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Background: Troponin is an important marker for the diagnosis of acute myocardial infarction (AMI). The 
detection of troponin in peripheral blood is simpler and more convenient than that in venous blood, which 
has attracted more and more clinical attention. The purpose of this study is to establish a novel method for 
the rapid detection of high-sensitivity troponin I (hs-cTnI) in peripheral blood by quantum dot fluorescence 
immunoassay and evaluated the clinical accuracy of the method. 
Methods: A total of 90 patients with chest pain admitted to Wuxi Second People’s Hospital of Nanjing 
Medical University had peripheral blood and venous blood samples collected for detection of hs-cTnI by 
rapid quantum dot fluorescence immunoassay. The differences between the two methods were evaluated, 
as well as the analytical performance and clinical diagnostic efficacy of hs-cTnI detection by quantum dot 
fluorescence immunoassay. The final diagnosis was determined by two independent cardiologists.
Results: This study verified the precision, linear range and sensitivity of the novel detection method. There 
was good correlation between the results of hs-cTnI quantum dot fluorescence immunoassay for peripheral 
blood and the results for venous blood (regression equation Y=1.026x+0.521, R2=0.9337); 94.4% (85/90) of 
the data were within the conformance limit. In addition, in the analysis of 52 patients with confirmed AMI, 
the clinical specificity of the quantum dot fluorescence immunoassay in peripheral blood was the same as that 
in venous blood samples (89.5%:89.5%). Finally, the area under the receiver operating characteristic (ROC) 
curve of the peripheral blood quantum dot fluorescence immunoassay was 0.9352, the 95% confidence 
interval (CI) was 0.8829 to 0.9876, the cut-off value was 1.598, and the sensitivity was 82.69%, which was 
not significantly different from the venous blood method (P value =0.089).
Conclusions: Rapid detection of hs-cTnI by quantum dot fluorescence immunoassay in peripheral blood 
is feasible. It has a high correlation and consistency with the venous blood method, as well as a high clinical 
diagnostic value for AMI and is more convenient and easier to detect.
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Introduction

Cardiovascular disease (CVD) is the main cause of 
premature death and disability worldwide, with an 
increasing incidence (1,2). Acute myocardial infarction 
(AMI) is the most common clinical form of coronary 
syndrome, and non-diagnostic AMI may lead to increasing 
human mortality worldwide (3,4). Therefore, rapid 
monitoring and follow-up of AMI symptoms in patients 
is important for clinical diagnosis, which will greatly 
reduce the risk of further life-threatening problems (5). In 
general, the occurring AMI affects the increase in cardiac 
biomarker levels in the blood. Cardiac troponin is an 
outstanding biomarker for AMI, which is of great value 
for the monitoring and diagnosis of AMI (6). Therefore, 
the development of an easy-to-use quantitative troponin 
method is highly desirable for rapid diagnosis of AMI 
disease and follow-up of treatment process

C u r r e n t  m e t h o d s  o f  d e t e c t i n g  c T n I  i n c l u d e 
e l e c t r o c h e m i l u m i n e s c e n c e  a n d  e n z y m e - l i n k e d 
immunofluorescence, which require to collect venous blood 
samples from the patient’s arm (7,8). The time it takes 
between a blood sample and the reporting of test findings 
is a significant impediment to making quick decisions. The 
time spent transferring blood to a central laboratory and 
then centrifuging it to create a plasma sample is a substantial 
component of the turnaround time in this procedure. Point-
of-care cardiac troponin tests that use peripheral blood and 
have quick turnaround times may help to speed up decision 
making. 

In recent years, peripheral blood testing has attracted 
more and more attention. For instance, Tomimuro et al. 
developed a μTADs device combined with Bret’s sensor 
protein to rapidly detect antibodies in human peripheral 
blood samples (9). Sarangadharan et al. have developed 
a hand-held biosensor system to rapidly screen for brain 
natriuretic peptide (BNP) from a single drop of whole 
blood (10). There are few reports on the detection of 
peripheral blood troponin. This study used quantum dot 
immunofluorescence technology combined with bedside 
POCT instrument to detect troponin in peripheral blood.

Quantum dots are characterized by high fluorescence 
efficiency, good stability, high sensitivity and rapid 
quantification (11,12). Quantum dots is applied in many 
biomedical filed for its unique optoelectronic properties as 
a novel option (13,14). Quantum dots are used as superior 
luminescence tags for their broad excitation spectrum, 
narrow emission spectrum and large Stokes shift (>100 nm).  

Such optoelectronic properties are important in multiplexed 
applications as unique light source, since it could excite 
multiple quantum dots with different sizes at the same 
time (15). Additionally, quantum dots demonstrate higher 
molar adsorption coefficients and quantum yield compared 
with organic fluorophore. Therefore, fluorescent NPs 
are almost 20-fold brighter and thousand-fold more 
enduring compared with traditional organic dyes (16). Such 
exceptional optical properties illustrate that quantum dots 
are one of the important photoluminescent probes which 
could be applied in many analytical experiments. 

In this research, we evaluated a novel technique for 
the rapid testing of high-sensitivity cTnI (hs-cTnI) in 
peripheral blood by quantum dot fluorescence immunoassay 
and explored the clinical application of peripheral blood 
hs-cTnI. This technology has important value in pre-
hospital emergency care, early AMI screening and the 
construction of national chest pain centers. We present the 
following article in accordance with the STARD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-436/rc).

Methods

Patients 

A total of 90 patients with chest pain admitted to Wuxi 
Second People’s Hospital of Nanjing Medical University 
between June 2019 and January 2021 were enrolled. Of 
them, 52 were diagnosed with AMI based on the 2017 ESC 
STEMI Guidelines (17). Laboratory evidence of AMI was 
defined as cTn value >99th percentile of the upper reference 
limit (URL) at least once. The clinical manifestations were 
consistent with those of myocardial ischemia. Patients with 
moderate to severe liver and kidney insufficiency, tumor or 
other chronic diseases were not included. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Ethics 
Committee of Wuxi Second People’s Hospital of Nanjing 
Medical University (No. 2020-Y-19) and informed consent 
was taken from all the patients.

Materials and Instruments

The instrument is Nanjing Vazyme dry fluorescence 
immunoassay analyzer AFS-1000. The reagent is the 
matching troponin test card and the diluent used to detect 
peripheral blood. The venous blood is lithium heparin 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-436/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-436/rc
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anticoagulated whole blood, and the peripheral blood is the 
patient’s fingertip blood.

Study methods 

At present, venous blood troponin detection is routinely 
used in clinical practice. We compared the peripheral 
blood troponin results with the venous blood troponin 
results. A 30 μL peripheral blood sample was collected 
from each patient’s ring finger and added to 90 μL of 
diluent. After the sample was mixed, take 80 μL from the 
dilution to detect hs-cTnI using Vazyme dry fluorescence 
immunoassay analyzer AFS-1000. A 3–5 mL venous blood 
sample was collected from the patient’s vein and was placed 
into a lithium heparin anticoagulant tube. Taken 80 μL 
from lithium heparin anticoagulation tube to detect hs-
cTnI using Vazyme dry fluorescence immunoassay analyzer 
AFS-1000. The peripheral and venous blood samples were 
collected at the same time and comprised the two study 
groups. The diagnostic criteria for AMI include a history 
of ischemic chest pain, myocardial ischemic necrosis 
ECG dynamic changes, and serum myocardial dynamic 
changes biochemical markers (mainly hs-cTn). The 
results of hs-cTn are based on venous blood quantum dot 
immunofluorescence detection.

Statistical analysis

GraphPad Prism8 and SPSS24 were used for statistical 
analysis. Measurement data were expressed as x±s, t-test was 
used to compare the differences between the two groups, 
and linear correlation was used for correlation analysis. 
A quantum dot fluorescence immunoassay was used to 

establish the standard curves for clinical detection of hs-
cTnI in peripheral and to verify the test’s precision and 
linear range.

We constructed a receiver operating characteristic (ROC) 
curve to analyze the diagnostic efficacy of peripheral blood 
quantum dot immunofluorescence hs-cTnI in AMI, and 
then compared the area under the ROC curve (AUC) with 
the corresponding value of venous blood hs-cTnI Compare. 
Calculate the sensitivity, specificity, correct rate, positive 
predictive value and negative predictive value of peripheral 
blood hs-cTn for diagnosing AMI. The value of the area 
under the ROC curve is between 0.5 and 1.0. When AUC 
is greater than 0.5, the closer the AUC is to 1.0, the better 
the diagnostic effect. Bland-Altman analysis use SPSS24 
to assess the agreement of the two methods. All hypothesis 
tests were two-tailed. P<0.05 was considered statistically 
significant

Results

Establishment of rapid detection of hs-cTnI in peripheral 
blood by quantum dot fluorescence immunoassay 

Establishment of test standard curve
Using 9 concentration gradients of hs-cTnI as the 
X-axis and the signal ratio T/C of the dry fluorescence 
immunoassay analyzer as the Y-axis (n=3), the standard 
curves of hs-cTnI detection in venous blood and peripheral 
blood by quantum dot fluorescence immunoassay were 
established (Figure 1). 

Precision verification
The levels of hs-cTnI (n=3) of fixed batches at low  
(0.03 ng/mL), medium (1.33 ng/mL), and high (24.26 ng/mL)  
concentration gradients were measured using the above 
established standard curves of venous blood and peripheral 
blood (Figure 2A-2C). The intra-batch precision of venous 
blood and peripheral blood was calculated (Table 1), and the 
coefficient of variation (CV) of peripheral blood method was 
<15% (Table 1).

Linear range verification
Nine concentration gradients of hs-cTnI were detected. 
Linear regression was performed using the X-axis as the 
standard concentration and the Y-axis as the measured 
concentration (n=3). The venous blood and peripheral 
blood methods were linear in 0.02–40 ng/mL (Figure 3, 
Table 1).
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Figure 1 Standard curves of hs-cTnI in peripheral and venous 
blood samples. hs-cTnI, high-sensitivity troponin I.
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Minimum detection limit verification
hs-cTnI concentrations of 0.02, 0.03, 0.04, 0.05 and 
0.06 ng/mL were detected by quantum dot fluorescence 
immunoassay in peripheral blood, and the lowest detection 
limit was about 0.05 ng/mL (Table 1).

Correlation analysis of hs-cTnI detection results by two 
methods

The detection result of hs-cTnI in peripheral blood was the 
X-axis, and the detection result of hs-cTnI in whole venous 
blood was the Y-axis. The regression equation between them 
was Y=1.026x+0.521, and the correlation coefficient was 
R2=0.9337 (Figure 4A). There were 39 cases with hs-cTnI 
<0.5 ng/mL. The regression equation was Y=0.655x+0.015, 
and the correlation coefficient R2=0.8011. All were 
linearly correlated (P<0.05) (Figure 4B). With hs-cTnI  
>0.5 ng/mL as the positive limit, there were 51 cases in 
total. The regression equation was Y=1.005x+1.249, and the 
correlation coefficient R2=0.9099 (Figure 4C).

Distribution of hs-cTnI in peripheral blood and venous 
blood and Bland-Altman analysis

The hs-cTnI test results of the two methods ranged from 
0.01 to 66.34 ng/mL, and t-test revealed P=0.7462, showing 
no statistically significant difference (Figure 5A). The mean 
value of the hs-cTnI test results of the two methods was the 
X-axis, and the difference was the Y-axis: 94.4% (85/90) of 
the data were within the consistency limit (Figure 5B).

Evaluation of clinical diagnostic efficacy 

Using hs-cTnI 0.5 ng/mL as the positive threshold, we 
predicted the diagnosis of AMI and compared the predicted 
results with the final clinical diagnosis. Clinical sensitivity 
(94.5%:87.3%), specificity (89.5%:89.5%), accuracy 
(90%:87.8%), positive predictive value (90.4%:91.8%), 
negative predictive value (87.2%:82.3%) of hs-cTnI 

Figure 2 (A-C) Detection results of hs-cTnI at low, medium and high concentrations in venous blood and peripheral blood. hs-cTnI, high-
sensitivity troponin I.

Table 1 Analytical performance of hs-cTnI detected in venous 
blood and peripheral blood

Analytical performance Venous blood Peripheral blood

Linear range 0.02–40 ng/mL 0.05–40 ng/mL

Limit of detection ≈0.02 ng/mL ≈0.05 ng/mL

In-batch precision (low) 13.3% 12.7%

In-batch precision (medium) 8.6% 1.3%

In-batch precision (high) 3.6% 9.2%

hs-cTnI, high-sensitivity troponin I.
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50.00

40.00

30.00

20.00

10.00

0.00

hs
-c

Tn
I m

ea
su

re
d 

co
nc

en
tr

at
io

n,
 n

g/
m

L

0.00      10.00      20.00      30.00      40.00      50.00
hs-cTnI standard concentration, ng/mL

Y=0.9459x + 0.1798 

R2=0.9983

Y=0.9359x + 0.7317 

R2=0.9771

Figure 3 Linear regression between hs-cTnI standard 
concentration and measured concentration in venous blood and 
peripheral blood. hs-cTnI, high-sensitivity troponin I.

0.08

0.06

0.04

0.02

0.00

hs
-c

Tn
I c

on
ce

nt
ra

tio
n,

 n
g/

m
L

Venous 
blood

Peripheral 
blood

2.00

1.50

1.00

0.50

0.00

hs
-c

Tn
I c

on
ce

nt
ra

tio
n,

 n
g/

m
L 40.00

30.00

20.00

10.00

0.00

hs
-c

Tn
I c

on
ce

nt
ra

tio
n,

 n
g/

m
LA B C

Venous 
blood

Peripheral 
blood

Venous 
blood

Peripheral 
blood



Journal of Thoracic Disease, Vol 14, No 4 April 2022 1271

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(4):1267-1274 | https://dx.doi.org/10.21037/jtd-22-436

detected in venous blood and peripheral blood are shown in 
Figure 6.

Diagnostic value in patients with AMI 

The receiver operating characteristic curves of AMI 
diagnosis and prediction were drawn. The area under the 
curve for hs-cTnI was 0.9431 [95% confidence interval (CI), 
0.8918 to 0.9944] for venous blood and 0.9352 (95% CI, 
0.8829 to 0.9876) for peripheral blood. The cut-off value of 

hs-cTnI in venous blood for the diagnosis of AMI was 1.598, 
and the sensitivity was 82.69%. The diagnostic accuracy 
was high, and the difference was not statistically significant 
(P>0.05) (Figure 7).

Discussion

The level of troponin in the blood has important value 
in predicting infarct size, evaluating the thrombolytic 
effect and identifying unstable angina pectoris (18-20). 
When cardiomyocytes undergo necrosis due to ischemia 
and hypoxia, as in AMI, cTnI is initially released in a free 
state, but with progression of the injury, cTnI in the bound 
state is continuously released as a result of the cellular 
destruction. Therefore, the blood cTnI concentration 
shows a bimodal change, and the diagnostic time window 
can be as long as several weeks, which has important clinical 
significance for the rapid diagnosis of AMI.

We attempted to establish a new method for the rapid 
detection of hs-cTnI using a quantum dot fluorescence 
immunoassay in peripheral blood and evaluated it as a good 
substitute for the detection of hs-cTnI in whole venous 
blood.

Figure 6 Comparison of diagnostic efficacy of hs-cTnI in venous 
blood and peripheral blood. hs-cTnI, high-sensitivity troponin I.

Figure 4 Correlation analysis of hs-cTnI test results between venous blood and peripheral blood. hs-cTnI, high-sensitivity troponin I.
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Quantum dots are semiconductor nanoparticles with a 
radius that is smaller than or close to the radius of the Bohr 
exciton, but generally, they are 1–10 nm. Quantum dots are 
used as fluorescent probes, generating fluorescence signals 
through excitation of the dots, which can be measured by a 
device as quantitative data. Their advantages include wide 
excitation wavelength range, narrow emission wavelength, 
adjustable fluorescence size, high sensitivity, good optical 
stability, long fluorescence life, large Stokes displacement, 
and high quantum fluorescence efficiency (21,22). Quantum 
dots overcome the disadvantages of other markers, such 
as short chemiluminescence, precise environmental 
requirements, poor reproducibility, poor stability (e.g., 
fluorescent dyes), inactivation of enzymes and low 
sensitivity (23,24). Quantum dots fluorescence immunoassay 
combines the advantages of immunoassay technology and 
chromatography, making it simple, rapid and highly specific 
for rapid diagnosis of AMI.

The results showed that detection of hs-cTnI in 
peripheral blood by the quantum dot fluorescence 
immunoassay met the basic requirements of clinical 
detection with good analytical performance. It detected hs-
cTnI in peripheral blood in a certain linear concentration 
range, and at a low concentration. Secondly, there was 
a significant correlation between the hs-cTnI detection 
results for peripheral blood and those for venous blood, 
with good comparability and consistency. For the clinical 
diagnosis of AMI, the specificity was the same and the 
diagnostic accuracy was high. Therefore, quantum dot 
fluorescence immunoassay of peripheral blood can be 

used for rapid detection of hs-cTnI and thus the clinical 
diagnosis and treatment of AMI patients. Our study reveals 
the potential of a simple and miniaturized peripheral blood 
device for bedside analysis. The key point of this technology 
is the sensitivity and accuracy of peripheral blood detection. 
In terms of sensitivity, it can be further optimized by 
developing highly specific antibody raw materials and 
more suitable process formulations; the values of other 
manufacturers are compared and verified with the clinical 
symptoms of patients.

Further optimization of the detection of hs-cTnI by 
quantum dot fluorescence immunoassay in peripheral blood 
for clinical application is a new direction that can be realized 
in the future. With continuous research and development of 
the peripheral blood hs-cTnI detection kit, it will certainly 
assist in the rapid diagnosis and differential diagnosis of 
AMI in clinical departments and primary hospitals and meet 
the requirement of convenience.

Conclusions

Rapid detection of hs-cTnI in peripheral blood by quantum 
dot fluorescence immunoassay was successfully established 
as feasible. The quality indexes met the requirements of 
clinical detection, and the results were highly correlated 
and consistent with the results for venous blood, providing 
a good prospect for application in clinical settings.
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