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Introduction

Lung cancer is one the most commonly diagnosed 
malignancies and is the leader cause of cancer-related 
morbidity globally (1). Non-small cell lung cancer is 
the major subtype of lung cancer. Lung squamous cell 
carcinoma (LUSC) is a most frequent subtype of non-

small cell lung cancer and accounts for approximately 40% 
of diagnosed cases of lung cancer each year (2). Currently, 
the main treatment strategies for LUSC include surgery, 
radiotherapy, and chemotherapy (3). However, the 5-year 
overall survival rate for LUSC patients remains poor, 
largely due to limited understanding of the molecular 
mechanisms of LUSC in published studies (4,5). Therefore, 
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it is important to find effective and promising biomarkers 
for LUSC patients.

Long non-coding RNAs (lncRNAs), which are defined as 
RNAs with more than 200 nucleotides, have been the focus 
of increasing attention and have been widely associated with 
multiple diseases, such as colorectal cancer and Alzheimer’s 
disease (6,7). With the emergence of sequencing technology, 
bioinformatics have become the most frequently used method 
to investigate the pathological mechanism of various diseases 
(8,9). For example, Kim et al. reported the comprehensive 
single-cell transcriptome profiling of lung adenocarcinoma 
from early to advanced stages of primary cancer and distant 
metastases, and unveiled cellular dynamics and molecular 
features associated with the tumor progression (10). 
However, this atlas has just revealed the characteristics 
of tumor cells and associated microenvironments. Some 
changes of molecular networks during tumor progression 
have not been studied in lung cancer, especially in LUSC.

Interestingly, more and more studies have found that 
lncRNA dysregulation is associated with the occurrence 
and progression of a variety of cancers (9,11). Until now, 
the function of lncRNAs in the pathogenesis of LUSC has 
not been determined in depth. Therefore, it is important to 
expand our understanding of the pathogenesis of LUSC and 
to screen novel biomarkers to improve LUSC treatment 
strategies. In the present study, we applied RNA sequencing 
to differentially expressed mRNA (DEmRNAs) and 
differentially expressed lncRNAs (DElncRNAs) in LUSC 
patients versus controls. Moreover, functional annotation 
and the protein-protein interaction (PPI) network of 
DEmRNAs were used. DEmRNA-DElncRNA interaction 
analysis and functional annotation of DEmRNAs co-
expressed with DElncRNAs were also used, and the 
diagnostic and prognostic values of candidate genes were 
evaluated. The aim of the present study was to determine 
the underlying mechanisms of LUSC and find novel and 
accurate biomarkers. We present the following article 
in accordance with the STARD and MDAR reporting 
checklists (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-343/rc).

Methods

Patients

Three LUSC patients were included in this study. Six tissue 
samples (3 LUSC tumor samples and 3 paired adjacent 
normal tissue samples) were used for RNA sequencing. 

All patients provided signed informed consent. The 
present study was approved by the ethics committee of 
the Fourth Hospital of Hebei Medical University (No. 
2019KY256). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

RNA isolation and sequencing

Total RNA was extracted from samples using the TRIzol kit 
(Invitrogen, Carlsbad, CA, USA). Total RNA was further 
purified with the Ribo-Zero Magnetic kit (EpiCentre, 
Madison, WI, USA). Illumina Hiseq Xten platform 
(Illumina, San Diego, CA, USA) was used to conduct mRNA 
sequencing. The lncRNA and mRNA expression levels were 
compared using edgeR (https://www.bioconductor.org/
packages/release/bioc/html/edgeR.html) (12). MRNAs and 
lncRNAs with |log2fold change (FC)| >1 and P<0.05 were 
defined as significant DEmRNAs and DElncRNAs. Volcano 
plot was generated in R package (https://www.r-project.
org/). Hierarchical clustering analysis of top 100 DEmRNAs 
and DElncRNAs was structured by heatmap.2 (13).

Functional annotation

Gene Ontology (GO) classification and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analysis was done via GeneCoDis3 (14). Significant 
enrichment was defined as P<0.05.

PPI network construction

The top 50 upregulated and downregulated DEmRNAs 
were used to establish the PPI network using BioGRID 
and Cytoscape 3.6.1 (https://cytoscape.org/). Node and 
edge represented the protein and interaction between two 
proteins, respectively.

DEmRNA-DElncRNA interaction analysis

To analyze DEmRNAs of DElncRNAs with cis-regulatory 
effects, DEmRNAs transcribed within a 100 kb window 
upstream or downstream of DElncRNAs between LUSC 
and controls were obtained. DEmRNAs co-expressed 
with DElncRNAs were also screened, and pairwise 
Pearson correlation coefficients between DEmRNAs and 
DElncRNAs were analyzed. DElncRNA-DEmRNA pairs 
with P<0.001 and r≥0.999 served as significant mRNA-
lncRNA co-expression pairs.

https://jtd.amegroups.com/article/view/10.21037/jtd-22-343/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-343/rc
https://www.bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.bioconductor.org/packages/release/bioc/html/edgeR.html
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Validation in The Cancer Genome Atlas (TCGA) dataset

The expression pattern of selected DEmRNAs and 
DElncRNAs was validated in TCGA dataset. TCGA dataset 
consisted of 501 patients with LUSC and 49 controls.

Receiver-operating characteristic (ROC) curve analyses

To evaluate the diagnostic value of DEmRNAs and 
DElncRNAs in LUSC, the pROC package (15) was use to 
generate ROC curves, and the area under the ROC curve 
(AUC) represented the diagnostic value. When the AUC 
value was >0.8, DEmRNA/DElncRNA was considered to 
be able to distinguish between cases and controls with good 
specificity and sensitivity.

Survival analysis

To evaluate the prognostic biomarkers of candidate genes, 
survival analysis was generated using clinical data from 
TCGA dataset. Kaplan-Meier curve was plotted using 
survival curves (https://cran.r-project.org/web/packages/
survival/index.html) in R package.

Cell culture and transfection

Human LUSC cell lines (NCI-H520) were obtained from 
American Type Culture Collection (Manassas, VA, USA) 
and cultured in endothelial cell growth medium (Gibco, 
Rockville, MD, USA) supplemented with 10% fetal 
bovine serum (FBS) (Gibco) in 5% CO2 at 37 ℃. Small 
interfering RNA targeting MIR205HG and scramble 
siRNA of MIR205HG [normal control (NC)] was purchased 
from Guangzhou Ribobio (Guangzhou, China). For 
cell transfection, NCI-H520 cells were inoculated with 
60–70% cell density and allowed to adhere overnight. 
The corresponding plasmid was then transfected into 
cells by Lipofectamine 2000 (Gibco) according to the 
manufacturer’s instructions. After 48 h, cells were collected 
for subsequent experiments.

Cell Counting Kit-8 (CCK-8)

Cell viability was measured using the CCK-8 kit. Briefly, 
treated NCI-H520 cells were inoculated on 96-well plates 
for 12 h, and 10 µL of CCK-8 reagent was added to each 
well at 37 ℃ for 4 h. The absorbance value of each well at 
450 nm was determined using a microplate reader.

Transwell assay

Cell migration capacities were detected using Transwell 
assays. Cells resuspended in serum-free medium were placed 
into the upper chamber of a 24-Transwell plate with an 8-µm 
pore filter (BD Biosciences, Franklin Lakes, NJ, USA). 
Then, 500 µL of growth medium containing 10% FBS was 
added to the lower chamber. After incubation for 24 h, cells 
that moved through the underside of the membrane filter 
were fixed with 4% paraformaldehyde and stained with 
0.25% crystal violet. The number of migrated or invaded 
cells was counted, and the images were photographed under 
a light microscope (Olympus, Tokyo, Japan).

Quantitative reverse transcription polymerase chain 
reaction (qRT-PCR)

Total RNA was isolated from NCI-H520 cells using a RNA 
simple total RNA kit (Tiangen, Beijing, China) and then 
reverse transcribed with the Fast Quant RT (Tiangen) 
according to the manufacturer’s instructions. QRT-PCR 
was performed using Super Real PreMix Plus SYBR Green 
(Tiangen) on a QuantStudio 6 Flex system (Thermo 
Fisher). The sequences of forward and reverse primers 
for all of the genes analyzed were as follows: MIR205HG 
(forward: ATCTCTCAAGTACCCATCTTGGA; reverse: 
GGCCTCATGGTTGTCAGCTC) and ITGB8 (forward: 
CGTGACTTTCGTCTTGGATTTGG; reverse : 
TCCTTTCGGGGTGGATGCTAA). The relative 
quantification of genes was calculated using 2−∆∆Ct method.

Statistical analysis

The lncRNA and mRNA express ion leve l s  were 
compared using edgeR (https://www.bioconductor.
org/packages/release/bioc/html/edgeR.html). Pairwise 
Pearson correlation coefficients between DEmRNAs 
and DElncRNAs were analyzed. Wilcoxon test was used 
to analyze the expression difference of DEmRNAs and 
DElncRNAs between groups in TCGA dataset. The t-test 
was used for expression difference analysis of DEmRNAs 
and DElncRNAs in qRT-PCR.

Results

DEmRNAs and DElncRNAs in LUSC

Based on the thresholds of |log2FC| >1 and P<0.05, a 
total of 1,946 (940 downregulated and 1,006 upregulated) 
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DEmRNAs and 428 (206 downregulated and 222 
upregulated) DElncRNAs were obtained in LUSC. As 
shown in Figure 1, the volcano plot shows the overall 
distribution of DEmRNAs and DElncRNAs. Hierarchical 
clustering analysis of the top 100 DEmRNAs and 
DElncRNAs is shown in Figure 2A,2B, respectively. 
Circus plots represent the distribution of DElncRNAs and 
DEmRNAs on chromosomes (Figure 2C).

Functional annotation of DEmRNAs

GO and KEGG enrichment analyses were used to determine 
the biological function of DEmRNAs. GO enrichment 
analysis results revealed that these DEmRNAs were 
significantly enriched in mitotic cell cycle (P=1.54E-31), cell 
adhesion (P=2.71E-31), cytoplasm (P=2.19E-84), protein 
binding (P=9.16E-83), and nucleotide binding (P=4.84E-37) 
(Figure 3A-3C). Through KEGG enrichment analysis, cell 
cycle (P=8.23E-17), cancer pathways (P=8.41E-12), the 
p53 signaling pathway (P=9.51E-10), extracellular matrix 
(ECM)-receptor interaction (P=9.75E-09), DNA replication 
(P=1.11E-08), and the mitogen-activated protein kinase 
(MAPK) signaling pathway (P=1.47E-08) were found to be 
significantly enriched pathways (Figure 3D).

PPI network

The PPI network of  the top 50 upregulated and 
downregulated DEmRNAs consisted of 255 nodes and 
253 edges (Figure 4). TP63 (degree =21), TRIM29 (degree 
=15), FOS (degree =13), MCM2 (degree =12), LRRK2 

(degree =11), NR4A1 (degree =9), HIST2H3C (degree =9), 
CALML3 (degree =8), HBB (degree =7), PKP1 (degree =7), 
and SERPINB5 (degree =7) were considered hub proteins.

DEmRNA-DElncRNA interaction analysis and functional 
annotation of DEmRNAs co-expressed with DElncRNAs

A total of 851 DElncRNA-DEmRNA co-expression pairs 
(such as MIR205HG-ITGB8), including 213 DElncRNAs 
and 377 DEmRNAs, were identified with r<0.999 and 
P<0.01 (Figure 5). GO enrichment analysis results revealed 
that these DEmRNAs were significantly enriched in 
cellular response to hypoxia (P=2.82E-09), cell adhesion 
(P=6.18E-08), plasma membrane (P=3.02E-16), protein 
binding (P=1.27E-18), and receptor binding (P=9.98E-09) 
(Figure 6A-6C) .  Based on the KEGG enrichment 
analysis, cell cycle (P=3.57E-05), cell adhesion molecules 
(P=4.00E-05), the p53 signaling pathway (P=5.71E-04), 
ECM-receptor interaction (P=1.59E-03), small cell lung 
cancer (P=1.59E-03), and focal adhesion (P=3.89E-03) were 
significantly enriched pathways (Figure 6D).

TCGA dataset validation

The expression patterns of 3 DEmRNAs (MCM2, SERPINB5, 
and ITGB8) and 3 DElncRNAs (NEAT1, CASC19, and 
MIR205HG) were validated in LUSC. As shown in Figure 
7, NEAT1 was downregulated, which was inconsistent with 
our RNA sequencing results. MCM2, SERPINB5, ITGB8, 
CASC19, and MIR205HG were upregulated in LUSC, which 
was consistent with our RNA sequencing results.
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Figure 1 Volcano plot of (A) DEmRNAs and (B) DElncRNAs. DEmRNAs, differentially expressed mRNAs; DElncRNAs, differentially 
expressed long non-coding RNAs.
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ROC curve analyses

As shown in Figure 8, MCM2 (AUC =0.997), SERPINB5 
(AUC =0.979), ITGB8 (AUC =0.913), CASC19 (AUC 
=0.898), and MIR205HG (AUC =0.961) had a potential 
diagnostic value for LUSC except NEAT1 (AUC =0.574).

Survival analysis

We assessed the prognostic value of 3 DEmRNAs (MCM2, 
SERPINB5, and ITGB8) and 3 DElncRNAs (NEAT1, 
CASC19, and MIR205HG) in LUSC. SERPINB5, NEAT1, 
and MIR205HG were found to be associated with the 

survival of LUSC patients (Figure 9).

MIR205HG knockdown inhibits NCI-H520 cell 
proliferation and migration

The lncRNA MIR205 host gene, MIR205HG, is a novel 
lncRNA involved in the regulation of various cancer 
cell processes. MIR205HG overexpression has been 
reported to be associated with tumor progression in 
esophageal cancer, ovarian cancer, and lung cancer (16-18). 
MIR205HG is associated with unlimited growth of head 
and neck squamous cell carcinoma cells (19). MIR205HG, 
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Figure 2 Heat map and Circos plots of DEmRNAs and DElncRNAs. (A) Heat map of the top 100 DEmRNAs between LUSC and normal 
tissues. Rows and columns represent DEmRNAs and tissue samples, respectively. Color scale indicates expression levels. (B) Heat map of the 
top 100 DElncRNAs between LUSC and normal tissues. Rows and columns represent DElncRNAs and tissue samples, respectively. Color 
scale indicates expression levels. (C) Circus plots represent the distribution of DElncRNAs and DEmRNAs on chromosomes. Red and blue 
colors represent upregulation and downregulation, respectively. DEmRNAs, differentially expressed mRNAs; DElncRNAs, differentially 
expressed long non-coding RNAs; LUSC, lung squamous cell carcinoma.
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Figure 3 Top 15 significantly enriched GO terms and KEGG pathways for DEmRNAs in LUSC. (A) Biological process. (B) Cellular 
component. (C) Molecular function. (D) KEGG pathways. BP, biological process; CC, cellular component; MF, molecular function; GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEmRNAs, differentially expressed mRNAs; LUSC, lung squamous 
cell carcinoma.
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Figure 5 DEmRNAs and DElncRNAs co-expression in LUSC. Ellipses and rhombus represent DEmRNAs and DElncRNAs, respectively. 
Red and green colors represent upregulation and downregulation, respectively. Black border indicates the top 10 upregulated and 
downregulated DElncRNAs and DEmRNAs. DEmRNAs, differentially expressed mRNAs; DElncRNAs, differentially expressed long non-
coding RNAs; LUSC, lung squamous cell carcinoma.
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as a competitive endogenous RNA, accelerates tumor 
proliferation and progression in cervical cancer by targeting 
miR-122-5p (20). MIR205HG regulates cell proliferation, 
apoptosis, and the migration of cervical cancer cells by 

modulating SRSF1 and KRT17 (21). In this study, we found 
that MIR205HG was co-expressed with ITGB8 in LUSC. 
To further determine the effect of MIR205HG in LUSC, we 
used NCI-H520 cells to knock down MIR205HG. QRT-
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Figure 8 ROC curve analysis. X- and Y-axis indicate 1−specificity and sensitivity, respectively. AUC, area under the ROC curve; ROC, 
receiver-operating characteristic.
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Figure 9 Survival analysis. X- and Y-axis show time (day) and survival rate of LUSC patients, respectively. LUSC, lung squamous cell 
carcinoma.

PCR was used to measure the relative mRNA expression of 
MIR205HG in NCI-H520 cells. As shown in Figure 10A, 
the expression of MIR205HG was markedly decreased 
in the si-MIR205HG group compared with the empty 
vector group. Then, 3-(4,5-dimetHylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay and Transwell 
assay were used to detect the effect of MIR205HG on cell 
proliferation and migration, respectively. MIR205HG 
knockdown significantly inhibited the proliferation 
and migration of NCI-H520 cells (Figure 10B,10C). In 
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addition, MIR205HG knockdown significantly reduced the 
expression of ITGB8 (Figure 10D). These results indicate 
that MIR205HG knockdown could inhibit cell proliferation 
and migration in LUSC, and that MIR205HG could be a 
new target for the treatment of LUSC.

Discussion

Although the occurrence rate of LUSC is decreasing, it 
remains the highest cause of cancer-related morbidity (22).  
To date, RNA sequencing data analyses related to the 
expression profile of lncRNA in LUSC remain scarce (23). 
To determine the pathogenesis of LUSC, RNA sequencing 
was used to obtain DEmRNAs and DElncRNAs between 
LUSC and controls. It is a pity that there are not enough 
miRNAs to study competing endogenous RNA (ceRNA) 

(lncRNA-miRNA-mRNA) network. Therefore, we 
only focused on the mRNAs and lncRNAs in LUSC. 
A total of 1,946 DEmRNAs (940 downregulated and 
1,006 upregulated mRNAs) and 428 DElncRNAs (206 
downregulated and 222 upregulated lncRNAs) between 
LUSC and normal tissues were obtained. Functional 
annotation of DEmRNAs results showed that the cell 
cycle, cancer pathways, p53 signaling pathway, ECM-
receptor interaction, DNA replication, and MAPK 
signaling pathway were significantly enriched pathways. PPI 
network and DEmRNA-DElncRNA interaction analyses 
were performed. Based on the functional annotation of 
DEmRNAs co-expressed with DElncRNAs, cell cycle, cell 
adhesion molecules, p53 signaling pathway, ECM-receptor 
interaction, small cell lung cancer, and focal adhesion were 
found to be significantly enriched pathways.

Figure 10 MIR205HG knockdown inhibits NCI-H520 cell proliferation and migration. (A) Transfection efficacy was detected by qRT-
PCR. (B) MTT assay indicated that the viability of LUSC cells was suppressed by MIR205HG knockdown. (C) Transwell assay indicated 
that the migration ability of LUSC cells was inhibited by MIR205HG knockdown. Cells were stained with 0.25% crystal violet. (D) ITGB8 
expression was detected by qRT-PCR. NC, normal control; OD, optical density; CCK-8, Cell Counting Kit-8; qRT-PCR, quantitative 
reverse transcription polymerase chain reaction; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; LUSC, lung 
squamous cell carcinoma.
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MCM2 belongs to the MCM family and has been 
identified as a biomarker for the progression and prognosis 
of several types of human cancers (24). MCM2 is highly 
expressed in a variety of human cancers, including breast 
cancer, stomach cancer, colorectal cancer, lung cancer, and 
hepatocellular carcinoma (25-31). Wu et al. reported that 
the expression level of MCM2 was upregulated in LUSC 
tissues and cell lines, and that MCM2 was related to the 
low overall survival of LUSC patients (32). In this study, 
we performed RNA sequencing and found that MCM2 
expression was elevated between LUSC tissues and normal 
tissues. Based on the PPI network, MCM2 was a hub 
protein in LUSC and was significantly enriched in the cell 
cycle pathway. Therefore, MCM2 could be involved in the 
occurrence and development of LUSC by regulating the 
cell cycle pathway.

SERPINB5, a member of the serpin superfamily, is a 
serine protease inhibitor that suppresses tumor progression 
and metastasis (33-35). Higher SERPINB5 expressions 
have been reported to be associated with better prognosis 
in non-small cell lung cancer, esophageal squamous cell 
carcinoma, ovarian cancer, and bladder cancer (25-27,36). 
In the present study, SERPINB5 expression was increased in 
LUSC tissues compared with normal tissues. SERPINB5, a 
hub protein, was significantly enriched in the p53 signaling 
pathway. Isoalantolactone regulated cell cycle arrest and 
apoptosis of LUSC cells by activating the p53 signaling 
pathway (28). Therefore, SERPINB5 could be involved in 
the occurrence and development of LUSC by regulating 
the p53 signaling pathway.

NEAT1  is a lncRNA that has been shown to be 
abnormally elevated in a variety of human cancers, such 
as lung cancer, oesophageal cancer, colorectal cancer and 
hepatocellular carcinoma (29). Recently, more and more 
studies have focused on NEAT1, which has been found to be 
involved in the occurrence and development of non-small 
cell lung cancer through targeting miRNAs and regulating 
multiple signaling pathways (30,31,37,38). CASC19 is a novel 
lncRNA located on 8q24 region of the chromosome (39).  
CASC19 has been reported to be increased in non-small cell 
lung cancer tissues and cell lines, and CASC19 accelerates 
cell proliferation, migration, and invasion of non-small cell 
lung cancer by regulating miRNA-130b-3p (40). In the 
present study, NEAT1 and CASC19 were also increased in 
LUSC tissues compared with normal tissues. In this study, 
we speculated that NEAT1 and CASC19 are involved the 
occurrence and development of LUSC.

The lncRNA MIR205 host gene, MIR205HG ,  is 

a novel lncRNA involved in the regulation of various 
cancer cell processes. MIR205HG overexpression has 
been reported to be associated with tumor progression in 
esophageal cancer, ovarian cancer, and lung cancer (16-18). 
MIR205HG is associated with unlimited growth of head 
and neck squamous cell carcinoma cells (19). MIR205HG, 
as a competitive endogenous RNA, accelerates tumor 
proliferation and progression in cervical cancer by targeting 
miR-122-5p (20). MIR205HG regulates cell proliferation, 
apoptosis, and the migration of cervical cancer cells by 
modulating SRSF1 and KRT17 (21). In the current study, 
MIR205HG was found to be increased in LUSC tissues 
compared with normal tissues. Through the DElncRNA-
DEmRNA interaction network, ITGB8 was found to be 
co-expressed with MIR205HG. ITGB8 was significantly 
enriched in ECM-receptor interaction, cell adhesion 
molecules, and focal adhesion. In our study, MIR205HG 
knockdown was found to inhibit cell proliferation and 
migration in LUSC, and significantly reduced the 
expression of ITGB8. These findings indicated that 
MIR205HG inhibits LUSC cell proliferation and migration 
by modulating ITGB8 expression.

The present study had some limitations. More samples 
were needed to validate the expression of mRNAs and 
lncRNAs. Furthermore, further in vivo and in vitro 
experiments are warranted to determine the biological 
functions of representative downregulated lncRNAs in 
LUSC.

In conclusion, we identified 1,946 DEmRNAs and 428 
DElncRNAs in LUSC compared with normal tissues. Cell 
cycle, cancer pathways, the p53 signaling pathway, ECM-
receptor interaction, DNA replication, and the MAPK 
signaling pathway were found to be significantly enriched 
pathways of DEmRNAs. Based on the PPI network, TP63, 
TRIM29, FOS, MCM2, LRRK2, NR4A1, HIST2H3C, 
CALML3, HBB, PKP1, and SERPINB5 were considered to 
be hub proteins. In total, 851 DElncRNA-DEmRNA co-
expression pairs were obtained. Cell cycle, cell adhesion 
molecules,  p53 signaling pathway, ECM-receptor 
interaction, small cell lung cancer and focal adhesion were 
found to be significantly enriched pathways of DEmRNAs 
co-expressed with DElncRNAs. ROC curve analysis 
indicated that MCM2, SERPINB5, ITGB8, CASC19, 
and MIR205HG could predict the occurrence of LUSC. 
Survival analysis suggested that SERPINB5, NEAT1, and 
MIR205HG had potential prognostic value for LUSC. This 
finding could help determine the mechanisms and potential 
treatment targets of LUSC.
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