univariate analysis were included in multiple 
logistic regression (stepwise method; P value of 0.05 or less 
was used for entry into the model and P value greater than 0.1 
was selected for removal). ROC curves were generated for 
prediction of thymic carcinoma: sensitivity, specificity, and 
area under the curve (AUC). P values <0.05 were considered 
significant. 

Results

Patient data

Table 1 summarizes the patient characteristics. Of the  
45 patients with thymoma, 28 had low-risk thymoma (type 
A, n=2; type AB, n=13; and type B1, n=13) and 17 had high-
risk thymoma (type B2, n=11; and type B3, n=6). Of the 
16 patients with thymic carcinoma, 15 had squamous cell 
carcinoma and 1 had mucoepidermoid carcinoma. There 
were no significant differences in the distribution of age 
between thymoma (low risk and high risk) and thymic 
carcinoma (P=0.433). Thymic carcinoma was significantly 
predominant in men (P=0.001). Thirteen patients with 



Ohira et al. CT-based radiomics analysis to predict thymic carcinoma1346

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(5):1342-1352 | https://dx.doi.org/10.21037/jtd-21-1948

A

B

Original DICOM images

Tumor specific index

Extracted images

Figure 2 CT radiomics features extracted using our developed software. The area of interest including the mass is enclosed manually in a 
square, and the tumor is extracted automatically (A). The extent of the mass is then determined manually and the CT radiomics features 
are measured (B). DICOM, digital imaging and communications in medicine; HU, Hounsfield unit; NA, not applicable; RMS, root mean 
square; GGO, ground-glass opacity; GLCM, gray-level co-occurrence matrix; NGTDM, neighborhood gray-tone-difference matrix; 
GLRLM, grey-level run length matrix; GLSZM, gray-level size zone matrix; SRE, short run emphasis; LRE, long run emphasis; GLN, gray 
level non-uniformity; RLN, run-length nonuniformity; RP, run percentage; LGRE, low gray-level run emphasis; HGRE, high gray-level 
run emphasis; SRLGE, short run low gray-level emphasis; SRHGE, short run high gray-level emphasis; LRLGE, long run low gray-level 
emphasis; LRHGE, long run high gray-level emphasis; GLV, gray level variance; RLV, run length variance; SZE, small zone emphasis; LZE, 
large zone emphasis; ZSN, zone size non-uniformity; ZP, zone percentage; LGZE, low gray-level zone emphasis; HGZE, high gray-level 
zone emphasis; SZLGE, small zone low gray-level emphasis; SZHGE, small zone low gray-level emphasis; LZLGE, large zone low gray-
level emphasis; LZHGE, large zone high gray-level emphasis; ZSV, zone-size variance; CT, computed tomography.
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thymoma had comorbidities: myasthenia gravis (n=11), 
rheumatoid arthritis (n=1), and systemic sclerosis (n=1).

Radiomic features importance

The dimensionality of the 61 texture features was 
reduced using LASSO, and the radiomics features of most 
importance were identified (Figure 3). We extracted the 
seven most important radiomics features associated with 
the low-risk thymoma, high-risk thymoma, and thymic 
carcinoma groups: GLCM: homogeneity, GLCM: energy, 
compactness, LZHGE, solidity, minor axis length, and 
kurtosis.

Predictive performance for thymic carcinoma using 
radiomics features

Table 2 shows the cutoff values obtained by ROC analysis 
for each of the seven radiomics features. Univariate logistic 
regression analysis of these characteristics and the semi-
automatic tumor data (volume and ratio of major axis 
to minor axis), showed significant differences between 
thymoma and thymic carcinoma in all features except Ratio 
(major axis length/minor axis length) (Table 3). Multiple 
logistic regression analysis of these factors revealed two 
features (solidity and GLCM-energy) as independent 
indicators associated with thymic carcinoma [odds ratio, 
14.7 and 14.3; 95% confidence interval (CI): 1.6–139.0 
and 3.0–68.7; P=0.045 and 0.002, respectively] (Table 3). 
AUC for diagnosing thymic carcinoma was 0.882 (95% 
CI: 0.77–0.95): sensitivity, 81.2% and specificity, 91.1%. 
In a subanalysis comparing high-risk thymoma and thymic 
carcinoma, multiple logistic regression analysis revealed 
GLCM-energy as an independent indicator associated with 
thymic carcinoma (odds ratio, 69.3; 95% CI: 6.4–748.1; 
P=0.0005). AUC for diagnosing thymic carcinoma was 0.877 
(95% CI: 0.72–0.97): sensitivity, 81.3% and specificity, 
94.1%. Differentiation between low-risk and high-risk 
thymoma on the basis of the radiomic features did not reach 
statistical significance (AUC 0.499; 95% CI: 0.44–0.55).

Considering the predominance of men in patients 
with thymic carcinoma, multivariate analysis adjusted for 
sex similarly revealed two features (solidity and GLCM-
energy) as independent indicators associated with thymic 
carcinoma (odds ratio, 14.6 and 23.9; 95% CI: 2.4–89.2 
and 1.9–302.8; P=0.004 and 0.014, respectively). Adjusted 
AUC for diagnosing thymic carcinoma was 0.921 (95% CI: 
0.82–0.97): sensitivity, 62.5% and specificity, 100%.

Discussion

Our study demonstrated that the CT radiomics features 
GLCM-energy and solidity were useful and had high 
specificity for predicting thymic carcinoma. Particularly, 
in comparing high-risk thymoma and thymic carcinoma, 
GLCM-energy was as an independent indicator associated 
with thymic carcinoma. The high specificity of our model 
suggests its suitability for use in tertiary hospitals to reduce 
unnecessary examinations. Radiomics analysis might be 
an effective tool in differentiating between thymoma 
and thymic carcinoma in clinical treatment planning, 
particularly in cases for which surgery or biopsy is not 
feasible. In addition, if thymic carcinoma is diagnosed using 
radiomics features, metastasis can be detected by positron 
emission tomography (PET)-CT, histological type can 
be determined by biopsy, and staging and an appropriate 
treatment plan can be determined.

The feature GLCM-energy extracted in this study is 
difficult to observe subjectively on CT images. GLCM-
energy is to measure the degree of fluctuation in the space 
in the tumor. The feature GLCM-energy extracted in this 
study is difficult to observe subjectively on CT images. 
Generally, squamous cell carcinoma is the most frequent 
subtype of thymic carcinoma, which is composed of large 
polyhedral cells arranged in nests and cords, showing 
evidence of keratinization and/or intercellular bridges. 
Foci of spontaneous necrosis are frequently seen, as is 
the invasion of intratumoral blood vessels, resulting in 
the heterogeneity of the tumor (4). GLCM-energy might 
correlate to the heterogeneity of thymic carcinoma. 
‘Solidity’ is the ratio of the number of pixels in the tumor 
region to the number of pixels in the convex hull of the 
tumor region, and takes a value of 1 at the maximum (20). A 
value of 1 signifies a solid object, and a value less than 1 will 
signify an object having an irregular boundary, or containing 
holes. Thymic carcinoma might indicate lower solidity than 
thymoma because of irregular margin and internal necrosis. 
Chen et al. reported that solidity had smaller values for 
high-risk tumors than for low-risk tumors, and considered 
that this finding was due to low-risk TETs being mostly 
well-differentiated with a complete capsule, whereas high-
risk TETs were typically poorly differentiated without 
a capsule (12,21,22). This finding is consistent with the 
results of the present study.

Some previous studies have used CT radiomics to 
evaluate TETs. Chen et al. showed that radiomics features 
were independent predictors (AUC: 0.944, 95% CI: 
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Figure 3 Important radiomics features associated with the three groups (red, low-risk thymoma; blue, high-risk thymoma; and green, thymic 
carcinoma). Feature importance was defined as the number of times for a feature to have non-zero LASSO regression coefficient over the 
repeated cross validation. For our 100-time repeated 10-fold cross validation, maximum possible importance was 1,000. GLCM, gray-
level co-occurrence matrix; NGTDM, neighborhood gray-tone-difference matrix; LZHGE, large zone high gray-level emphasis; GLSZM, 
gray-level size zone matrix; RLV, run length variance; GLRLM, grey-level run length matrix; GLV, gray level variance; LRE, long run 
emphasis; GGO, ground-glass opacity; SRE, short run emphasis; ZP, zone percentage; RP, run percentage; SZHGE, small zone low gray-
level emphasis; GLN, gray level non-uniformity; LRHGE, long run high gray-level emphasis; SRHGE, short run high gray-level emphasis; 
RLN, run-length nonuniformity; LZLGE, large zone low gray-level emphasis; LZE, large zone emphasis; ZSN, zone size non-uniformity; 
SZE, small zone emphasis; LRLGE, long run low gray-level emphasis; ZLV, zone level variance; GLN, gray level non-uniformity; HGZE, 
high gray-level zone emphasis; SRLGE, short run low gray-level emphasis; HGRE, high gray-level run emphasis; LGRE, low gray-level 
run emphasis; LGZE, low gray-level zone emphasis; SZLGE, small zone low gray-level emphasis; RMS, root mean square; LASSO, least 
absolute shrinkage and selection operator.
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0.874–0.981) to distinguish between high-risk and low-
risk tumors, and that these features were significantly more 
accurate than subjective assessment by radiologists (AUC: 
0.731, 95% CI: 0.627–0.819) (P<0.001) (12). However, 
there was no significant difference between evaluation 
that combined the radiomics features compared with 

subjective evaluation (P=0.266). Wang et al. reported that in 
discriminating between high- and low-risk thymomas, AUC 
values were 0.801 (95% CI: 0.740–0.863) for the radiomics 
signature based on non-enhanced CT images and 0.827 
(95% CI: 0.771–0.884) for the radiomics signature based 
on enhanced CT images (13). There was no significant 
difference between non-enhanced and enhanced CT-based 
radiomics features (P=0.365). Both of these results were 
superior to subjective evaluation by radiologists (AUC: 
0.731, 0.779, respectively), and the present study also 
showed high performance for diagnosing thymic carcinoma 
(AUC: 0.882) with high specificity. Higher specificity might 
suppress the tendency for overdiagnosis by radiologists, 
resulting in a positive effect on patient management and 
treatment strategies.

Predicting the TET subtype is valuable clinically in the 
assessment and treatment of patients with thymoma (23). 
Compared with patients with low-risk thymoma, those with 
high-risk thymoma are more likely to require postoperative 
radiotherapy and chemotherapy (24) and have lower 5- 
and 10-year overall survival rates (25). Previous reports 

have reported that tumor volume can be larger for thymic 
carcinoma than thymoma, and that tumor volume can be 
larger for invasive TET than non-invasive TET (7,15,18,19). 
However, these studies could not distinguish between 
WHO subtypes or Masaoka stages. In the previous studies 
(7,15) also, univariate analysis revealed that tumor volume 
was useful for distinguishing between thymoma and thymic 
carcinoma, which was in accordance with the present study. 
But multivariate analysis using volume and radiomics features 
did not show that volume had a significant difference. In 
the present study, the CT radiomics features of GLCM-
energy and solidity analyzed using our developed software 
could predict thymic carcinoma more accurately compared 
with volumetry alone. In general, thymic carcinoma has little 
gender difference (4), but in the present study, multivariate 
analysis adjusted for sex was also performed because of the 
predominant distribution in men. The result was almost the 
same: two texture features (GLCM-energy and solidity) were 
significant predictors of thymic carcinoma. Xiao et al. also 
reported that MRI-based radiomics signature is a noninvasive 
and reliable tool to differentiate between low- and high-risk 
thymomas preoperatively (26). Thus, radiomics analysis using 
imaging data is a more useful diagnostic tool than visual or 
volumetry evaluations for predicting histologic subtypes 
of TET. In clinical decision-making, evaluation of tumor 
invasion is important as well as the histological diagnosis. 

Table 2 Cutoff values of radiomics features for predicting thymic 
carcinoma and mean value in the binarized groups

Features Cut-off value Mean ± SD

Volume

Score =0 (n=26) 10.1±7.9

Score =1 (n=35) >23.6 114.8±116.7

Ratio (major axis length/minor axis length)

Score =0 (n=26) 1.9±0.4

Score =1 (n=35) <1.60 1.4±0.2

Compactness

Score =0 (n=26) 14.6±1.0

Score =1 (n=35) >16.1 21.5±6.3

Solidity

Score =0 (n=26) 0.95±0.01

Score =1 (n=35) <0.92 0.85±0.06

Minor axis length

Score =0 (n=39) 22.8±7.8

Score =1 (n=22) >34.4 47.6±8.8

GLCM-energy

Score =0 (n=39) 0.23±0.04

Score =1 (n=22) >0.29 0.36±0.04

GLCM-homogeneity

Score =0 (n=33) 0.92±0.01

Score =1 (n=28) >0.93 0.94±0.01

LZHGE

Score =0 (n=34) 4.78×105±6.05×105

Score =1 (n=27) >1.71×106 5.64×106±3.76×106

Kurtosis

Score =0 (n=37) 2.1±0.5

Score =1 (n=24) >2.83 4.6±2.1

SD, standard deviation; GLCM, gray-level co-occurrence matrix; 
LZHGE, long-zone high-grey level emphasis.
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However, the pathological physiology of tumor invasion is 
complex, and further analysis will be required to elucidate 
the relationship between these pathological features and CT-
based radiomics features in the future.

Our study had some limitations. First, as we performed 
the analysis with 2D texture analysis using maximum cross-

sectional CT images, the possibility exists that the site 
characterizing the tumor was not contained. The further 
development and evaluation of software capable of 3D 
texture analysis is necessary in this regard. Second, the 
small number of patients in this study may have limited 
statistical detection. Class imbalance (45 thymomas and 16 

Table 3 Relationship of radiomics features with prediction of thymic carcinoma

Radiomic feature

Univariate analysis Multivariate analysis

Thymoma 
(n)

Thymic 
carcinoma (n)

Odds  
ratio

95% confidence 
interval

P value
Odds 
ratio

95% confidence 
interval

P value

Volume 8 1.6–39.4 0.011

Score =0 (n=26) 24 2

Score =1 (n=35) 21 14

Ratio (major axis length/minor axis length) 2.9 0.8–10.3 0.105

Score =0 (n=26) 22 4

Score =1 (n=35) 23 1

Compactness 8 1.6–9.4 0.011

Score =0 (n=26) 24 2

Score =1 (n=35) 21 14

Solidity 18.8 2.3–154.3 0.006 14.7 1.6–139.0 0.045

Score =0 (n=26) 25 1

Score =1 (n=35) 20 15

Minor axis length 6.8 1.9–23.9 0.003

Score =0 (n=39) 34 5

Score =1 (n=22) 11 11

GLCM-energy 17.3 4.1–74.1 0.0001 14.3 3.0–68.7 0.002

Score =0 (n=39) 36 3

Score =1 (n=22) 9 13

GLCM-homogeneity 15.5 3.1–77.6 0.001

Score =0 (n=33) 31 2

Score =1 (n=28) 14 14

LZHGE 9.6 2.4–39.1 0.002

Score =0 (n=34) 31 3

Score =1 (n=27) 14 13

Kurtosis 3.7 1.1–12.2 0.032

Score =0 (n=37) 31 6

Score =1 (n=24) 14 10

GLCM, gray-level co-occurrence matrix; LZHGE, large zone high gray-level emphasis.
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thymic carcinomas) may potentially affect the investigation 
and induces some bias, what was not alleviated by proper 
strategies. Moreover, only 10-fold cross validation was 
performed because of the small number of cases in the 
present study. Validation using other cohort might have 
been a critical step in the workflow radiomics process. 
Third, minor discrepancies in volume measurements 
during semi-automatic tumor segmentation may have 
influenced the results of texture analyses. Development of 
fully automatic calculation software for mediastinal tumors 
is desirable. Finally, the radiomics analysis was performed 
using our developed model in a single institution. External 
validation using a larger cohort is needed to acquire high-
level evidence for application to clinical practice.

In conclusion, CT-based radiomics features are useful 
for predicting thymic carcinoma. Two texture features 
(GLCM-energy and solidity) are significant predictors of 
thymic carcinoma, which may be helpful for determining 
the patient’s treatment preoperatively. In particular, the high 
specificity of our radiomics model may reduce unnecessary 
examinations and contribute to clinical treatment planning 
and management of TET.
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