
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(6):2089-2102 | https://dx.doi.org/10.21037/jtd-22-41

Original Article

Pirfenidone inhibits cell fibrosis in connective tissue disease-
associated interstitial lung disease by targeting the TNF-α/STAT3/
KL6 pathway

Yanhua Zuo, Jing Liu, Huaheng Xu, Yanxia Li, Ran Tao, Zongfang Zhang

Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, China

Contributions: (I) Conception and design: Y Zuo; (II) Administrative support: H Xu; (III) Provision of study materials or patients: Y Zuo, Z Zhang; (IV) 

Collection and assembly of data: R Tao; (V) Data analysis and interpretation: Y Zuo, Y Li; (VI) Manuscript writing: All authors; (VII) Final approval 

of the manuscript: All authors.

Correspondence to: Yanhua Zuo. Department of Rheumatology and Immunology, Cangzhou Central Hospital, 16 Xinhua West Road, Yunhe District, 

Cangzhou 061000, China. Email: zuoyanhua163@163.com.

Background: To explore the effect and mechanism of pirfenidone in inhibiting pulmonary fibrosis in 
connective tissue disease-associated interstitial lung disease (CTD-ILD).
Methods: From 2018 to 2020, 50 CTD-ILD patients were enrolled in the clinical study. Based on whether 
pirfenidone was used during treatment, patients were enrolled into the pirfenidone group and the control 
group. Pulmonary function tests were compared before and after treatment. Enzyme-linked immunosorbent 
assay (ELISA) was performed to detect the expression of tumor necrosis factor-α (TNF-α), signal transducer 
and activator of transcription 3 (STAT3), and Krebs Von den Lungen-6 (KL-6) in venous blood before and 
after treatment. Rat type II (RLE-6TN) lung epithelial cells were cultivated for in vitro experiments, and they 
were sorted into the control group, bleomycin group, pirfenidone group, TNF-α group, Stattic group, and 
TNF-α/Stattic combined treatment group. For the in vitro experiments, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) tests were used to evaluate cell proliferation, Reverse Transcription-
Polymerase Chain Reaction(RT–PCR) was performed to detect STAT3 and KL-6 mRNA expression levels, 
ELISA was utilized to detect TNF-α and E-cadherin expression levels, and Western blotting (WB) was 
performed to determine α-smooth muscle actin (α-SMA), vimentin, TNF-α, STAT3, phosphorylated signal 
transducer and activator of transcription 3 (PSTAT3) and KL-6 expression.
Results: In the clinical study, the pulmonary function indices including forced expiratory volume in one 
second (FEV1), forced vital capacity (FVC), FEV1/FVC, peak expiratory flow (PEF) and partial pressure 
(PaO2) of the patients in the study group were superior to those in the control group (P<0.05). The serum 
TNF-α, STAT3 and KL-6 levels in the study group were significantly lower than those in the control 
group (P<0.05). In the in vitro experiments, the α-SMA, vimentin, STAT3 and KL-6 levels in the treatment 
group were significantly lower than those in the bleomycin group (P<0.05). Compared with those in the 
pirfenidone group, the α-SMA, vimentin, STAT3 and KL-6 levels in the TNF-α-treated group were 
significantly upregulated (P<0.05). Meanwhile, cell viability was further upregulated (P<0.05), and the 
expression of STAT3 and KL-6 was further decreased in the Stattic-treated group (P<0.05). In the group 
treated with infliximab combined with Stattic, TNF-α expression was significantly increased (P<0.05), cell 
activity was significantly restored (P<0.05), and the STAT3, KL-6 and E-cadherin expression levels were 
inhibited (P<0.05).
Conclusions: Pirfenidone improved pulmonary function 1 and decreased TNF-α, STAT3, and KL-6 
expression in CTD-ILD patients. Moreover, pirfenidone inhibits cell fibrosis through the TNF-α/STAT3/
Mucin 1(MUC1) pathway.
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Introduction

Connective tissue disease (CTD) is an autoimmune disease 
involving multiple organs and systems that is characterized 
by damage to connective tissue. CTD may be involved 
in different tissues or organs and cause different degrees 
of damage. However, almost all involve the respiratory 
system. Lung interstitial damage secondary to CTD is 
called connective tissue disease-associated interstitial lung 
disease (CTD-ILD) (1). The main clinical manifestations 
of CTD-ILD patients are hypoxemia, restrictive ventilation 
dysfunction, and even life-threatening conditions (2). 
Furthermore, CTD patients are prone to lung infection or 
pneumonia due to long-term use of immunosuppressive 
therapy, such as glucocorticoids. Challenges remain in 
the diagnosis and treatment of CTD-ILD in clinical 
practice because of the lack of specificity of laboratory test 
indicators.

Pirfenidone (PF) is a new type of antifibrotic drug that 
has been broadly adopted for pulmonary fibrosis treatment 
in recent years. It can inhibit collagen synthesis by acting 
on tumor necrosis factor-α (TNF-α), thereby reducing the 
level of fibrosis and inhibiting the formation of scars (3). 
Tumor necrosis factor (TNF) is a cytokine that can directly 
kill tumor cells, and it is a key mediator of acute and chronic 
systemic inflammatory reactions and a core cytokine that 
regulates the inflammatory response of the immune system. 
A study has shown that the level of TNF-α is elevated in 
the alveolar lavage fluid of patients with CTD-ILD (4), 
indicating that TNF-α is key in CTD-ILD pathogenesis. 
Signal transducer and activator of transcription 3 (STAT3) 
is a member of the STAT protein family. It was originally 
identified as an acute phase response factor in the 
inflammatory response and can induce the transcription of 
target genes. STAT3 is also closely related to autoimmune 
diseases caused by autoimmune system disorders. As a 
transcription activator, STAT3 can regulate gene expression, 
cell growth and apoptosis (5). Uninterrupted activation of 
STAT3 can lead to high expression of genes closely related 
to cell differentiation, proliferation, and apoptosis, thus 
resulting in the occurrence of a variety of autoimmune 
diseases. STAT3 is a downstream molecule of TNF-α, 
affecting the process of pulmonary fibrosis in idiopathic 

pulmonary fibrosis (IPF). Meanwhile, Krebs von den 
Lungen-6 (KL-6) is a glycoprotein belonging to the MUC1 
family of mucins, and its serum level is positively correlated 
with the degree of pulmonary fibrosis. Research by 
Solomon et al. demonstrated that serum KL-6 levels can be 
used as a molecular marker for CTD-ILD and has achieved 
good clinical results in Japan (6). Furthermore, studies have 
shown that serum KL-6 has high diagnostic sensitivity 
and specificity for the diagnosis of interstitial pneumonia 
with confirmed CTD (7); CTD-ILD patients who have 
been treated with pirfenidone have shown decreased levels 
of serum KL-6 and improved clinical indications (8,9). 
Based on this background, we hypothesize that pirfenidone 
administration might be an effective method for treating 
CTD-ILD patients. Furthermore, pirfenidone can inhibit 
cell fibrosis via the TNFα/STAT3/KL-6 pathway. We 
present the following article in accordance with the 
TREND reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-22-41/rc).

Methods

Study design

Pirfenidone has a certain effect on improving pulmonary 
fibrosis in CTD-ILD patients, but no final conclusion on 
this is available. Therefore, this study subsequently validated 
and discussed the mechanism of pirfenidone through cell 
experiments.

Reagents

The rat type II lung epithelial cell line RLE-6TN 
(ATCC Cel l  Bank) ;  b leomycin  (Zhe j i ang  Hisun 
Pharmaceutical Co., Ltd., certificate number: National 
Medicine H20055883); Enzyme-linked immunosorbent 
assay (ELISA) kits for TNF-α (Abcam, ab46070), KL-6 
(Abcam, ab100772), and E-cadherin (Yaki Bio, China, 
IH-1519R); a reverse transcription kit (Takara, China); 
a qPCR kit (Takara, China); antibodies targeting KL-
6, (ab84597, Abcam, 1:1,000), STAT3 (ab68153, Abcam, 
1:1,000), phosphorylated signal transducer and activator of 
transcription 3 (p-STAT3, sc-293059, Santa Cruz, 1:1,000), 
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α-smooth muscle actin (α-SMA, ab232784, Abcam, 1:1,000), 
and vimentin (ab92547, Abcam, 1:1,000); goat anti-
rabbit IgG H&L (HRP) (ab97051, Abcam, 1:5,000), and 
an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) kit (Biyuntian Bio, C0009S) were used in 
this study.

CTD-ILD patient inclusion

From 2018 to 2020, patients initially diagnosed with CTD-
ILD in our hospital were included. The diagnostic criteria 
were (I) interstitial lung disease diagnosed according to 
ILD diagnostic criteria issued by the European Respiratory 
Society (10) and (II) connective tissue disease diagnosed 
according to the 2012 SICCA guidelines (11). The patients 
were divided into the study group (pirfenidone treatment) 
and control group (without pirfenidone treatment) based on 
whether they received pirfenidone treatment.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of Cangzhou Central 
Hospital (No. 2016-098-01). Patient’s informed consent 
was waived in view of the retrospective nature of the study.

Clinical information

Pulmonary function tests, including forced expiratory 
volume in one second (FEV1), forced vital capacity (FVC), 
FEV1/FVC, peak expiratory flow (PEF) and changes in 
arterial partial pressure (PaO2), were performed before and 
after treatment, and the results were recorded. ELISAs 
to detect TNF-α, STAT3, and KL-6 expression in blood 
samples were performed before and after treatment. 

Cell culture

RLE-6TN cells were cultured in a constant-temperature 
incubator at 37 ℃ with 95% humidity and 5% CO2 for 
24 hours. Then, the cells were cultured in serum-free 
Dulbecco’s modified eagle medium (DMEM) for 6 h under 
starvation to synchronize the cell cycle. The serum-free 
DMEM was then discarded. After that, DMEM containing 
10% fetal bovine serum and 1% double-antibody was added 
to the wells of all cell culture plates.

Drug treatment

Based on different interventions, the cells were sorted into 

the nontreated group (NTC), bleomycin model group (MC), 
pirfenidone treatment model group (PMC), infliximab 
group (TNF-α inhibitor) (IPMC), Stattic group (STAT3 
inhibitor) and TNF-α/Stattic (STAT3 inhibitor) group.

Bleomycin model group: Bleomycin was diluted with 
DMEM, and the final concentration was adjusted to 3.5 μM.  
The culture medium was changed after 48 hours of 
treatment.

Pirfenidone treatment model group: cells were treated 
with bleomycin and pirfenidone at final concentrations of 
3.5 and 54.05 μM, respectively; the culture medium was 
replaced after 48 hours.

TNF-α group: cells were treated with bleomycin, 
pirfenidone, and TNF-α at final concentrations of 3.5 mg/L, 
54.05 µM and 3 mg/L, respectively, and the culture medium 
was changed after 48 hours.

Stattic group: cells were treated with bleomycin, 
pirfenidone and statticone at final concentrations of  
3.5 mg/L, 54.05 µM and 4 mg/L, respectively.

TNF-α/Stattic combined group: cells were treated 
with bleomycin, pirfenidone, TNF-α, and Stattic at final 
concentrations of 3.5 mg/L, 54.05 µM, 3 mg/L, and 4 mg/L,  
respectively; the culture medium was changed after  
48 hours.

Testing indicators

MTT assay
A MTT assay was used to evaluate the cellular activity of 
cells in each group. The cells were inoculated on 96-well 
plates (3×103 cells/well), with 3 parallel samples in each 
group, and a zero group with only culture medium without 
cells was set at the same time. The cells were treated 
according to different groups 24 hours after seeding, and 
MTT testing was performed 48 hours after treatment. 
Then, 0.1 mg/ml MTT solution diluted by DMEM was 
added to each well, and the cells were incubated at 37 ℃ for 
4 hours. The absorbance (A) was measured at 570 nm, and 
the data were assessed using a ThermoFisher Multiskan FC 
microplate reader. Cell survival rate (%) = treatment group 
A/control group A × 100%; the test was repeated 3 times.

Western blotting (WB)
After drug treatment, the cells were lysed to extract 
total protein, and the protein was quantified using the 
Bradford method. The protein extraction kit was purchased 
from Amyjet Biotechnology Co., Ltd. (product number 
AMJ-KT0007). The Bradford protein concentration 
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determination kit  was purchased from Biyuntian 
Biotechnology Co., Ltd. (product number P0006).

A 50 mg protein sample was mixed with loading buffer 
at a volume ratio of 4:1. After boiling and denaturing, 
the protein sample was separated in a preprepared gel via 
sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS–PAGE). After electrophoresis, we transferred the 
proteins to a polyvinylidene fluoride (PVDF) membrane 
and used tris-buffered saline and tween 20 (TBST) 
containing 5% milk powder to block the protein at room 
temperature for 1 hour. The membrane was incubated 
with primary antibodies targeting KL-6 (1:1,000), STAT3 
(1:1,000), p-STAT3 (1:1,000), α-SMA (1:1,000), or vimentin 
(1:1,000) overnight at 4 ℃; after washing three times 
with TBST, the membrane was incubated with secondary 
antibody for 1 hour at room temperature. An Invitrogen 
E-Gel imager was used for imaging, and ImageJ was used 
for image processing.

ELISA
TNF-α and E-cadherin ELISA kits were adopted to detect 
the expression of TNF-α and E-cadherin in the NTC, 
MC, PMC, Stattic and TNF-α/Stattic combined groups. 
After the cells were processed according to the different 
treatment conditions, they were collected by centrifugation, 
resuspended in 200 µL cytolytic buffer and allowed to rest 
for 30 minutes. After centrifugation at 1,000 r/min for  
10 min, 20 µL of supernatant was added to the ELISA plate. 
Then, we added 80 µL of immunoreaction reagent to each 
well and incubated the plate for 2 h at room temperature. 
We removed the supernatant and washed the wells three 
times. After adding 100 µL buffer, we allowed the plate to 
stand for 30 min. Substrate buffer was used as the blank 
control group, and the absorbance was measured at a 
wavelength of 405 nm.

Reverse transcription-polymerase chain reaction (RT-
PCR)
RT-PCR was adopted to detect the expression of STAT3 
and BL-6 in the NTC, MC, PMC, Stattic and TNF-α/
Stattic combined groups. Total RNA was extracted from the 
cells using the TRIzol method. We removed 2 µL of the 
dissolved liquid to determine the concentration and purity 
of RNA in the solution using a microspectrophotometer. 
Then, a Takara reverse transcription kit was used for reverse 
transcription of RNA into cDNA. Meanwhile, a cDNA 
reaction system was established using a qPCR kit, and 

reactions were conducted at 95 ℃ for 10 minutes, followed 
by 95 ℃ for 30 seconds and 60 ℃ for 30 seconds for 40 
cycles. A dissolution curve analysis was performed, and the 
final data were used for statistical analysis of the target gene 
expression level in each sample using the 2-∆∆CT method.

Statistical analyses

We used SPSS 24.0 software for statistical analysis of the 
data. The measurement data, including the clinical data, 
age, disease course, and pulmonary function test results, 
are expressed as the mean ± standard deviation and were 
analyzed using a t-test. Count data, including patient 
gender, are expressed as n (%) and were analyzed using 
a chi-squared test. Differences in ELISA and Western 
blotting data from the cell experiments were analyzed 
via Analysis of Variance (ANOVA), and the groups with 
differences were tested in pairs afterward. If the P value was 
less than 0.05, then it was considered statistically significant. 
We used GraphPad Prism 8.0 to draw box plots.

Results

Comparative analysis of clinical patient baseline data

According to the inclusion and exclusion criteria, fifty 
patients diagnosed with CTD-ILD were included in this 
study, and no cases of death occurred during treatment. 
A comparison of the baseline data of the two groups of 
patients is shown in Table 1. The results showed that the two 
groups of patients had no significant differences in terms 
of CTD disease type, sex, age, disease course, pretreatment 
routine blood tests, infection index, immune index, lung 
ventilation function, or diffusion function (P<0.05).

Changes in serum ELISA test results and lung ventilation 
function in the two groups of patients

Pulmonary ventilation function assessments in the two 
groups of patients demonstrated that the pulmonary 
ventilation function of the patients in the control group 
and study group was significantly restored after treatment. 
Specifically, FVC, FEV1, FEV1/FVC, and PEF were all 
significantly improved compared with the values before 
the treatment (P<0.05, Figure 1A-1D). The comparison 
of the pulmonary function results of the two groups after 
treatment demonstrated that the pulmonary ventilation 
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Table 1 Comparison of general information of subjects in the control group and the experimental group (n=40)

Indicator Control group (n=20) Study group (n=20) χ2/t P value

CTD type 0.089 0.923

Sjogren’s syndrome (SS) 8 10

Systemic lupus erythematosus (SLE) 5 4

Polymyositis (PM) 3 4

Systemic sclerosis (SSc) 3 2

Undifferentiated connective tissue disease 
(UCTD)

1 0

Gender (M/F) 11/9 12/8 0.102 0.62

Age (year) 65.8±9.2 67.1±10.4 0.672 0.784

Diagnostic period (month) 15.4±20.9 13.8±22.3 0.980 0.834

Routine blood parameters

Leukocyte (×109/L) 8.76±5.32 9.03±4.20 1.035 0.642

Red blood cells (×1012/L) 3.93±0.80 3.87±0.92. 0.982 0.840

Hemoglobin (g/L) 117±26 113±32 1.108 0.552

CRP (mg/L) 45.03±10.17 43.87±12.14 1.086 0.628

IgG (g/L) 15.12±8.15 15.60±7.84 0.849 0.816

IgA (g/L) 2.83±1.56 2.79±1.52 0.946 0.829

IgM (g/L) 31.03±10.11 30.82±8.84 0.878 0.819

Ventilatory dysfunction

Minor 7 6 0.136 0.934

Medium 8 9

Severe 5 5

Diffuse dysfunction

Minor 8 8 0.20. 0.904

Medium 8 9

Severe 4 3

FVC 1.21±0.35 1.15±0.27 0.672 0.543

FEV1 0.75±0.13 0.74±0.11 0.873 0.744

FEV1/FVC 38.02±3.54 40.15±1.43 0.574 0.673

PEF 2.73±0.56 2.78±0.89 0.875 0.836

Concomitant drug 0.233 0.806

Antibiotic 5 4

Bronchodilator 3 4

No significant differences were found in the baseline data between the two groups of patients, and they were comparable. CTD, 
connective tissue disease; SS, Sjogren’s syndrome; SLE, systemic lupus erythematosus; PM, Polymyositis; SSc, systemic sclerosis; 
UCTD, undifferentiated connective tissue disease; CRP, C-reactive protein; IgG, immunoglobulin G; IgA, immunoglobulin A; IgM, 
immunoglobulin M; FVC, forced vital capacity; FEV1, forced expiratory volume in one second; PEF, peak expiratory flow.
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Figure 1 Serum and lung function indices and serum TNF-α, STAT3, and KL-6 expression levels before and after treatment. (A) Changes 
in FVC before and after treatment; (B) changes in FEV1 before and after treatment; (C) changes in FEV1/FVC before and after treatment; 
(D) changes in PEF before and after treatment; (E) changes in serum TNF-α levels before and after treatment; (F) changes in serum STAT3 
levels before and after treatment; and (G) changes in serum KL-6 levels before and after treatment. FVC, forced vital capacity; FEV1, forced 
expiratory volume in one second; PEF, peak expiratory flow; TNF-α, tumor necrosis factor-α; STAT3, signal transducer and activator of 
transcription 3; KL-6, Krebs Von den Lungen-6.
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function in the study group was better than that in the 
control group. Specifically, FVC, FEV1, FEV1/FVC, 
and PEF were increased significantly in the study group 
compared with in the control group (P<0.05, Figure 1A-1D).  
The ELISA test results of patients in the two groups 
demonstrated that the expression levels of serum TNF-α, 

STAT3, and KL-6 in the control group and the study 
group were noticeably lower after treatment than those 
before treatment (P<0.05, Figure 1E-1G). The expression 
levels of TNF-α, STAT3 and KL-6 in the study group after 
treatment were significantly lower than those in the control 
group (Figure 1E-1G).



Journal of Thoracic Disease, Vol 14, No 6 June 2022 2095

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(6):2089-2102 | https://dx.doi.org/10.21037/jtd-22-41

Pirfenidone inhibits bleomycin-induced damage to RLE-
6TN cells through TNF-α

After the corresponding treatment of each group of 
cells, the results of the MTT assays demonstrated that 
cell viability was significantly reduced after bleomycin 
induction, cell viability was significantly restored after 
the addition of pirfenidone, and cell viability was further 
inhibited after the addition of TNF-α (P<0.05, Figure 2A). 
WB was used to detect fibrosis degree indicators (vimentin 
and α-SMA) in each group of cells, and the results 
demonstrated that the expression of vimentin and α-SMA 
in the cells increased significantly after bleomycin induction 
(P<0.05, Figure 2B). When pirfenidone was added, the 
expression of vimentin and α-SMA decreased significantly 
(P<0.05). When pirfenidone and TNF-α were added in 
combination, the expression of vimentin, and α-SMA was 
increased significantly (P<0.05). The results above show 
that pirfenidone inhibits the degree of fibrosis in RLE-6TN 
cells by inhibiting TNF-α. WB experiments were used to 
detect the expression of STAT3, p-STAT3, and KL-6 in the 
cells in each group, and the results demonstrated that the 
expression levels of STAT3, p-STAT3, and KL-6 in the cells 
increased significantly after bleomycin induction (P<0.05). 
When pirfenidone was added, the expression levels of 
STAT3, p-STAT3, and KL-6 decreased (P<0.05). When 
pirfenidone and TNF-α were added in combination, the 
expression levels of STAT3, p-STAT3, and KL-6 increased 
significantly (P<0.05, Figure 2C-2G).

Pirfenidone inhibits bleomycin-induced damage to RLE-
6TN cells through the STAT3 signaling pathway

After processing the cells in each group, the results of 
the MTT assays demonstrated that cell viability was 
significantly reduced after bleomycin induction, and the 
cell viability was significantly restored after the addition 
of pirfenidone. At the same time, cell viability was 
further increased after the STAT3 inhibitor Stattic was 
added (P<0.05, Figure 3A). RT-PCR detection of STAT3 
and KL-6 gene expression in the cells in each group 
demonstrated that the expression of STAT3 and KL-6 
increased significantly after bleomycin induction. When 
pirfenidone was added, the expression of STAT3 and KL-6 
was significantly reduced. After the addition of Stattic, the 
expression of STAT3 and KL-6 in the cells was further 
reduced (P<0.05, Figure 3B,3C). ELISAs were used to detect 
the expression of TNF-α in the cells in each group, and the 

results demonstrated that the expression of TNF-α in the 
cells was significantly increased after bleomycin induction. 
When pirfenidone was added, the expression of TNF-α was 
significantly reduced (P<0.05); however, when Stattic was 
added, the expression of TNF-α in the cells did not change 
significantly (P>0.05). ELISAs were also used to detect 
the expression of E-cadherin in the cells in each group, 
and they demonstrated that the expression of E-cadherin 
was significantly increased after bleomycin induction; 
when pirfenidone was added, the expression of E-cadherin 
was significantly reduced (P<0.05). After the addition of 
Stattic, the expression of E-cadherin in the cells showed 
no significant difference compared to peripheral blood 
mononuclear cells (PBMCs) group (P>0.05, Figure 3D,3E).

Pirfenidone inhibits bleomycin-induced damage to RLE-
6TN cells through the TNF-α/STAT3/KL-6 signaling 
pathway

After processing each group of cells, the MTT assay 
results demonstrated that cell viability was significantly 
reduced after bleomycin induction, and cell viability was 
significantly restored after the addition of pirfenidone. 
At the same time, cell viability was significantly increased 
after the addition of the TNF-α/Stattic combination 
(P<0.05, Figure 4A). RT-PCR detection of STAT3 
and KL-6 gene expression in the cells in each group 
demonstrated that the expression of STAT3 and KL-6 in 
the cells was significantly increased after induction with 
bleomycin. When pirfenidone was added, the expression 
of STAT3 and KL-6 was significantly reduced. After the 
addition of the TNF-α/Stattic combination, the expression 
of STAT3 and KL-6 in the cells was further reduced 
(P<0.05, Figure 4B,4C). ELISAs were used to detect the 
expression of TNF-α in the cells in each group, and the 
results demonstrated that TNF-α expression was significantly 
increased after bleomycin induction. When pirfenidone was 
added, the expression of TNF-α was significantly reduced 
(P<0.05); meanwhile, when the TNF-α/Stattic combination 
was added, the expression of TNF-α increased significantly 
(P>0.05, Figure 4D). ELISAs were used to detect the 
expression of E-cadherin in the cells of each group, and 
they demonstrated that the expression of E-cadherin in the 
cells was significantly increased after bleomycin induction. 
When pirfenidone was added, the expression of E-cadherin 
was significantly reduced (P<0.05); after the addition of the 
TNF-α/Stattic combination, the expression of E-cadherin 
was further reduced (P<0.05, Figure 4E).
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Discussion

This study confirmed that pirfenidone can effectively 
control CTD-ILD progression in patients and restore 
the patient’s pulmonary ventilation function. Cellular 
experiments were conducted to establish cell fibrosis injury 
models, and TNF-α expression and STAT3 expression were 
inhibited. 

Interstitial pneumonia is a common complication of 
connective tissue disease, and its main clinical manifestations 
are restrictive pulmonary ventilation dysfunction, decreased 
diffusion function, and hypoxemia (12). Epidemiological 
survey results show that CTD-ILD patients have a high 
fatality rate and poor prognosis, which seriously threaten the 
life and health of patients (13). The current routine clinical 
treatment for CTD-ILD is glucocorticoids combined 
with immunosuppressive therapy (14). However, the 
clinical effects of the above treatments are limited. As an 
antifibrotic drug, pirfenidone has benefits in the treatment 
of IPF, renal fibrosis, scar contracture, and other diseases 
(15-17). Therefore, this study proposes that pirfenidone 
can effectively treat clinical CTD-ILD patients. To verify 
the effect of pirfenidone in patients with CTD-ILD, 
a randomized controlled clinical study was conducted. 
To ensure the reliability of the results, the sample size 
estimation in the early stage of the research design was 
approximately 50 according to PASS 15.0. For CTD-
ILD patients, the combined application of pirfenidone 
with basic conventional treatment (glucocorticoids 
combined with immunosuppressive agents) resulted in 
improved lung function compared with patients who only 
received conventional treatment. Serological examination 
demonstrated that the expression levels of serum TNF-α, 
STAT3, and KL-6 in the study group were noticeably higher 
than those found in the control group. The aforementioned 
clinical research results show that pirfenidone can effectively 
treat CTD-ILD and simultaneously reduce serum TNF-α, 
STAT3 and KL-6 levels in patients. The main reason for 
lung function improvements was considered that pirfenidone 
can reduce the accumulation of cellular inflammation, 
prevent the spread of fibrosis and inhibit the decrease of vital 
capacity (18).

A previous medical study has shown that in the course 
of ILD, the serum level of TNF-α, a key cytokine that 
causes lung tissue fibrosis, is elevated (19). TNF-α is 
an inflammatory factor that can further promote the 
proliferation and differentiation of fibroblasts by mediating 
inflammatory damage in alveolar epithelial cells, thus 

ultimately promoting the development of lung tissue 
fibrosis. Previous studies have shown that pirfenidone can 
effectively reduce the serum TNF-α level in patients with 
pulmonary fibrosis, interstitial pneumonia, and silicosis 
and the degree of pulmonary fibrosis (20-22). At the same 
time, a study has shown that pirfenidone can be used to 
inhibit the synthesis and secretion of TNF-α in cells, 
thereby demonstrating its therapeutic effect (23). On this 
basis, in our study, the RLE-6TN cell line was cultured  
in vitro, and cell fibrosis damage was stimulated by 
bleomycin administration. After the addition of pirfenidone, 
cell activity was restored, and the expression of fibrosis-
related proteins was significantly reduced. The expression of 
TNF-α, STAT3 and KL-6 was significantly reduced. Thus, 
the addition of TNF-α inhibited cell activity, increased 
the expression of STAT3 and KL-6, and increased the 
expression of fibrotic proteins. The results above indicate 
that pirfenidone can effectively treat pulmonary fibrosis by 
inhibiting the expression of TNF-α in cells.

Previous studies have shown that the STAT3 protein 
family is closely related to the inflammatory response 
and immune response. As a transcription factor, STAT3 
can participate in the regulation of the expression of 
inflammation-related genes (24,25). At the same time, a 
study has shown that STAT3 is closely related to the degree 
of tissue fibrosis. Fibroblasts associated with liver cancer 
can activate STAT3 by secreting IL-6, further promoting 
the degree of fibrosis in liver tissue (26). Moreover, a 
previous study has demonstrated that the activation of 
STAT3 in the microenvironment can mediate the Smad/
TGF-β signaling pathway, thereby further promoting the 
occurrence of tissue fibrosis. After blocking the STAT3 
signaling pathway, the degree of fibrosis was significantly 
reduced (27). The above results suggest that STAT3 plays 
an important regulatory role in the process of fibrosis (28). 
The results of our clinical study demonstrated that the 
expression of STAT3 in the serum of CTD-ILD patients 
was significantly reduced after pirfenidone treatment, and 
lung function was significantly improved. Cell experiments 
demonstrated that by inhibiting the expression of STAT3, 
cell viability was significantly increased, while the degree 
of fibrosis was reduced. Activating TGF-α while inhibiting 
STAT3 expression increased cell activity and reduced the 
degree of fibrosis, but the degree of TGF-α inhibition 
was not obvious. Therefore, this study proposes that 
pirfenidone can regulate the process of pulmonary fibrosis 
through the TNF-α/STAT3 signaling axis, achieving an 
effective treatment for CTD-ILD. At the same time, the 
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cell experiment results indicated that TNF-α and STAT3 
can regulate the expression of KL-6.

In recent years, studies have found that KL-6 can be 
used as a CTD-ILD serum marker molecule because it 
is mainly expressed in bronchial epithelial cells and type 
II alveolar epithelial cells but not in type I alveolar cell 
epithelial cells. When alveoli are damaged, type I alveolar 
epithelial cells die, and the replacement of type II alveolar 
cells in the alveolar basement membrane can lead to an 
increase in the expression of KL-6. Due to damage to 
the capillary endothelium and lung tissue, KL-6 can be 
released into alveolar lavage fluid as well as into the serum. 
The higher the KL-6 level is, the more severe the alveolar 
damage, and the worse the prognosis (29,30). In this study, 
after treatment of patients in the study group, lung function 
indicators were significantly better than those in the control 
group, while the KL-6 level was noticeably lower than that 
in the control group. Pirfenidone is a new type of small-
molecule drug used to treat pulmonary fibrosis, and it has 
antioxidant, anti-inflammatory, and antifibrotic activity (31). 
Initially, pirfenidone was recommended by many experts 
and multiple guidelines worldwide for the treatment of 
IPF. In recent years, it has been used in the treatment of 
CTD-ILD, and a large number of clinical studies have been 
conducted (32). TNF-α is a cytokine with proinflammatory 
effects that can trigger and aggravate inflammation, causing 
damage to tissues and cells that leads to apoptosis and 
tissue necrosis and thereby triggers tissue self-repair and 

subsequent fibrosis processes (33). Meanwhile, STAT3 
is a transcription factor belonging to the STAT protein 
family. After phosphorylation, STAT3 is activated, forms 
homodimers or heterodimers and translocates to the 
nucleus. It acts as an activated transcription factor to 
mediate the expression of a variety of genes and is involved 
in many cellular processes. A study has shown that the 
TNF-α/STAT3 pathway plays an important role in tumor 
metastasis, autophagy, epithelial-mesenchymal transition 
(EMT), apoptosis, and regeneration after ischemia-
reperfusion injury (34). Clinical research results indicate 
that pirfenidone can significantly reduce serum TNF-α 
and STAT3 levels, improve lung function indicators, 
and reduce KL-6 levels compared with conventional 
treatments, indicating that pirfenidone can effectively 
alleviate the CTD-ILD process; such results are consistent 
with those of previous studies. Furthermore, inhibiting 
the inflammatory response caused by the TNF-α/STAT3 
pathway reduces the damage to type I alveolar epithelial 
cells and the compensatory replacement of type II alveolar 
epithelial cells, thereby restoring patient lung function (35).  
The clinical results of this study demonstrated that the 
expression level of KL-6 in the serum of CTD-ILD 
patients treated with pirfenidone was significantly reduced 
compared with conventional treatment. Increasing 
pirfenidone can effectively reduce the expression of KL-6 
in patient serum. In cell experiments, the expression level 
of KL-6 in RLE-6TN cells was significantly reduced after 
bleomycin induction, and the expression level of KL-6 was 
significantly reduced after the addition of pirfenidone. On 
this basis, after overexpression of TNF-α, the expression 
of KL-6 was also upregulated, indicating that pirfenidone 
regulates the expression of KL-6 through TNF-α; after 
inhibition of STAT3 expression, the expression of KL-6 was 
further suppressed, indicating that pirfenidone regulates 
the expression of KL-6 through STAT3. Hence, after 
overexpression of TNF-α combined with STAT3 inhibition, 
the expression of KL-6 was further reduced. These results 
suggest that pirfenidone regulates the expression of KL-6 
through TNF-α/STAT3. And the specific mechanism was 
shown in Figure 5.

In summary, through clinical experiments and cell model 
studies, this study revealed that pirfenidone can reduce 
EMT and fibrosis in lung epithelial cells and lung tissues. 
Pirfenidone reduces EMT and fibrosis in lung epithelial 
cells by inhibiting the expression of the marker molecule 
KL-6 through the TNF-α/STAT3 pathway.

Fibrosis

KL-6

STAT3

TNF-α

RLE-6TN
Pirfenidone

Bleomycin

Figure 5 Pirfenidone inhibits RLE-6TN fibrosis by targeting the 
TNF-α/STAT3/KL6 signaling pathway. TNF-α, tumor necrosis 
factor-α; STAT3, signal transducer and activator of transcription 3; 
KL-6, Krebs Von den Lungen-6.
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Limitation

The number of clinical samples in this study is small, 
and there may be some deviation in the results of clinical 
research. The basic research was mainly based on in vitro 
cytological tests, which may be different from in vivo 
research. Therefore, further in vivo experiments will be 
carried out to verify the results.
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