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Background: Idiopathic pulmonary fibrosis (IPF) is a fatal heterogeneous disease with a varied clinical 
course that is difficult to predict. Accurate predictive models are urgently needed to identify individuals with 
poor survival for the optimal timing of referral for transplantation and provide some clues for mechanistic 
research on disease progression.
Methods: We obtained the gene expression profiles of bronchoalveolar lavage fluid (BALF) from the Gene 
Expression Omnibus. Individuals from the GPL14550 platform were assigned to the derivation cohort 
(n=112) and individuals from the GPL17077 platform to the validation cohort (n=64). Univariate Cox and 
least absolute shrinkage and selection operator (LASSO) regression analyses were applied to select candidate 
genes for overall survival. A nomogram model was constructed based on Cox hazard regression analysis. The 
model was assessed by C-statistic, calibration curve, and decision curve analysis (DCA) and was externally 
validated.
Results: A nomogram model comprising seven genes was constructed. Excellent discrimination and 
calibration were observed in the derivation (C-index 0.815) and validation (C-index 0.812) cohorts. The 
AUCs for predicting 1-, 2- and 3-year survival were 0.857, 0.918, 0.930 in the derivation cohort and 0.850, 
0.880, 0.925 in the validation cohort, respectively. DCA confirmed the clinical applicability of the model. A 
risk score based on the model was an independent prognostic predictor and could divide patients into high- 
and low-risk groups. The Kaplan-Meier analysis displayed that high-risk patients exhibited significantly 
poorer survival compared with low-risk patients. Gene Set Enrichment Analysis (GSEA) showed that 
high-risk patients were primarily enriched in inflammatory hallmarks, and single sample GSEA (ssGSEA) 
indicated that the high-risk group is closely correlated with the immune process. These lead to increased 
insight into mechanisms associated with IPF progression that inflammation mediated by immune response 
might be involved in the disease progression. 
Conclusions: The novel BALF seven-gene model performed well in risk stratification and individualized 
survival prediction for patients with IPF, facilitating personalized management of IPF patients. It deepened 
the understanding of the role of inflammation in IPF progression, which needs to be further studied. 
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive and 
fatal chronic fibrosing interstitial lung disease of unknown 
cause with an estimated median survival time of 3 years 
(1-3). Importantly, IPF is a highly heterogeneous disease 
showing a wide range of clinical behavior, from relatively slow 
progression and long-term survival to accelerated progressive 
disease course and shorter survival (4,5). Besides pirfenidone 
and nintedanib being approved to decrease the decline of lung 
function and disease progression (6), lung transplantation 
(LTx) is the only effective curative therapy for IPF  
patients (7). However, many patients expire before receiving 
LTx (8,9). Thus, predictive biomarkers to identify high-risk 
patients with inferior survival and determine the optimal 
timing of referral for transplantation are urgently needed. 

The difficulty of predicting the prognosis of patients 
with IPF has prompted research into biomarkers. Recent 
studies have identified several prognostic systems for IPF 
based on clinical parameters (3,10,11) and peripheral blood 
biomarkers, including proteins and genes (12-16). Even 
so, very little literature is available on whether molecular 
events in the alveolar microenvironment could suggest 
novel potential prognostic biomarkers of IPF and provide 
some clues for molecular features of the disease with distinct 
clinical course phenotypes. Bronchoalveolar lavage fluid 
(BALF) is reflective of the local alveolar milieu and studies 
have proved altered molecular environment of alveoli in 
patients with IPF (17-20). The advent of ‘omics’ technologies 
(including transcriptomics) that produce a large amount of 
data and hold considerable promise for personalized care 
has accelerated the pace of biomarker discovery. Recently, 
four studies attempted to identify molecular biomarkers 
and constructed prognostic signatures by using the BALF 
transcriptome data of patients with IPF (21-24). However, 
the four prediction models were all hampered by limited 
predictive ability or only focusing on the analysis of specific 
genes. Therefore, improving outcome prediction over what 
is currently available may have significant implications on 
individualized prognosis prediction and optimal timing of 
referral for LTx. 

In the present study, we applied a novel method to 
screen potential prognostic genes in BALF samples from 
IPF patients. It is found that there exists different gene 
expression profiles determining clinical outcomes in 
terms of survival in IPF patients with similar baseline lung 
function (5,25), and several genetic variants are associated 
with disease progression and survival (26). Therefore, to 

enhance the genetic difference and place greater emphasis 
on the detection of the specific genetic difference that 
results in poor clinical outcome, we categorized the patients 
with IPF into short-term survivors (STSs) who survived less 
than two years and long-term survivors (LTSs) who survived 
more than two years according to the survival time window 
for referral for LTx (27). We integrated the differences 
of mRNA expression between IPF patients and healthy 
donors (HDs) and between the IPF patients with different 
survival, which may not only predict prognosis but may also 
contribute to discovering molecular mechanisms involved in 
disease progression. The integrated differentially expressed 
genes (DEGs) were first screened in the derivation cohort, 
and these genes were narrowed down using univariate 
Cox regression analysis, least absolute shrinkage and 
selection operator (LASSO) regression, and multivariate 
Cox regression analysis until seven genes were identified 
to construct an innovative gene model for predicting the 
prognosis of IPF. As a further step, we comprehensively 
assessed the proposed model’s discrimination, calibration, 
and clinical practicability in the derivation and validation 
cohorts. In addition, we performed functional enrichment 
and immune status analyses for the risk model. Our results 
offer new insight into the role of BALF in the evaluation of 
patients with IPF and may offer clues to the development of 
progressive IPF. We present the following article following 
the TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-21-1830/rc). 

Methods

Data acquisition and processing

The general idea and flow chart of the study is shown 
in Figure 1. We obtained the gene expression profiles of 
BALF and relevant clinical data of the study population 
from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/, GSE70866). The GSE70866 
dataset (21) was based on two platforms, GPL14550 
(Agilent-028004 SurePrint G3 Human GE 8x60K 
Microarray) and GPL17077 (Agilent-039494 SurePrint 
G3 Human GE v2 8x60K Microarray). The GPL14550 
platform consists of 20 HDs from Freiburg and 112 patients 
with IPF (62 patients from Freiburg, and 50 patients 
from Siena), while the GPL17077 platform contains  
64 patients from Leuven. BALF cells were harvested 
from 176 patients with IPF and 20 HDs at the time of 
diagnosis. Total RNA was extracted, labeled and hybridized 

https://jtd.amegroups.com/article/view/10.21037/jtd-21-1830/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-21-1830/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 1 The flow chart of the study. IPF, idiopathic pulmonary 
fibrosis; DEGs, differentially expressed genes; LASSO, least ab-
solute shrinkage and selection operator; ROC, receiver operating 
characteristic; DCA, decision curve analysis; GSEA, gene set 
enrichment analysis; ssGSEA, single sample gene set enrichment 
analysis.

to Agilent gene expression arrays. Our study assigned the 
individuals from the GPL14550 platform to the derivation 
cohort and the individuals from the GPL17077 platform 
to the validation cohort. IPF patients from the two cohorts 
were dichotomously categorized into STSs and LTSs, 
respectively. Clinical variables in this study included 
age, gender, GAP (gender, age, and two lung physiology 
variables), survival status, and survival time. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). Since the data from the GEO database 
is publicly available, the present study was exempted from 
the approval of the local ethics committee and informed 
consent. 

Screening of DEGs

Using the limma R package, we first screened the DEGs 
between IPF patients and HDs. DEGs between the two 
groups were estimated by fold-change (FC) filtering 
combined with the T-test. False discovery rate (FDR) was 
calculated to correct the P-value. Genes with an absolute 
value of FC ≥2.0 and an FDR <0.05 were considered 
significantly differentially expressed. Differential analysis 
was also applied between STS and LTS groups, and those 
with the same criterion were identified as DEGs. Finally, 
the overlapping datasets of the two group DEGs were 
retrieved for further analysis. 

Identification of crucial prognostic genes

We first used univariate Cox regression analysis to identify 
crucial prognostic genes to determine the correlation 
between the DEGs and survival status in the derivation 
cohort. Next, DEGs with a P-value <0.05 were selected for 
subsequent analysis. Through this method, we identified 
all the 42 DEGs as candidate prognostic genes. Then, we 
applied a LASSO method (28,29) to determine the best 
predictive genes ideal for prognosis prediction.

Development of the gene model to predict prognosis 

We fit a multivariate Cox regression model predictive 
of overall survival (OS) based on genes derived from the 
LASSO regression. The stepwise gene selection process was 
based on the Akaike information criterion (AIC) (30), and the 
model with minimum AIC value was determined as the final 
fitted model. A forest plot was used to show the result of the 
multivariate Cox regression. A nomogram was developed to 
predict the probability of 1-, 2-, and 3-year OS. 

Assessment and validation of the gene model 

The proposed model's predictive performance and clinical 
practicability were assessed by the C-statistic, calibration 
curve, and decision curve analysis (DCA) in derivation and 
validation cohorts. We used 1,000 bootstrap samples to 
conduct these activities. The time-dependent predictive 
value of the model was evaluated by using the time-
dependent receiver operating characteristic (ROC) curve. 
Patients with IPF were stratified into high- and low-risk 
groups in the light of the median risk score (calculated 
by the total nomogram points). The Kaplan-Meier (KM) 
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analysis estimated the probabilities of OS, with differences 
between groups assessed using the log-rank test. 

Functional enrichment and immune activity analyses 
between different risk groups

We performed enrichment analysis between the high- 
and low-risk groups by using gene set enrichment analysis 
(GSEA) to investigate the potential biological characteristic 
of the predictive model. Then, the single sample GSEA 
(ssGSEA) was used to calculate the infiltrating immune 
cells' scores and evaluate the activity of immune-related 
pathways in different risk groups. 

Statistical analysis

Participant baseline characteristics were summarized as 
median, range, mean ± standard deviation (SD), number, 
and percentages, as appropriate. We used the T-test or 
Mann-Whitney U test and χ2 test or Fisher’s exact test 
to compare continuous and categorical variables. All 
statistical analyses were performed using R-3.5.1 and the 
corresponding packages. A two-sided P<0.05 was considered 
statistically significant. 

Results

Participant baseline characteristics

A total of one hundred seventy-six patients with IPF were 
included in the study, consisting of 112 patients in the 

derivation cohort (including 20 HDs) and 64 patients in the 
validation cohort. No differences between IPF subjects in 
the derivation cohort and that in the validation cohort were 
observed regarding the age, gender, and GAP stage (Table 1).  
Of 112 IPF patients in the derivation cohort, 70 were 
considered STSs and 42 LTSs, while 41 were considered 
STSs and 23 LTSs in the validation cohort. Patients in STS 
and LTS groups were also matched concerning age, gender, 
and GAP stage (Table S1). 

Identification of IPF-specific candidate prognostic genes 

Firstly, differential expression analysis of the mRNA 
expression profiles was performed between the IPF patients 
and HDs in the derivation cohort, and 381 DEGs were 
identified. Then, of 112 IPF patients in the derivation 
cohort, mRNA expression profiles between STS and LTS 
groups were compared, and 144 DEGs were identified. 
Lastly, the DEGs between STSs and LTSs were further 
overlapped with the DEGs between IPF and HDs, and 
42 DEGs were finally identified for further analysis 
(Figure 2A). The correlation network of the 42 DEGs was 
presented in Figure 2B. 

Univariate Cox regression was then applied for the 
42 DEGs to identify genes significantly correlated with 
OS. Finally, all the 42 genes were entered in the LASSO 
regression for further shrinkage (all P<0.01; Figure S1). 
Upon the partial likelihood deviance reaching a minimum 
in the LASSO regression, 12 genes were identified as IPF-
specific prognostic candidates (Figure 2C,2D). 

Table 1 Baseline characteristics of the study population

Variables Derivation cohort, n=112 Validation cohort, n=64 P

Age, years, median (IQR) 69.5 (62.0, 76.0) 68.5 (63.75, 75.0) 0.920

Gender, No. (%) 0.726

Female 19 (17.0) 13 (20.3)

Male 93 (83.0) 51 (79.7)

GAP, No. (%) 0.075

I 31 (27.7) 25 (39.1)

II 52 (46.4) 31 (48.4)

III 29 (25.9) 8 (12.5)

Mann-Whitney U-test and χ2 test were used for comparison between derivation and validation cohorts for continuous and categorical 
data, respectively. IQR, interquartile range (25% and 75% percentiles); No., number; GAP, Gender, Age, and Physiology.

https://cdn.amegroups.cn/static/public/JTD-21-1830-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-21-1830-Supplementary.pdf
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Figure 2 Selection of IPF-specific candidate prognostic genes and the internal correlations among them. (A) The intersection of DEGs. 
(B) The correlation network of the 42 DEGs (red lines represent positive correlations; blue lines represent negative correlations. The depth 
of the color represents the strength of the correlation). (C) LASSO coefficient profiles of the 42 genes for OS. (D) 10-fold cross-validation 
for optimal parameter (lambda) selection via minimum criteria in the LASSO model. DEGs, differentially expressed genes; IPF, idiopathic 
pulmonary fibrosis; HDs, healthy donors; STSs, short-term survivors; LTSs, long-term survivors; LASSO, least absolute shrinkage and 
selection operator; OS, overall survival.

Construction, assessment, and validation of the predictive 
model

After LASSO regression, 12 genes (CCL2, CCR3, CXCL14, 
DACH1, HS3ST1, MRVI1, NRAP, PDCD1LG2, SOD3, 
STAB1, TM4SF1, and TPST1) were selected as the 
potential predictors. In the multivariate analysis process, 
the optimal fitted prognostic model with the minimum AIC 
value consisted of 7 genes (CCR3, HS3ST1, MRVI1, NRAP, 
SOD3, STAB1, and TPST1). All the seven genes were 
associated with increased risk with hazard ratios (HRs) >1, 
and 3 genes (CCR3, NRAP, and SOD3) were independent 

predictors of shorter survival (Figure 3). 
We then assessed the proposed model’s prediction 

capability. The C-index of the proposed model in the 
derivation cohort was 0.815 (95% CI: 0.769–0.861), 
significantly higher than the GAP staging system (0.617, 
95% CI: 0.552–0.682; P<0.001). Similarly, the C-index of 
the model (0.812, 95% CI 0.703–0.921) was also higher 
than that of the GAP staging system (0.670, 95% CI: 
0.575–0.765; P<0.01) in the validation cohort. We also 
plotted ROC curves to assess the prediction accuracy for 
1-, 2-, and 3-year survival. The area under the curves 
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(AUCs) of ROC curves for predicting 1-, 2- and 3-year 
survival in the derivation cohort were 0.857, 0.918, and 
0.930, respectively (Figure 4A), and those in the validation 
cohort were 0.850, 0.880, and 0.925, respectively (Figure 
4B). Besides the excellent discrimination at the three 
specific time points above, time-dependent ROC curves 
showed that our proposed model consistently outperformed 
the GAP staging system from 0.5- to 3-year mortality 
prediction in both the derivation and validation cohorts 
(Figure 4C,4D). Furthermore, calibration curves of our 
proposed model in the derivation and validation cohorts 
displayed good agreements between prediction and actual 
observation of 1-, 2-, and 3-year survival (Figure 5A,5B).  
Thus, the high discrimination and good calibration 
indicated that our proposed model demonstrated accurate 
prediction capability. In addition, the clinical usefulness of 
our proposed model was quantified by the DCA curve; it 
provided better clinical applicability in predicting 1-, 2-, 
and 3-year survival of the patients with IPF due to good 
net benefit with wide ranges of threshold probabilities 
compared with the GAP staging system (Figure 5C,5D). 

Eventually, a personalized scoring nomogram based on the 
proposed model was generated to predict the probability of 
1-, 2-, and 3-year survival to quantify the risk assessment for 
an individual patient with IPF (Figure 6). 

Nomogram model-based risk stratification 

Patients in the derivation and validation cohorts were 
divided into two risk groups (high-risk vs. low-risk) based 
on the median score calculated by the total nomogram 
points, respectively (Figure 7A,7B). As the risk score 
increased, the patients’ risk of death increased, and the 
survival time decreased (Figure 7C,7D). Median OS for 
high-risk patients versus low-risk patients was 0.86 (95% 
CI: 0.67–1.29) years versus 3.21 [95% CI: 2.89–not reached 
(NR)] years (P<0.0001; Figure 7E) in the derivation cohort. 
Median OS was not reached for the low-risk patients versus 
1.75 (95% CI: 0.96–NR) years for the high-risk patients in 
the validation cohort (P<0.0001; Figure 7F).

Heatmaps were used to visualize the difference of age, 
gender, GAP stage, survival status, and the seven gene 
expression profile between high-risk and low-risk patients 
in the derivation and validation cohorts. As illustrated in 
Figure 8A,8B, high-risk patients had higher GAP stage 
and more deaths than low-risk patients (P<0.01). There 
were no significant differences between high-risk and low-
risk patients regarding age and gender (P>0.05). Figure 8A 
and split violin (Figure 8C) showed that all the seven genes 
were up-regulated in the high-risk group in the derivation 
cohort, and five of them were up-regulated in the validation 
cohort (Figure 8B,8D). 

We performed univariate and multivariable Cox regression 
analyses to evaluate whether the risk score could be an 
independent prognostic predictor. On univariate analyses, 
the risk score was a prognostic factor for inferior survival in 
derivation and validation cohorts (Figure 9A,9B). Multivariate 
analyses showed that the risk score was an independent 
prognostic factor of poor survival after adjusting for other 
confounding factors (age, gender, GAP stage) in both cohorts 
(HR 5.243, 95% CI: 2.958–9.295; HR 7.130, 95% CI: 2.159–
23.549; Figure 9C,9D).

Functional enrichment and immune status analyses for the 
risk model 

To further elucidate the biological features associated 
with the risk model, GSEA was performed to investigate 
the differences of hallmark gene sets between the high- 
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Figure 3 Forest plot of the multivariable Cox regression analysis. 
HR, hazard ratio; 95% CI, 95% confidence interval.
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and low-risk groups. GSEA analyses indicated that all the 
enriched pathways were activated in the high-risk group 
and were mainly associated with INFLAMMATORY_
RESPONSE and TNFA_SIGNALING_VIA_NFKB in 
both the derivation and validation cohorts (Figure 10A,10B).

Considering that the risk profile was associated with 
inflammation, we further explored the relationship 
between risk scores and immune status using the ssGSEA 
(Figure 11A). As shown in Figure 11B, the risk score 
and corresponding genes were correlated with antigen 
processing and presentation contents, such as APC co-
stimulation, CCR, DCs, and Macrophages. The scores 
of DCs, Macrophages, APC co-stimulation, CCR, 
and parainflammation in the high-risk group were 
significantly higher than those in the low-risk group 
in the derivation cohort (Figure 11C,11D). Similarly, 
the scores of Macrophages, APC co-stimulation, CCR, 
and parainflammation in the high-risk group were also 

significantly higher than those in the low-risk group in 
the validation cohort (Figure S2). These results implied 
that high-risk was associated with inflammatory process 
mediated by the immune response, which was consistent 
with the result of GSEA.

Discussion

IPF is a progressive and lethal interstitial lung disease 
with a highly variable clinical outcome. Due to the very 
heterogeneous clinical course, it remains a great challenge 
to accurately identify the high-risk patients for death and 
determine the optimal timing of referral for transplantation. 
In the present study, we used the transcriptome data of 
BALF to construct a novel predictive model with seven-
gene signature for risk stratification and individual survival 
prediction in IPF patients. The model was derived in one 
cohort and validated in an independent cohort. Impressively, 

Figure 4 ROC curves and time-dependent AUC analyses in the derivation and validation cohort. (A) ROC curves at 1-, 2-, and 3-year 
survival in the derivation cohort. (B) ROC curves at 1-, 2-, and 3-year survival in the validation cohort. (C) AUC of time-dependent ROC 
analysis based on risk score or GAP in the derivation cohort. (D) AUC of time-dependent ROC analysis based on risk score or GAP in the 
validation cohort. AUC, area under the curve; GAP, Gender, Age, and Physiology; ROC, receiver operating characteristic.
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grey diagonal line of calibration curve depicts an ideal nomogram whose predicted probabilities perfectly correspond to the actual observed 
probabilities. The solid lines indicate the apparent accuracy of our nomogram, and the blue crosses represent the optimism-corrected 
probabilities by bootstrapping. GAP, Gender, Age, and Physiology; OS, overall survival; DCA, decision curve analysis. 

we examined the proposed model’s prognostic value 
through comprehensive methods, and further preliminarily 
explored the potential mechanism involved in the disease 
progression. 

The notion that BALF reflecting the local alveolar 
milieu may be informative in IPF research has gained 
significant momentum in recent years (31). Based on the 
fact that the GSE70866 dataset is the only one linking 
the survival data to mRNA expression profiles in BALF of 
patients with IPF, there exists four prediction models with 
distinct gene signature (21-24). Prasse et al. firstly provided 
the comprehensive study of BAL gene expression patterns 
and generated a stable six-gene signature, performing 
better than the GAP index (C-index, 0.67 vs. 0.63) for 
predicting mortality in IPF (21). Xia et al. extracted two 
gene modules with WGCNA, and developed a four-gene 
signature model (C-index 0.72) (23). Besides these, two 
other studies have focused on the analysis of specific genes. 

Specifically, Li et al. recently found that both hypoxia and 
immune status were associated with the survival of patients 
with IPF, and established a nine-gene prognostic classifier 
with the AUCs of ROC curves for predicting 1-, 2- and 
3-year survival of 0.789, 0.768, and 0.754, respectively (22). 
Li et al. investigated the relationship between ferroptosis 
and the prognosis of IPF, constructing a ferroptosis-related 
genes (FRGs) signature with the 1-, 2- and 3-year AUCs 
of 0.737, 0.772, and 0.731, respectively (24). While in 
our study, we used a novel method to screen prognostic 
genes, and derived a seven-gene risk profile presented by 
a personalized scoring nomogram. Our nomogram model 
revealed excellent predictive ability in both the derivation 
and validation cohorts. The C-index for the derivation 
and validation cohorts were 0.815 and 0.812, respectively, 
outperforming the GAP staging system, and were higher 
than those previously reported (21,23). The AUCs of our 
ROC analyses were also better than the ROC curves in 
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Figure 6 The proposed seven gene nomogram. Add the points from these seven genes together and determine the location of the total 
points. The total points projected on the survival scales indicate the likelihood of survival time less than 1-, 2-, and 3-year. *, P<0.05; **, 
P<0.01; Pr, probability.
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previous studies (22,24). In addition, calibration curves 
demonstrated an optimal agreement between prediction 
and observation of 1-, 2- and 3-year survival probability. 
Furthermore, the results of the time-dependent ROC 
curves and DCAs showed the superiority of the nomogram 
model for clinical prediction and net benefits compared 
with the GAP staging system. All of the above attributes are 
important because accurate outcome prediction has efficient 
implications for IPF patients.

IPF is a heterogeneous disease in terms of survival (4,5). 
Our model could stratify patients into two different risk 
subgroups with significantly distinct prognosis following 
the median risk score. The risk score was proved to be an 
independent predictor of inferior survival, and as expected, 
high-risk patients had a worse prognosis than low-risk 
patients. The clinical implication of identifying high-risk 
patients are substantial. Since high-risk patients have a 
dismal prognosis with a median survival time of fewer than 
two years and the waiting time for LTx is approximately 

one year (9,32), these patients identified as high risk should 
receive an LTx evaluation urgently. Thus, incorporating our 
prognostic risk model in the assessment of patients with IPF 
may improve the accuracy of lung transplantation referral, 
allowing patients who need it to receive LTx in a more 
timely manner while delaying those who may not need it 
urgently.

Our proposed model comprised seven genes, CCR3, 
SOD3, HS3ST1, MRVI1, NRAP, STAB1, and TPST1. 
Almost all of the seven signature genes have been identified 
previously in multiple diseases including pulmonary fibrosis. 
Desai et al. measured the gene expression of molecular 
markers of inflammation and oxidative stress between IPF 
subjects and controls and found CCR3 to have increased 
mRNA levels in IPF patients (33). Huaux et al. proposed 
that CCR3 plays a novel role in granulocyte recruitment and 
bleomycin-induced lung fibrosis (34). In the current study, 
we found that CCR3 was upregulated in patients with IPF 
and as an independent risk factor of poor survival. SOD is 
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Figure 7 Risk stratification based on the nomogram for patients in the derivation and validation cohorts. The IPF patients were stratified 
into high- and low-risk groups based on total nomogram points in the derivation (A) and validation (B) cohorts. (C,E) Survival analyses 
based on the risk scores in the derivation cohort. (D,F) Survival analyses based on the risk scores in the validation cohort. IPF, idiopathic 
pulmonary fibrosis. 
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one of the vital antioxidant enzymes preventing oxidant-
mediated lung injury. Many lines of evidence support the 
protective role of SOD in pulmonary fibrosis (35-38). The 
overexpression of SOD3 in our study may indicate an attempt 

to compensate for increased oxidative stress in IPF. HS3ST1 
is required for antithrombin’s anti-inflammatory activity and 
is associated with atherosclerosis (39). The up-regulation 
of MRVI1 gene is associated with decreased overall survival 
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Figure 8 Clinical characteristics and seven gene expression profiles in high-risk and low-risk groups. Heatmaps of clinical data and gene 
expression in the derivation (A) and (B) validation cohorts. Comparison of the seven genes between high-risk and low-risk groups in the 
derivation (C) and (D) validation cohorts. GAP, Gender, Age, and Physiology; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, not significant. 

C
C

R
3

H
S

3S
T1

M
R

V
I1

N
R

A
P

S
O

D
3

S
TA

B
1

TP
S

T1

C
C

R
3

H
S

3S
T1

M
R

V
I1

N
R

A
P

S
O

D
3

S
TA

B
1

TP
S

T1

CCR3 CCR3

HS3ST1

HS3ST1

MRVI1

MRVI1NRAP

NRAP

SOD3

SOD3

STAB1

STAB1

TPST1

TPST1

G
en

e 
ex

pr
es

si
on

G
en

e 
ex

pr
es

si
on

10.0

7.5

5.0

2.5

12.5

10.0

7.5

5.0

2.5

******** **** **** **** **** ****** *** *** *** ****ns ns

High risk High risk
Group Group

Low risk Low risk

A

C

B

D

for stage III serous ovarian carcinoma patients with chemo-
resistance, and it is a susceptibility gene for moyamoya 
syndrome in European patients with neurofibromatosis 
type 1 (40,41). The NRAP gene encodes the nebulin related 
anchoring protein, and upregulation of its expression was 
experimentally observed in dilated cardiomyopathy (DCM) 
mice models and human DCM patients (42,43). The protein 
encoded by STAB1 is a scavenger receptor in macrophages, 
involving in homeostatic balance and the resolution of 
inflammation (44,45). Our study elucidated that STAB1 has 
a strong positive correlation with macrophages. TPST-1 has 
been found aberrantly expressed in several cancers and is 
correlated with metastasis (46,47). In a word, all the seven 
genes were high-expressed in BALF of patients with IPF 
and were associated with inferior prognosis in our study. 

However, except for CCR3 and SOD3, the functions of the 
other five genes in IPF have not been elaborated, and further 
studies are needed.

Of mention, the finding that high-risk patients with 
IPF had shorter survival and a higher risk of mortality may 
indicate high-risk patients experiencing a progressive disease 
course. However, the mechanisms of disease progression 
are not fully elucidated. Our study could provide some clues 
for mechanistic research on IPF progression. On one hand, 
GSEA analyses depicted that enriched pathways in high-
risk patients were mainly associated with inflammatory 
hallmarks; on the other hand, the results of ssGSEA 
indicated that the high-risk group is closely correlated with 
the immune process, particularly macrophages, DCs, APC 
co-stimulation, CCR, and parainflammation. These findings 
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Figure 9 Prognostic factor analysis for OS in patients from the derivation and validation cohorts. Univariate analyses of prognostic factors 
for OS in the derivation (A) and validation (B) cohorts. Multivariate analyses of prognostic factors for OS in the derivation (C) and validation 
(D) cohorts. HR, hazard ratio; 95% CI, 95% confidence interval; GAP, Gender, Age, and Physiology; OS, overall survival. 

Figure 10 GSEA results for high-risk patients in the derivation and validation cohorts. (A) Two main enriched pathways in high-risk group 
in the derivation cohort. (B) Two main enriched pathways in high-risk group in the validation cohort. NES, normalized enrichment score; 
GSEA, gene set enrichment analysis. 
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Figure 11 Comparison of the immune status between the high-risk and low-risk patients in the derivation cohort. (A) Heatmap of the 
immune status profile between the high-risk and low-risk groups. (B) Correlation between risk score and the seven genes and immune status. 
(C) Differences of the ssGSEA scores of 16 immune cells. (D) Differences of the ssGSEA scores of 13 immune-related functions. *, P<0.05; 
**, P<0.01; ***, P<0.001; ns, not significant. ssGSEA, single sample gene set enrichment analysis. 
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led to an increased understanding of the mechanisms 
associated with IPF progression that inflammation mediated 
by immune response might be involved in the disease 
progression. O'Dwyer’s study supported the idea that the 
altered lung microbiota generated molecular patterns 

engaging innate immune receptors and induced sustained 
inflammation, promoting disease progression (48). In 
addition, a recent review by Gibson et al. (49) concluded 
that compared with IPF, progressive fibrosing interstitial 
lung disease is characterized by the presence of identifiable 
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antigen-driven immune response and more inflammatory 
infiltration, somewhat supporting our conclusion. However, 
this deduction of inflammation-mediated progressive 
fibrosis should be tested empirically in future work. 

The study has several strengths. First, we determined 
the specificity of the seven-gene prognostic model to 
IPF by integrating the DEGs between IPF patients and 
HDs with those between IPF patients with short and 
extended survival. Compared with previously reported 
models constructed using the same dataset, the prediction 
performance of our model was better. Second, the present 
study had the advantage of comprehensively evaluating the 
robust performance of the model, and it had been validated 
through an independent cohort. We evaluated the model 
by reporting the discrimination, calibration, and clinical 
practicality simultaneously. Discrimination and calibration 
are cardinal characteristics in assessing model performance; 
however, they are underreported in the published medical 
literature (50). Reports on the clinical practicality of models 
are even fewer. We also acknowledge several limitations. 
First, though the derivation and validation cohorts come 
from two distinct platforms, further external validation 
using other datasets or real-world prospective clinical 
cohorts is necessary to verify the predictive value of the 
seven-gene model. Besides, the prediction of our model may 
be compromised since some clinical variables, such as high-
resolution computed tomography (HRCT) fibrosis scores, 
pulmonary function tests, and treatment information, were 
unavailable. Furthermore, most of the enrolled genes in 
the model have not been elaborated except for the initial 
description of CCR3 and SOD3; future research is warranted 
to provide deep insight into the biological functions of these 
genes in IPF. 

Conclusions

We derived and validated a novel prognostic gene model 
that performed well in risk stratification and individualized 
survival prediction for patients with IPF, facilitating 
personalized management of IPF patients, especially 
for high-risk patients in the choice of optimal timing of 
referral for transplantation. In addition, it deepened the 
understanding of the role inflammation played in IPF 
progression, which needs to be further studied. 
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Table S1 Baseline characteristics of the study population stratified by survival time

Variables
Derivation cohort Validation cohort

LTSs (n = 42) STSs (n = 70) P LTSs (n = 23) STSs (n = 41) P

Age, years, median (IQR) 70.0 (65.0, 75.0) 68.5 (60.25, 76.0) 0.231

Age, years, mean ± SD 65.57±8.14 69.76±8.49 0.058

Gender, No. (%) 0.079 0.519

Female 11 (26.2) 8 (11.4) 6 (26.1) 7 (17.1)

Male 31 (73.8) 62 (88.6) 17 (73.9) 34 (82.9)

GAP, No. (%) 0.133 0.210

I 16 (38.1) 15 (21.4) 12 (52.2) 13 (31.7)

II 18 (42.9) 34 (48.6) 8 (34.8) 23 (56.1)

III 8 (19.0) 21 (30.0) 3 (13.0) 5 (12.2)

T test, Mann-Whitney U-test, χ2 test or Fisher’s exact test were used for comparison between LTSs and STSs, as appropriate. LTSs, long-
term survivors; STSs, short-term survivors; IQR, interquartile range (25% and 75% percentiles); SD, standard deviation; No., number; GAP, 
Gender, Age, and Physiology.
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Figure S1 Forest plot of the univariable Cox regression analysis. HR, hazard ratio.
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A B

Figure S2 Comparison of the immune status between the high-risk and low-risk patients in the validation cohort. (A) Differences of the 
ssGSEA scores of 16 immune cells. (B) Differences of the ssGSEA scores of 13 immune-related functions. ssGSEA, single sample gene set 
enrichment analysis; *, P<0.05; ***, P<0.001; ns, not significant. 


