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Background: Lung adenocarcinoma (LUAD) is a subtype of lung cancer with high morbidity and 
mortality. While genotyping is an important determinant for the prognosis of LUAD patients, there is a 
paucity of studies on gene set-based expression (GSE) typing for LUAD. This current study used GSE 
methodology to perform gene typing of LUAD patients. 
Methods: Clinical and genomic information of the LUAD patients were downloaded from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Patients with LUAD were 
clustered into different molecular subtypes depending on the clinical and gene set expression characteristics. 
The survival rate and silhouette widths were compared between each molecular subtype. Differences in 
survival rate between gene sets were analyzed using Kaplan-Meier survival curves. Cox regression and Lasso 
regression were used to establish the prognostic gene set model based on the TCGA database, and the results 
were validated using the GEO dataset.
Results: A total of 10 hub genes were finally identified and clustered into 3 subtypes with a mean contour 
width of 0.96. There were significant differences in survival rates among the 3 subtypes (P<0.05). Gene 
Ontology (GO) analysis indicated that the related biological processes (BP) were mainly involved in 
regulation of cell cycle, mitotic cell cycle phase transition, and proteasome-mediated ubiquitin-dependent 
protein catabolic process. The cellular components (CC) were related to the spindle, chromosomal region, 
and midbody. Molecular function (MF) mainly focused on ubiquitin-like protein ligase binding, translation 
regulator activity, and oxidation activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
showed that the main pathways included the Epstein Barr virus infection pathway of neurogeneration, the 
p53 signaling pathway, and the proteome pathways. In addition, the protein-protein interaction network 
was analyzed using the STRING and Cytospace software, and the top 9 hub genes identified were KIF2C, 
DLGAP5, KIF20A, PSMC1, PSMD1, PSMB7, SNAI2, FGF13, and BMP2.
Conclusions: Patients with LUAD can be clustered into three subtypes based on the expression of gene 
sets. These findings contribute to understanding the pathogenesis and molecular mechanisms in LUAD, and 
may lead to potential individualized pharmacogenetic therapy for patients with LUAD. 
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Introduction

Lung cancer is one of the most prevalent malignant tumors 
worldwide, with high morbidity and mortality (1,2). Non-
small cell lung carcinoma (NSCLC) and small cell carcinoma 
are the 2 main types of lung cancer, accounting for 85% 
of all cases (3). Lung adenocarcinoma (LUAD) makes up 
40% of NSCLC (4) and is highly invasive and metastatic, 
yielding a 5-year survival rate of merely 19.5% (5).  
Despite improvements in computed tomography (CT) 
imaging, bronchoscopy, sputum cytology, and major 
surgical, radiotherapy, and chemotherapy treatments 
with improved sensitivity and accuracy (6), the prognosis 
of patients with LUAD remains poor. Therefore, it is 
necessary to explore the pathophysiological and molecular 
mechanisms of LUAD to develop novel diagnostic and 
therapeutic strategies. 

With the rapid development of molecular biology in 
recent years, there are large amounts of data available in 
public databases for statistical analysis. LUAD subtypes 
based on proteome, methylation (7), gene expression 
(8,9), complementary RNA (cRNA) (10), DNA repair-
based gene expression signatures (11), and immune-related  
signature (12) have been reported, but studies in this field 
focusing on gene set-based expression (GSE) typing are 
limited (13,14). GSE utilizes the gene expression profiles 
of functionally related gene sets in Gene Ontology (GO) 
categories or priori-defined biological classes to assess the 
significance of gene sets associated with clinical outcomes 
or phenotypes (14). Furthermore, GSE can reflect the 
interactions between tumor and immune cells and provide 
clues for finding predictive biomarkers and new targets (15). 
The potentially relevant gene expression signatures between 
specific subgroups are commonly identified using Gene 
Set Enrichment Analysis (GSEA), which can calculate the 
enrichment score for a set of genes associated with survival 
and prognosis in LUAD. A published study in this field 
identified novel 19-gene prognostic signature based on gene 
expression in LUAD patients (16). Single-sample GSEA is 
specially used to calculate the score for the enrichment of 
a set of genes regulating the DNA damage repair (DDR) 
pathway (17). Gene sets contain more genetic information, 
which may be more effective in clarifying the molecular 
mechanism of LUAD and predicting prognosis than single-
gene studies.

This present study demonstrated that LUAD can be 
classified into 3 clinically relevant subtypes with distinct 

survival patterns based on gene set expression. The findings 
were validated using an independent dataset (GSE68465). 
Furthermore, the common differential gene sets were 
identified, and functional clustering and pathway analyses 
were performed on upregulated gene sets to identify the 
hub genes. We present the following article in accordance 
with the STREGA reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-22-557/rc). 

Methods

Patients and gene expression microarray data acquisition

High-throughput RNA sequencing (RNA-seq) and clinical 
data were downloaded from The Cancer Genome Atlas 
(TCGA) database (https://tcga-data.nci.nih.gov/tcga/). 
The criteria for screening cases and files in the TCGA 
databases were detailed in Table 1. The data was not limited 
by age at diagnosis, days to death, nor race and ethnicity. 
Finally, 490 cases and 551 files were obtained. Clinical 
data were exported as XML files and 486 clinical files were 
collated. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

The TCGA-LUAD samples were pooled into an integral 
meta-dataset using the Perl software and batch effects 
were removed by applying the ComBat function in the 
SVA package of the R software. In the TCGA cohort, 551 
samples, including 54 non-tumor samples and 497 tumor 
samples, were selected. c7.immunesigdb-HALLMARK.
gmt was downloaded from GSEA, which was used to realize 
gene set clustering analysis (GSCA).

Unsupervised cluster analysis

Molecular cancer subtypes from multi-omics data were 
identified, validated, and visualized using the R package 
CancerSubtypes (18). The algorithm for feature selection 
was based on a multivariate Cox regression model (features 
included gene expression, overall survival time, status, 
and cutoff <0.05) and was applied to the TCGA dataset. 
Different gene subtypes were identified using the clustering 
method [consensus nonnegative matrix factorization 
(NMF)] which is an unsupervised learning method for 
pattern recognition on gene set expression profiling and 
cell composition classifying genes into clusters. The default 
times of the run was set at 30 to ensure computation of a 
consensus matrix for selection of the best possible results. 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-557/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-557/rc
https://tcga-data.nci.nih.gov/tcga/
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The accuracy and fit of the clustering assignment were 
assessed by the silhouette width index. The values of the 
silhouette width ranges from −1 to 1 and are positively 
associated with the degree of cohesion and separation. 

The heatmaps were drawn using the “pHeatmap” 
package. The patient survival probability among clusters 
was analyzed using Kaplan-Meier survival curves with log-
rank tests. A P value <0.05 was considered statistically 
significant.

Analysis of different gene sets among the different subtypes 

To identify the different gene sets between different 
subtypes, the “venndiagram” package was used. The 
conditions were set to FDR <0.05 and |logFC | >0.02.

Establishment and verification of a survival risk scoring 
model

For the common differential gene sets obtained above, the 
univariate Cox regression and Kaplan-Meier method in the 
“survival” package were used to classify the gene sets into 
a high-risk group and a low-risk group. The survival rates 
were compared between the two groups. Gene sets related 
to prognosis were identified, and Lasso regression was 
performed using the glmnet package to obtain the model 
and formula. The high-risk group and the low-risk group 
were determined by the cut-off value of the mean risk score 
of each sample in the training group and the validation 
group. The cross validation was performed using the 
GSE68465 dataset, and the validation group was similarly 
processed.

Functional and pathway enrichment analyses 

Gene Ontology (GO) analyses and KEGG (Kyoto 

Encyclopedia of Genes and Genomes) analyses were 
performed on the gene sets identified in the Lasso 
regression model to understand the biological characteristics 
of these genes. Protein-protein interaction (PPI) network 
analysis is a powerful tool for understanding the biological 
responses in various lung cancer subtypes. In the PPI 
network, a protein is defined as a node, while the interaction 
between two nodes is defined as an edge. The size of the 
node correlates to the degree: the larger the size, the higher 
the degree. The thickness of an edge indicates the degree of 
correlation: the thicker the edge, the higher the correlation 
degree (19). The online database STRING (https://string-
db.org/) was used to construct a PPI network of the genes 
and analyze the functional interactions between proteins. 
A confidence score ≥0.400 was considered significant. 
The hub genes were analyzed using Cytoscape, which are 
important nodes with many interactions visualizing the 
PPI networks. The modules of the PPI network identified 
were screened using the Cytoscape plug-in molecular 
complex detection (MCODE). The default cutoff values 
of MCODE, node score, K core, and the maximum depth 
were set at 2, 0.2, 2, and 100, respectively. The topological 
algorithm and the PPI network were constructed using the 
STRING software to determine the top 10 hub genes (20).

Statistical analysis

The diagnostic performance of the genes was assessed 
using area under the receiver operating characteristic 
(ROC) curve (AUC). The distribution of the differentially 
expressed genes was shown by heatmaps. Survival rates 
among different LUAD subtypes were analyzed by 
using Kaplan-Meier survival curve with Log-rank test. 
A two-tailed P value <0.05 was considered as statistical 
significance. All the statistical analyses were performed by 
using R software (Version 4.1.1).

Table 1 The criteria for screening cases and files in the TCGA databases

Options Choice Options Choice

Primary site Bronchus and lung Data category Gene expression quantification

Program TCGA Experimental strategy RNA-seq

Project TCGA-LUAD Workflow type *HTSeq-FPKM

Disease Adenomas and adenocarcinomas

*, HTSeq is a Python software used for gene Count expression analysis. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; 
RNA-seq, RNA sequencing; FPKM, Fragments per Kilobase of transcript per Million mapped reads. 

https://string-db.org/
https://string-db.org/
https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.disease_type%22%2C%22value%22%3A%5B%22adenomas and adenocarcinomas%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22bronchus and lung%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.analysis.workflow_type%22%2C%22value%22%3A%5B%22HTSeq - FPKM%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene Expression Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.disease_type%22%2C%22value%22%3A%5B%22adenomas and adenocarcinomas%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22bronchus and lung%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.analysis.workflow_type%22%2C%22value%22%3A%5B%22HTSeq - FPKM%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene Expression Quantification%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22bronchus and lung%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LUAD%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.analysis.workflow_type%22%2C%22value%22%3A%5B%22HTSeq - FPKM%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene Expression Quantification%22%5D%7D%7D%5D%7D


Journal of Thoracic Disease, Vol 14, No 5 May 2022 1641

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(5):1638-1650 | https://dx.doi.org/10.21037/jtd-22-557

Results

Identification of three LUAD subtypes using unsupervised 
hierarchical cluster analysis

The study design is shown in the flow chart in Figure 1.
The TCGA-LUAD dataset and the c7.immunesigdb-

Hallmark.gmt from GSEA were merged to obtain the 
gene set expression data, and the differences in gene set 
expression between the healthy group and the malignant 
group were compared (Figure 2). According to the total 
within sum of square (Figure 3A), the samples were divided 
into three subtypes (Figure 3B). The contour width of the 
three types were 0.95, 0.96, and 0.99 respectively, and the 
overall mean value was 0.96 (Figure 3C). The survival rates 
of the three subtypes varied significantly (P<0.05), with 
type 1 showing the lowest survival probability (Figure 3D). 
The differential gene set expression in the three subtypes 
are shown in Figure 3E. Detailed clinical data of the three 
subtypes are shown in Table 2.

Analysis of the common gene sets among the different 
subtypes 

Pairwise comparisons were made among the three tumor 

subtypes to obtain the differential gene sets among the 
three groups, namely, C2–C1, C3–C2, and C3–C1 (available 
online: https://cdn.amegroups.cn/static/public/jtd-22-
557-1-3.zip). The intersection of the three differential 
gene sets was taken as the common differential gene set, 
as represented by the Venn diagram (Figure 4A). The 
association between the common differential gene sets and 
the clinical data was examined (Figure 4B). 

Establishment and verification of a survival risk scoring 
model based on the common differential gene sets

Univariate Cox regression analysis was performed on the 
common differential gene sets and the survival data to 
obtain the prognosis-related gene sets (available online: 
https://cdn.amegroups.cn/static/public/jtd-22-557-4.xls). 
Lasso regression was performed to obtain the risk score 
model as follows: 

6 . 8 8 * G S E 4 5 3 6 5 - H E A LT H Y- V S - M C M V -
INFECTION-BCELL-IFNAR-KO-UP-3.96*GSE24634-
NAIVE-CD4-TCELL-VS-DAY5-IL4-CONV-TREG-
UP-4.60*GSE36476-YOUNG-VS-OLD-DONOR-
MEMORY-CD4-TCELL-72H-TSST-ACT-DN. The 
Lasso regression diagram is shown in Figure 5A. Using the 

Figure 1 A flowchart showing the study design. TCGA, The Cancer Genome Atlas; GSEA, Gene Set Enrichment Analysis; NMF, 
nonnegative matrix factorization; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.

Lasso regression was used to identify common 
differential genes related to prognosis

Obtained expression of gene sets

Obtained cancer subtypes with NMF methods

Obtained common different gene sets between three groups

Hub10 genes were identified by gene Enrichment analysis, KEGG pathway 
analysis and PPI analysis of gene list of prognostic gene set

Download lung adenocarcinoma data from TCGA Download c7.immunesigdb_HALLMARK.gmt from GSEA

Cross validation in geo dataset GSE68465

 https://cdn.amegroups.cn/static/public/jtd-22-557-1-3.zip
 https://cdn.amegroups.cn/static/public/jtd-22-557-1-3.zip
https://cdn.amegroups.cn/static/public/jtd-22-557-4.xls
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GSE68465 dataset, there were significant differences in 
survival rates among the three subtypes (P<0.05; Figure 5B). 
The contour widths of the three subtypes were determined 
to be 0.98, 0.98, and 0.93, with an average contour width 
of 0.96 (Figure 5C), and all subtypes performed well  
(Figure 5D). The risk score of the training group was 
calculated based on the risk model and was divided into a 
high-risk group and a low-risk group using the cut-off value. 
Kaplan-Meier survival curves demonstrated that there was 
a significant difference between the two groups (Figure 6A) 
and the training group (Figure 6B). The mean expression of 
the three gene sets was the cut-off value, which was divided 
into a high-expression group and a low-expression group. 
The results showed that the expression of GSE45365-
HEALTHY-VS-MCMV-INFECTION-BCELL-IFNAR-
KO-UP was positive, with better prognosis. The opposite 
expression was observed in the other two gene sets  
(Figure 7A-7C).

Functional and pathway enrichment analyses 

Functional and pathway cluster analyses were performed 
on the gene list using the R software packages “enrichplot” 
and “clusterprofiler”. GO analysis indicated that the 

main biological processes (BP) were regulating cell cycle, 
regulating mitotic cell cycle phase transition, and catabolic 
procedure. The main cellular components (CC) were 
spindle, chromosomal region, and midbody. The related 
molecular functions (MF) were mainly ubiquitin-like 
protein ligase binding, translation regulator activity, and 
oxidation activity (Figure 8A). Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis revealed that Epstein-
Barr virus (EBV) infection was the most significantly 
enriched KEGG pathway for key module genes, the p53 
signaling pathway, and the proteome pathway (Figure 8B). 
Furthermore, the PPI network was analyzed using STRING 
and Cytospace 3.0, and the top 9 hub genes identified were 
KIF2C, DLGAP5, KIF20A, PSMC1, PSMD1, PSMB7, 
SNAI2, FGF13, and BMP2 (Figure 9).

Discussion

The management of lung cancer is challenging in 
clinical practice because even patients with early-stage 
adenocarcinoma who receive complete surgical resection are 
at considerable risk of recurrence and mortality. Therefore, 
research on the molecular mechanisms of LUAD is of 
great significance for the treatment and diagnosis of lung 

Figure 2 A heatmap showing the differences in gene set expression between healthy samples and malignant samples.
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cancer (21,22). The target of microRNAs (miRNAs) or 
methylation is the mRNA, therefore the expression of the 
target mRNA is crucial (23). Gene expression profiling 
techniques, such as microarrays or RNA-seq, have been 
widely used to generate a wealth of transcriptomic profiles 

in many cancer types (24,25). In this study, we combined 
data from the TCGA database with GMT files to identify 
a set of differentially expressed genes. This gene set was 
combined with clinical information and three subtypes of 
LUAD were identified.

10000

8000

6000

4000To
ta

l w
ith

in
 s

um
 o

f s
qu

ar
e

Number of clusters k
1    2    3    4    5    6    7    8    9   10

Optimal number of clusters

10

5

0

−5

−10

D
im

2 
(6

.1
%

)

−20            0            20           40
Dim1 (56.9%)

Cluster plot

Cluster
1
2
3

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.0

0.8

0.6

0.4

0.2

0.0

0          50         100       150       200       250

Survival time, months

TCGA cluster =3

P value =0.000851
Subtype 1

Subtype 2
Subtype 3

Clustering display

1.0

0.8

0.6

0.4

0.2

0.0

Group
1
2
3

Silhouette plot
n=467 3 clusters Cj

j:nj | aveiϵCj Si

1:206 | 0.95

2:114 | 0.96

3:147 | 0.99

−0.2    0.0    0.2    0.4    0.6    0.8    1.0
Silhouette width si

A B

E

DC

Figure 3 The three subtypes of LUAD were identified through unsupervised learning. (A) Optimal K of NMF. (B) The samples from the 
three subtypes. (C) Silhouette plots for the identified cancer subtypes. (D) A heatmap showing the sample similarity matrix. (E) Survival 
curves for each subtype. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; NMF, nonnegative matrix factorization.



Xing et al. Lung adenocarcinoma molecular clustering and prognosis1644

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(5):1638-1650 | https://dx.doi.org/10.21037/jtd-22-557

Table 2 The detailed clinical data of the three subtypes of lung adenocarcinoma

Covariates Cluster Total C1 C2 C3 P value

Age (years) ≤65 224 (47.97%) 107 (51.94%) 60 (52.63%) 57 (38.78%) 0.02

>65 233 (49.89%) 98 (47.57%) 49 (42.98%) 86 (58.5%)

Unknown 10 (2.14%) 1 (0.49%) 5 (4.39%) 4 (2.72%)

Gender Female 254 (54.39%) 107 (51.94%) 54 (47.37%) 93 (63.27%) 0.02

Male 213 (45.61%) 99 (48.06%) 60 (52.63%) 54 (36.73%)

Stage Stage I 253 (54.18%) 101 (49.03%) 50 (43.86%) 102 (69.39%) <0.01

Stage II 107 (22.91%) 54 (26.21%) 28 (24.56%) 25 (17.01%)

Stage III 74 (15.85%) 39 (18.93%) 24 (21.05%) 11 (7.48%)

Stage IV 25 (5.35%) 10 (4.85%) 10 (8.77%) 5 (3.4%)

Unknown 8 (1.71%) 2 (0.97%) 2 (1.75%) 4 (2.72%)

T T1 159 (34.05%) 58 (28.16%) 25 (21.93%) 76 (51.7%) <0.01

T2 248 (53.1%) 122 (59.22%) 71 (62.28%) 55 (37.41%)

T3 39 (8.35%) 17 (8.25%) 13 (11.4%) 9 (6.12%)

T4 18 (3.85%) 9 (4.37%) 4 (3.51%) 5 (3.4%)

Unknown 3 (0.64%) 0 (0%) 1 (0.88%) 2 (1.36%)

M M0 314 (67.24%) 138 (66.99%) 79 (69.3%) 97 (65.99%) 0.15

M1 24 (5.14%) 10 (4.85%) 10 (8.77%) 4 (2.72%)

Unknown 129 (27.62%) 58 (28.16%) 25 (21.93%) 46 (31.29%)

N N0 302 (64.67%) 121 (58.74%) 68 (59.65%) 113 (76.87%) <0.01

N1 86 (18.42%) 43 (20.87%) 24 (21.05%) 19 (12.93%)

N2 65 (13.92%) 38 (18.45%) 21 (18.42%) 6 (4.08%)

N3 2 (0.43%) 2 (0.97%) 0 (0%) 0 (0%)

Unknown 12 (2.57%) 2 (0.97%) 1 (0.88%) 9 (6.12%)

C1, Cluster 1; C2, Cluster 2; C3, Cluster 3.

This present study demonstrated that LUAD could 
be classified into three clinically relevant subtypes with 
different survival patterns. The common differential gene 
sets of the three subtypes were analyzed, and 361 common 
differential gene sets were identified. Among the 361 
differential gene sets, 3 gene sets were related to prognosis. 

The down- or up-regulation of these 3 related gene 
sets could be explained as “genes upregulated during 
primary acute viral infection: B lymphocytes versus CD8 
T cells”. Functional aggregation and pathway analysis 
showed that the differentially expressed genes were mainly 

involved with virus infections, measles, and other infection 
diseases, suggesting that the poor prognosis associated with 
LUAD may be related to immunity and infection. This 
agrees with many previous studies (26-28). Inflammatory 
molecules have been shown to be associated with the 
development, transformation, and survival of lung cancer, 
including tumor necrosis factor (TNF)-α (29), transforming 
growth factor (TGF)-β (30), and interleukin (IL)-10 (30). 
Therefore, cancer may be treated by inhibiting immune 
responses, which is also the basis of immunotherapy, which 
has become a significant treatment strategy, along with 
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Figure 4 The intersection of the three differential gene sets and the correlation with clinical data. (A) The intersection of the three 
differential gene sets. (B) The differences in gene expression between the common differential gene sets and the correlation with clinical 
data. *P<0.05, ***P<0.001.

C2–C1 C3–C2

8 432 361 50 627

C3–C1

A

N*** 
M 
T*** 
Stage*** 
Gender* 
Age* 
Cluster

4

2

0

−2

−4

N***
N0

N1

N2

N3

Unknown

M
M0

M1

Unknown

T***
T1

T2

T3

T4

Unknown

Stage***

Stage I

Stage II

Stage III

Stage IV

Unknown

Gender*
Female

Male

Age*

≤65

>65

Unknown

Cluster
C1

C2

C3

B



Xing et al. Lung adenocarcinoma molecular clustering and prognosis1646

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(5):1638-1650 | https://dx.doi.org/10.21037/jtd-22-557

Figure 5 Verification of the survival risk scoring model based on the common differential gene sets. (A) The Lasso regression diagram. 
(B) The differences in survival rates among the three subtypes. (C) The contour widths of the three subtypes. (D) A heatmap showing the 
sample similarity matrix. GEO, Gene Expression Omnibus. 
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surgery and chemotherapy (8). The PPI network analysis 
identified 9 hub genes which may be potential targets for 
immunotherapy. 

In summary, based on unsupervised learning and expression 

of gene sets, we successfully stratified LUAD into three 
clinically relevant subtypes with different survival patterns. 
Furthermore, we identified a common prognosis-related gene 
set and identified hub genes of the three subtypes.
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Figure 6 Kaplan-Meier survival analysis of the high-risk and low-risk groups in the training and validation datasets. (A) Kaplan-Meier 
survival analysis in the training dataset. (B) Kaplan-Meier survival analysis in the validation dataset.

Figure 7 Kaplan-Meier survival analysis of the high-expression group and the low-expression group in the three gene sets.
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Figure 8 GO annotation (A) and KEGG pathway (B) clustering of the gene lists of GSE45365-HEALTHY-VS-MCMV-INFECTION-
BCELL-IFNAR-KO-UP. BP, biological processes; CC, cellular components; MF, molecular functions; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

Figure 9 The hub genes identified in the protein interaction and network analyses.
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