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Background: There is increasing evidence of the effectiveness of immune checkpoint blockade (ICB) 
therapy for the treatment of lung adenocarcinoma (LUAD). However, the benefits of ICB therapy vary 
among LUAD patients. Due to the research dimension, existing biomarkers, such as programmed death-
ligand 1 (PD-L1) expression and tumor mutation burden (TMB), could not reflect the complex tumor 
environment, and had low prediction accuracy of ICB. Therefore, we aimed to uncover a prognostic 
biomarker that could also predict whether a patient would benefit from ICB therapy and other common 
treatments from multiple dimensions, so as to improve the prediction accuracy of pre-treatment patients.
Methods: Based on the LUAD dataset retrieved from The Cancer Genome Atlas (TCGA) database, 
50 immune-related hub genes were identified using weighted gene co-expression network analysis and 
univariate Cox regression analyses. An immune-related gene prognostic index (IRGPI) was constructed using 
a Cox proportional-hazards model based on 15 genes and validated using GSE72094 dataset. We tested its 
prognostic accuracy by Kaplan-Meier (K-M) survival curves of the two datasets and assessed its predictive 
power by comparing area under curve (AUC) of IRGPI with existing biomarkers. Subsequently, we analyzed 
the molecular and immune characteristics, and evaluated the benefits of ICB by PD-L1 expression and 
Tumor Immune Dysfunction and Exclusion (TIDE) analysis, predicted the inhibitory concentration 50 of 
common treatments drugs for two IRGPI score-related subgroups.
Results: Patients in the IRGPI-high subgroup had lower overall survival (OS) than patients in the IRGPI-
low subgroup in K-M survival curve in two cohorts. And IRGPI has AUC values of 0.715, 0.724, and 0.743 
in 1, 2, and 3 years, respectively. A higher tumor mutation burden and PD-L1 expression and the tumor 
microenvironment (TME) landscape demonstrated that IRGPI-high subgroup patients may respond better 
to ICB therapy. Genomics of Drug Sensitivity in Cancer (GDSC) analysis indicated that the IRGPI-high 
subgroup showed greater sensitivity to chemotherapy. 
Conclusions: IRGPI is a prospective biomarker for evaluating whether a patient will benefit from 
ICB therapy and other treatments, and distinguishing patients with different molecular and immune 
characteristics.
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Introduction

Lung cancer is one of the leading causes of cancer 
deaths worldwide, with 2.35 million new cases and 1.31 
million deaths in the United States in 2021 alone (1). 
This disease is histologically divided into 2 categories, 
small cell lung cancer (SCLC) and non-small cell lung 
cancer (NSCLC). Within NSCLC, the major histological 
subtype, lung adenocarcinoma (LUAD) accounts for 40% 
of cases (2). Treating lung cancer involves a combination 
of surgical resection, chemotherapy, radiotherapy, and  
immunotherapy (3). Chemotherapy and molecular-targeted 
therapy are 2 common treatment strategies used for LUAD, 
while first-line treatment for patients with advanced LUAD 
is platinum-based combination chemotherapy (4). Immune 
checkpoint blockade (ICB) therapy is now an alternative 
option to treat LUAD (5). However, multiple factors, 
including the tumor microenvironment (TME), influence 
ICB therapy. The cellular heterogeneity of cancer cells and 
the TME contribute to disease progression and treatment 
resistance (6).

ICB therapy is an emerging anticancer weapon targeting 
T-cell regulatory pathways to enhance antitumor immune 
responses. Rather than activating the immune system to 
attack specific targets on tumor cells, this therapy aims to 
remove inhibitory pathways that block effective antitumor 
T-cell responses (7-9). ICB therapy has been shown to 
produce clinical responses in patients with a variety of 
tumor types (10). More specifically, anti-programmed 
death-ligand 1 (PD-L1) antibodies cause tumor regression 
in patients with different tumors, including NSCLC. 
Although ICB therapy shows significant clinical success, its 
efficacy varies widely among patients, especially NSCLC 
patients (11-15). However, existing biomarkers such as 
PD-L1 expression, TMB, etc. only reflect a small part 
of the tumor’s response to immunotherapy from a single 
perspective such as ligand expression and gene mutation, 
do not fully reflect the interaction of different factors in the 
complex TME, and are limited in prediction. 

In this study, from the perspective of immunity, we hope 
to establish an indicator: immune-related gene prognostic 
index (IRGPI) that can better predict therapeutic efficacy 
than existing biomarkers through immune-related genes. 

At the same time, the different immune functions of genes 
in the model also more broadly reflect the important role 
of the immune system in tumor progression. Interestingly, 
in our analysis,  the molecular and immunological 
characteristics of different IRGPI score-related subgroups 
were also quite different, which endows IRGPI with the 
ability to distinguish disease characteristics of LUAD 
patients. Our results suggested that IRGPI is an excellent 
prognostic index and has considerable advantages in 
predicting benefits of various treatments and distinguishing 
disease features for LUAD patients. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-494/rc).

Methods

Gene expression datasets and study design

RNA-sequencing data for 594 LUAD cases (59 normal 
tissues and 535 LUAD samples) and clinical and simple 
nucleotide variation (varscan2) data for 486 samples were 
downloaded from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/). Microarray data 
for 442 LUAD samples and survival data [Gene Expression 
Omnibus (GEO): GSE72094] were downloaded from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). A list 
of immune genes was derived from the InnateDB (https://
www.innatedb.com/) and the Immunology Database and 
Analysis Portal System (ImmPort) (https://www.immport.
org/shared/home) databases. LUAD tumor samples 
downloaded from TCGA were divided into 6 immune 
subtypes based on 5 immune expression characteristics as 
previously described (16).

In this study, we first screened immune genes through 
differential expression analysis and weighted gene co-
expression network analysis (WGCNA) analysis to obtain 
immune-related hub genes associated with LUAD. Using 
univariate and multivariate cox analyses, we built and tested 
a prognostic model and explored the molecular and immune 
characteristics of the two subgroups of the model. Finally, 
we tested the capability of the model to predict the patient’s 
response to ICB therapy through PD-L1 expression, 
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Tumor Immune Dysfunction and Exclusion (TIDE), 
and other analyses. We also examined the sensitivity of 
different subgroups of the model to common treatments 
through Genomics of Drug Sensitivity in Cancer (GDSC) 
analysis. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Immune-related hub genes

Using the “limma” package in R (17), we performed 
differential expression analysis of RNA-seq FPKM 
(fragments per kilobase of exon per million mapped 
fragments) in LUAD samples downloaded from TCGA to 
obtain differentially expressed genes [DEGs; absolute values 
of log fold change (FC) >1 and false discovery rate (FDR) 
adjusted P<0.05]. After comparing the DEGs and the list 
of immune-related genes, the “clusterProfiler” package in 
R (18) was used to perform Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis on differentially expressed immune-related genes.

WGCNA was performed for the analyzed genes to 
obtain co-expression modules using the “WGCNA” 
package in R (19). First, the Person correlation coefficient 
for any 2 genes was calculated and a similarity matrix 
was established. The optimal soft threshold power, β=4, 
was then obtained using unary linear regression, and 
the similarity matrix was transformed into an adjacency 
matrix based on the optimal soft threshold power before 
transforming it into a topological overlap matrix (TOM) to 
measure the correlation between 2 genes. After obtaining 
TOM, we clustered genes with 1-Tom set as the distance. 
Finally, by setting the minimum number of genes in each 
module to 25 and merging the threshold function of 0.25, 
we obtained clustering results. Three nongray modules (the 
blue, brown, and turquoise modules) were obtained, and the 
correlation of co-expression modules and traits (for both 
normal and tumor samples) were generated. We concluded 
that the absolute value for the turquoise module was the 
largest, and we constructed the network based on this.

A total of 50 immune-related hub genes significantly 
correlated (P<0.05) with the overall survival (OS) of LUAD 
patients, as shown by univariate Cox regression analysis of 
the 263 genes in the turquoise module. The “Survminer” 
package in R was used to calculate the optimal cut-off 
value for the expression of each gene. Based on the cut-off 
value, patients were divided into a high expression group 
and a low expression group. P values were calculated using 
the Kaplan-Meier (K-M) method and survival curves were 

plotted. The “Maftools” package in R (20) was then used to 
analyze 50 hub gene-related mutation information obtained 
for the LUAD patients.

Construction of IRGPI

To further screen genes that had a significant impact on 
patient prognosis, we conducted multivariate Cox regression 
analysis on immune-related hub genes and set the direction 
as ‘both’ to screen variables to obtain IRGPI. IRGPI, a Cox 
proportional-hazards model, was obtained by multiplying 
the expression values of specific genes by their coefficients. 
Based on the median value of IRGPI scores in the TCGA 
cohort, the cut-off point between IRGPI-high and IRGPI-
low subgroups was obtained. The K-M method was used to 
perform survival analysis (log-rank test) for the TCGA and 
GEO cohorts to validate IRGPI values in predicting LUAD 
patient prognosis. Eventually, univariate and multivariate 
Cox regression analyses were performed for both IRGPI and 
common clinical factors, with the goal of further evaluating 
the independent prognostic ability of IRGPI.

Molecular and immune characteristics in 2 IRGPI 
subgroups

To obtain the differentially expressed signal pathways for 
the 2 IRGPI subgroups, we used the “limma” package in R 
to conduct differential expression analysis of the subgroups 
based on TCGA expression data to obtain their DEGs. 
Subsequently, the “clusterProfiler” package in R was used 
to generate gene set enriched analysis (GSEA) based on 
GO and KEGG gene sets downloaded from the MsigDB 
database (http://www.gsea-msigdb.org/). We then used the 
“Maftools” package in R to analyze the simple nucleotide 
variation data of LUAD patients and to obtain genetic 
mutation information for the 2 subgroups. Difference 
analysis was performed for PD-L1 expression and tumor 
mutation burden (TMB) for both subgroups using the 
“limma” package in R.

The CIBERSORT online tool (https://cibersort.
stanford.edu/) was used to study immune cell infiltration 
of 22 unique immune cells using 1,000 iterations in each 
sample. With this, the TME landscape of IRGPI was 
obtained. We then compared immune cell infiltration 
with clinicopathological factors for both subgroups. 
Subsequently, we used the “limma” package in R to analyze 
differences in the proportions of the 22 different immune 
cells in the IRGPI subgroups and plotted K-M survival 
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curves for immune cells showing significantly different 
proportions to determine which cells affected prognosis. 
To further explore the impact of immune-related function 
pathways on the prognosis of the subgroups, a single sample 
GSEA (ssGSEA) was performed using the “GSVA” package 
in R (21). Differential analysis was performed using the 
“limma” package in R and K-M survival curves were plotted 
for immune-related function pathways showing significant 
differences between the 2 subgroups.

To understand the association between immune and 
clinical grouping methods, we analyzed the distribution of 
immune subtypes and clinical stages for the different IRGPI 
subgroups using a chi-square test.

Prognostic ability, immune therapy response, and drug 
susceptibility of IRGPI

To evaluate the predicted efficacy of immunotherapy in 
the different IRGPI subgroups, we downloaded the TIDE 
score online calculator (http://tide.dfci.harvard.edu/). 
The differences in TIDE, microsatellite instability (MSI), 
T-cell dysfunction, and T-cell exclusion scores of the  
2 groups were analyzed using the “limma” package in R. To 
confirm the reliability of IRGPI as a prognostic biomarker, 
the “timeROC” package in R was used to perform time-
dependent receiver operating characteristic (ROC) curve 
analysis for IRGPI, TIDE, and tumor inflammation 
signature (TIS). The areas under the curve (AUC) for 
each of these variables were generated and multiple time 
comparisons were performed.

Finally, we compared the half-maximal inhibitory 
concentration (IC50) of chemotherapy and targeted drugs 
for the treatment of LUAD for the 2 IRGPI subgroups 
using the GDSC online tool (https://www.cancerRxgene.
org) to obtain drug sensitivity information.

Statistical analysis

R software (version 4.1.1) (http://www.r-project.org/) 
and its corresponding R packages were used for all 
statistical data analysis and to generate graphs. Using 
the “clusterProfiler” package in R, we completed GO, 
KEGG, and GSEA analyses. Time-dependent ROC curve 
plotting and AUC calculations were performed using the 
“timeROC” package in R. 

The chi-square test was used to determine whether 
differences in other groupings of IRGPI were significant 
between the 2 groups. A log-rank test was used to draw 

and compare K-M survival curves for univariate survival 
analysis. The Cox regression model was used to identify 
associated factors of survival outcomes. The AUC value of 
ROC curve greater than 0.7 is generally considered to be 
an excellent predictive model. P values less than 0.05 were 
considered statistically significant.

Results

Immune-related hub genes in LUAD

A graphical representation of the study design is shown in 
Figure 1. After differential expression analysis, a total of 8,109 
DEGs were obtained. There were 1,864 genes found to be 
downregulated and 6,245 genes found to be upregulated in 
the tumor samples (Figure 2A). Intersection of the DEGs 
with the immune genes downloaded from InnateDB and 
ImmPort (website: https://cdn.amegroups.cn/static/public/
jtd-22-494-01.pdf) yielded 681 immune-related DEGs, with 
258 found to be downregulated genes and 423 found to be 
upregulated genes in tumor samples (Figure 2B). Functional 
enrichment analysis of immune-related DEGs showed that 
681 immune-related DEGs were significantly correlated with 
1,536 GO items and 56 KEGG pathways (website: https://
cdn.amegroups.cn/static/public/jtd-22-494-02.pdf, Table S1).  
The top 8 GO items and KEGG pathways are displayed 
in Figure 2C,2D. Immune-related DEGs were enriched in 
multiple immune responses. Various cell types were found to 
mediate immunity and complement activation based on GO 
terms. KEGG pathways analysis showed many were enriched 
for cytokine signaling, chemokine signaling, and complement 
pathways. Thus, it was concluded that the screened genes 
were associated with immunity.

To obtain immune-related hub genes, WGCNA analysis 
was performed for immune-related DEGs. We first detected 
outliers in clustering and cut 2 samples by setting the upper 
limit to 20,000 (Figure 3A). The optimal soft-thresholding 
power was 4, based on the scale-free network (Figure 3B). 
Based on the optimal soft-thresholding and the average 
linkage hierarchical clustering power, 3 nongray modules 
containing a total of 588 genes were generated (Figure 3C,3D).  
Based on the absolute values and P values, the turquoise 
module, which was most closely related to LUAD, was 
selected for further analysis. The threshold weight was set 
to greater than 0.2, and there were 263 genes and 368 edges 
observable in the turquoise module (Figure 3E). Univariate 
cox regression analysis was performed on 263 genes in the 
turquoise module and 50 immune-related hub genes were 
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identified that were closely related to the OS of LUAD 
patients (Figure 4A). Subsequently, to verify the prognostic 
correlation of hub genes, K-M survival analysis was performed 
and survival curves for the 16 genes with the highest and 
lowest prognostic risks are presented in Figure S1.

We then analyzed mutations present in the 50 immune-
related hub genes. As shown in Figure S2, most genes 
contained missense mutations, and some had nonsense 
mutations, multiple hits, or frameshift deletions. The mutation 
rates of SEMA4B, C7, and LRRK2 were greater than 4%.

The IRGPI formula and prognostic value for IRGPI 
subgroups

We performed multivariate Cox regression analysis on 

50 immune-related hub genes to identify independent 
prognostic genes and obtained 15 genes (SFTPD, S100A16, 
FGF2, BIRC5, SEMA4B, ANGPTL4, IL3RA, SHC3, FCN3, 
TRIM6, LRRK2, HMGB2, RASGEF1B, C7, and PRKCE) 
significantly associated with prognosis (Figure 4B). Next, 
we used a Cox proportional-hazards model to construct 
IRGPI based on these genes. The formula of IRGPI was 
as follows: IRGPI = SFTPD expression × (-0.10) + S100A16 
expression × 0.24 + FGF2 expression × 0.55 + BIRC5 expression 
× (-0.22) + SEMA4B expression × 0.27 + ANGPTL4 expression 
× 0.18 + IL3RA expression × (-0.31) + SHC3 expression × 
(-0.41) + FCN3 expression × (-0.14) + TRIM6 expression × 
0.26 + LRRK2 expression × 0.15 + HMGB2 expression × 0.44 
+ RASGEF1B expression × (-0.35) + C7 expression × 0.21 + 
PRKCE expression × 0.38.
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To further confirm that IRGPI could be used as an 
independent prognostic factor, univariate and multivariate 
cox regression analyses were performed on IRGPI and 
other common clinical factors (Table S2). Univariate cox 
regression analysis showed that IRGPI, tumor (T) stage, 
metastasis (M) stage, and lymph node (N) stage significantly 
correlated with the prognosis of LUAD. Multivariate Cox 
regression analysis confirmed these data. We concluded that 
IRGPI was an independent prognostic factor after adjusting 
for other clinicopathological factors.

The median value of IRGPI in the TCGA cohort was 

used as the cut-off point to divide patients into high and 
low IRGPI score subgroups. In the TCGA cohort, the OS 
of the IRGPI-high subgroup was lower than the IRGPI-
low subgroup (P<0.001, log-rank test, Figure 4C). The GEO 
cohort (GSE72094) showed a similar prognosis as the TCGA 
cohort (P=0.010, log-rank test; Figure 4D), confirming the 
ability of IRGPI to predict OS of LUAD patients.

Molecular characteristics of the IRGPI subgroups

First, GSEA analysis was performed to identify the enriched 
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pathways in the 2 IRGPI subgroups (Table S3). The gene 
sets of the IRGPI-low subgroup were highly enriched in 
immune-related pathways (Figure 5A), indicating a better 
immune environment. However, gene sets of the IRGPI-
high subgroup were abundantly enriched in the cell cycle 
pathway and pathways in cancer (Figure 5B), showing a high 
correlation with the development of cancer.

We then analyzed mutation data for the 2 subgroups to 
explore the characteristics from a molecular perspective. 
We first identified 20 genes with the largest number 
of mutations, we then analyzed mutation data of the  
2 subgroups and displayed the mutation landscapes for the 
20 genes (Figure 5C,5D). We found that missense mutations 
were the most common in both groups, followed by 
multiple hits and nonsense mutations. The mutation rates 
of TP53, TTN, MUC16, RYR2, CSMD3, LRP1B, ZFHX4, 
USH2A, KRAS, XIRP2, and FLGA in the 2 subgroups were 

all greater than 20%. The mutations of TTN (P=0.010) and 
PCDH15 (P<0.048) genes in the IRGPI-high subgroup 
were significantly higher than in the IRGPI-low subgroup.

Next, we analyzed the relationship between IRGPI 
score and PD-L1 expression level and TMB to explore the 
estimated benefits of ICB therapy. The expression of PD-
L1 and TMB in the IRGPI-high subgroup was significantly 
greater than in the IRGPI-low subgroup (P=0.0036, 
P=0.0043; Figure S3A,S3B), suggesting that ICB therapy 
may result in a better response in IRGPI-high patients. 

Immune characteristics of the 2 IRGPI subgroups

We obtained the TME landscape of LUAD after simulating 
the infiltration of 22 immune cells and grouped them into 2 
IRGPI subgroups (Figure 6A). A comparison of 22 distinct 
immune cells and common clinical-pathological factors is 
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shown in Figure 6B. We then used the “limma” package 
in R to compare the proportion of immune cells in the 2 
IRGPI subgroups. The results showed that the abundance 
of activated memory cluster of differentiation 4 (CD4) T 
cells, resting natural killer (NK) cells, and macrophages M1 

was higher in the IRGPI-high subgroup, while monocytes, 
macrophages M2, resting dendritic cells, and resting mast 
cells were widely distributed in the IRGPI-low subgroup 
(Figure 6C). For survival analysis of immune cells with 
significantly different distributions (Figure S4), we observed 
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that the high expression of activated memory CD4 T cells, 
resting NK cells, and macrophages M1 resulted in poor 
prognosis (both P<0.05). In fact, these were all present at a 
higher abundance in the IRGPI-high subgroup. A higher 
level of resting dendritic cells predicted a better prognosis 
(P=0.048), and these were abundant in the IRGPI-low 
subgroup.

We then defined immune-related function pathway 
characteristics of the 2 subgroups based on the gene 
signature. We found that the IRGPI-high subgroup showed 
greater functions related to antigen presenting cell (APC) 
co-inhibition, CD8+ T cells, cytolytic activity, inflammation, 

major histocompatibility complex (MHC) class I molecules, 
para-inflammation, T follicular helper (Tfh) cells, T helper 
1 (Th1) cells, and Th2 cells. The IRGPI-high group 
showed fewer functions related to immature dendritic cells 
(iDCs), mast cells, and type-II interferon (IFN) response 
(Figure 6D). In subsequent survival analyses (Figure S5), 
we found that CD8+ T cells and Treg enriched in the 
IRGPI-high subgroup predicted poor prognosis. Higher 
iDCs, mast cells, and type-II IFN response were associated 
with better prognosis in the IRGPI-low subgroup. These 
results also suggested that the prognostic value of IRGPI 
was related to differential enrichment of immune-related 

Figure 5 Molecular characteristics of 2 IRGPI subgroups. (A) Gene sets enriched in IRGPI-low subgroup. (B) Gene sets enriched in 
IRGPI-high subgroup. (C) Oncoplot displaying the mutation status of IRGPI-low subgroup. Mutated genes are ordered by mutation 
numbers of the whole sample, with the top 20 genes shown. The colors represent the mutation type. (D) Oncoplot displaying the mutation 
status of IRGPI-high subgroups. IRGPI, immune-related gene prognostic index; TMB, tumor mutation burden.
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Figure 6 TME landscape in LUAD patients and the immune characteristics of 2 IRGPI subgroups. (A) The relative percent of 22 immune 
cells in The Cancer Genome Atlas (TCGA) cohort of 2 IRGPI subgroups. (B) The pathological factors (age, gender, stage, T, M, and N) in 
the TCGA cohort of 2 IRGPI subgroups (**, P<0.01; ***, P<0.001). (C) The different fractions of TME cells in 2 IRGPI subgroups. The 
scattered dots represent the immune fraction of 2 IRGPI subgroups. The thick lines represent the median value. The bottom and top of 
the boxes are the 25th and 75th percentiles, respectively. “*” is used to represent significant statistical differences between the 2 subgroups 
(*, P<0.05; **, P<0.01; ***, P<0.001). (D) The different enrichment scores of immune-related functions in 2 IRGPI subgroups (*, P<0.05; **, 
P<0.01; ***, P<0.001). NK, natural killer; IRGPI, immune-related gene prognostic index; T, tumor; M, metastasis; N, lymph node; TME, 
tumor micro environment; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.
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function pathways.

Relationship between IRGPI, immune subtypes, and 
clinical stage

Tumor samples from the TCGA were divided into 6 
immune subtypes according to immune characteristics: C1 
(wound healing), C2 (IFN-γ dominant), C3 (inflammatory), 
C4 (lymphocyte depleted), C5 (immunologically quiet), and 
C6 [transforming growth factor (TGF)-β dominant] (16). As 
shown in Figure 7A, there was a significant difference in the 
distribution of immune subtypes between the 2 subgroups 
(P=0.001). The proportion of the C1 subtype was greater 
in the IRGPI-high subgroup, and the proportion of the C3 
subtype was greater in the IRGPI-low subgroup.

As for clinical stages, there was a significant difference 
in the distribution between the 2 subgroups (P=0.001;  

Figure 7B). The proportions of stage II and stage III in 
the IRGPI-high subgroup were high. In contrast, the 
proportion of stage I was high in the IRGPI-low subgroup. 
As a result, the IRGPI-high subgroup showed higher 
clinical stage, representing severe disease state and poor 
prognosis.

The relationship between IRGPI and ICB therapy or 
common treatments

TIDE was based on comprehensive analysis of the tumor 
expression spectrum to predict the efficacy of ICB therapy 
and was more accurate than PD-L1 expression and TMB (22).  
As shown in Figure 8A, we found that the T-cell dysfunction 
score of the IRGPI-high subgroup was higher than the 
IRGPI-low subgroup (P<0.001), suggesting that T cell-
mediated immune processes may have been impaired in 
IRGPI-high patients (23,24). Benefits of ICB therapy showed 
no difference in the 2 subgroups since they had similar TIDE 
scores.

As shown in Figure 8B, we found that the AUCs of 1-, 
2- and 3-year follow-up were all higher than 0.70 in the 
time-dependent ROC curve of IRGPI. This suggested 
that IRGPI was an important prognostic indicator. When 
comparing TIDE and TIS, the AUC of IRGPI was higher 
than TIDE and TIS at all follow-up times, showing that 
IRGPI had a better prognostic value than traditional 
biomarkers.

IRGPI had the ability to guide personalized treatment 
of LUAD based on drug susceptibility data for multiple 
treatments in the 2 subgroups through GDSC (Figure 8C). 
We found that the IC50 of 8 chemotherapeutic agents 
(paclitaxel, gemcitabine, epothilone B, cytarabine, docetaxel, 
vinblastine, cisplatin, and etoposide) in the IRGPI-high 
subgroup were significantly lower than in the IRGPI-
low subgroup (both P<0.05), indicating that the response 
and efficacy of IRGPI-high patients to chemotherapy 
may be better. The IC50 values of the chemotherapy 
drug Vinorelbine and 3 molecular-targeted therapy drugs 
(erlotinib, gefitinib, and BIBW2992) showed no significant 
differences between the 2 subgroups (P>0.05).

Discussion

ICB therapy is very effective in the treatment of LUAD 
and various other cancers (11,25,26). However, the efficacy 
of ICB therapy is variable in different tumors and patients 
(11-15). Determining which patients will respond well to 
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Figure 7 Distribution of immune and clinical subtypes in 2 IRGPI 
subgroups. (A) Heatmap and table showing the distribution of 
LUAD patients by immune subtype (C1, C2, C3, C4, and C6) 
between 2 IRGPI subgroups. (B) Heatmap and table showing the 
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ICB therapy is necessary. Due to complex variations in the 
TME, it is difficult to identify a single factor biomarker that 
can predict response to multiple treatments. Yin et al., Shen 
et al., and Chen et al. developed prognostic biomarkers for 
head and neck squamous cell carcinoma, ovarian cancer, 
and clear cell renal cell carcinoma based on immune-
related genes (27-29). However, there are no relevant 
studies looking into biomarkers for LUAD. Therefore, it is 
necessary to develop a biomarker based on the expression of 
multiple immune-related genes to guide LUAD treatment 

strategies (30).
WGCNA is an analysis method that can find co-

expressed immune-related genes, allowing us to explore 
potential biomarkers and focus on hub genes. We obtained 
50 immune-related hub genes significantly associated with 
OS through WGCNA and survival analysis and constructed 
IRGPI based on 15 independent prognostic genes. In 
LUAD patients, IRGPI demonstrated a good association 
with prognosis. For example, IRGPI-high patients had 
poor prognosis, while IRGPI-low patients showed better 

Figure 8 The prognostic value and response to therapies of the IRGPI. (A) TIDE, MSI, T-cell exclusion, and T-cell dysfunction score in 2 
IRGPI subgroups (ns, no significance; ***, P<0.001). (B) Time-dependent ROC analysis of IRGPI, TIS, and TIDE on OS at 1-, 2-, 3-year 
follow-up in TCGA cohort. (C) Drug sensitivity of 12 drugs between 2 IRGPI subgroups (ns, no significance; *, P<0.05; **, P<0.01; ***, 
P<0.001). IRGPI, immune-related gene prognostic index; TIDE, Tumor Immune Dysfunction and Exclusion; AUC, areas under the curve; 
IC50, half-maximal inhibitory concentration; TIS, tumor inflammation signature; MSI, microsatellite instability; ROC, receiver operating 
characteristic; OS, overall survival; TCGA, The Cancer Genome Atlas.
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prognosis. The results were confirmed using TCGA 
and GEO cohorts, concluding that IRGPI is a valuable 
immune-related biomarker for LUAD that can be used to 
predict prognosis and guide treatment decisions.

IRGPI is based on 15 genes (SFTPD, S100A16, FGF2, 
BIRC5, SEMA4B, ANGPTL4, IL3RA, SHC3, FCN3, 
TRIM6, LRRK2, HMGB2, RASGEF1B, C7, and PRKCE). 
Pulmonary surfactant-associated protein (SP-D) encoded 
by surfactant protein D (SFTPD) shows dual effects of 
suppressing or enhancing inflammation through binding 
different receptors (31). SP-D can inhibit the proliferation, 
invasion, and migration of LUAD cells by interacting 
with epidermal growth factor receptor (EGFR) (32). 
Fibroblast growth factor-2 (FGF-2), a member of the FGF 
family, promotes proliferation, reparation, and migration 
in a variety of cells (33). The S100 protein family has 
shown a correlation with various signaling pathways in 
cancer cells, and proteomics have reported that S100A16 
significantly correlated with poor prognosis of LUAD 
patients (34). Semaphoring 4B (SEMA4B) belongs to the 
semaphorin protein family, which regulates cell migration, 
angiogenesis, and immune response. According to the 
report, SEMA4B may have promoted the expression of 
matrix metalloproteinase-9 (MMP9) by activating the 
phosphatidylinositol 3-kinase (PI3K) signaling pathway. An 
increase in metastasis promotes NSCLC (35). Baculoviral 
inhibitor of apoptosis repeat-containing 5 (BIRC5, also 
as known as survivin), an inhibitor of apoptosis-related 
proteins, is expressed in the growth 2 (G2)/mitosis (M) 
checkpoint phase. Overexpression of BIRC5 in cancer is 
conducive to its aberrant progression (36). Alpha subunit of 
interleukin 3 receptor (IL3RA) is a cell membrane protein 
produced by activated T lymphocytes and plays a role in 
immunity and hematopoiesis. RasGEF1, a member of the 
guanine-nucleotide exchange factor (GEF) family, is induced 
in macrophages by stimulation of Toll-like receptor (TLR). 
Repression of RasGEF1B reduces intercellular adhesion 
molecule 1 (ICAM-1) expression. This plays a role in the 
immune response by promoting the binding of leukocytes 
to endotheliocytes and their subsequent migration into  
tissues (37). Both ficolin-3 (encoded by FCN) and 
complement component 7 (C7) are involved in the 
complement system and play key roles in immune-
inflammatory responses. In summary, IRGPI fully reflects 
the progression of LUAD proliferation, invasion, metastasis, 
angiogenesis, and multiple other tumor development 
processes. It is widely associated with various aspects of the 
immune response. As a multifactor and multiperspective 

biomarker, IRGPI is a better prognostic indicator than 
traditional biomarkers that can only narrowly reflect a single 
perspective of the tumor.

Somatic mutations are related to tumor cell sensitivity 
and anti-chemotherapy mechanisms. These mutations play a 
major role in predicting an antitumor drug response (38). The 
mutant gene showing the greatest difference in the 2 groups 
was TTN. More specifically, the IRGPI-high subgroup 
showed a greater TTN mutation rate than the IRGPI-low 
subgroup. One study (39) found that long noncoding RNA 
(lncRNA) titan-antisense RNA1 (TTN-AS1) transcribed in 
TTN antisense chain is upregulated in LUAD, and TTN-
AS1 binds to microRNA (miR)-142-5p as a competing 
endogenous RNA (ceRNA) to indirectly upregulate cyclin-
dependent kinase 5 (CDK5) expression. Knockdown of 
TTN-AS1 significantly reduced the proliferation, invasion, 
and migration of LUAD cells This research suggested that 
TTN mutations may have been associated with the relatively 
poor prognosis of the IRGPI-high subgroup and could be a 
potential target for the treatment of IRGPI-high patients.

TME plays an important role in the ICB therapy 
response as well as LUAD patient prognosis. Our study 
revealed that there were significant differences in the 
infiltration of some immune cells between the 2 subgroups. 
These differences determined the heterogeneity of the 
TME and affected patient outcomes. Previous studies 
have found that both T-cells and NK cells have antitumor 
effects and are positively correlated with prognosis in cases 
of high-level infiltration (40,41). The main subtype of 
macrophages in most tumors is M2, which usually promotes 
proliferation and invasion that leads to poor prognosis. 
In contrast, the degree of infiltration of M1 macrophages 
positively correlates with prognosis (42). Results from our 
study supported these conclusions, including the proportion 
of various immune cells and also the location and activity 
of immune cells affecting immune response and ultimately 
prognosis. The exploration of deep TME characteristics of 
the 2 IRGPI subgroups is needed in future studies.

There were significant differences in the C1 and C3 
immune subtypes between the 2 groups. The C1 subtype 
highly expresses angiogenic genes and contains a high 
tumor proliferation rate. The C3 subtype is characterized 
by abundant Th17 cells and Th1 cell infiltration, shows 
mild to moderate tumor proliferation rates, and contains 
low levels of somatic copy number variation and aneuploidy. 
In a previous study (16), the C3 subtype was linked to a 
better prognosis compared to the C1 subtype. This led to 
the conclusion that prognosis may be better in the IRGPI-
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low compared to the IRGPI-high subgroup. There were 
also significant differences observed in the distribution of 
clinical stages for the 2 subgroups. A higher clinical stage 
suggested that patients in the IRGPI-high subgroup were 
more likely to have poor prognosis. The results of these 
analyses are consistent with the prognostic results of IRGPI 
and are helpful for physicians to predict the immune type 
characteristics and disease progression of LUAD patients.

PD-L1 and TMB are 2 classic biomarkers commonly 
used in clinical practice, with both having a positive 
correlation with the response of ICB-treated patients (43). 
In our study, the expression levels of PD-L1 and TMB were 
significantly higher in the IRGPI-high subgroup, suggesting 
that patients in the IRGPI-high subgroup would better 
benefit from ICB therapy. In comparing IRGPI with TIDE 
and TIS, IRGPI was shown to be an excellent prognostic 
indicator with better predictability. IRGPI overcame the 
one-sided reflection of traditional biomarkers for prognosis, 
making it a promising biomarker for clinical application.

GDSC links complex genomes with drug sensitivity and 
facilitates the discovery of new biomarkers related to drug 
response (44). GDSC analysis showed that the IRGPI-high 
group would have a better response to chemotherapy and 
higher benefits in response to ICB therapy. The application 
of ICB therapy in combination with chemotherapy should 
be considered to improve the poor prognosis of IRGPI-high 
patients. The combined use of multiple therapies showed 
better effects in enhancing drug response and delaying drug 
resistance.

In future clinical application of IRGPI, a large amount of 
information for LUAD patients, such as reliable prediction 
of prognosis, TME landscape, estimation of clinical stage 
before cancer-related checkup, and benefits of multiple 
therapies can be predicted. This will help to determine 
the optimal treatment strategy. We are more inclined to 
recommend a combinational strategy including ICB therapy 
and chemotherapy for patients with high IRGPI scores. 
Meanwhile, our study needs further real-world research 
validation, which is the direction of our follow-up research.

Conclusions

In conclusion, we developed a biomarker with excellent 
prospects for clinical practice to help guide immunotherapy. 
IRGPI surpassed the limitations of traditional biomarkers 
and reduced bias of prognostic models through the use 
of immune-related hub DEGs, demonstrating powerful 
prognosis predictability. IRGPI can predict LUAD patient 

response to ICB therapy and traditional treatments, 
increasing the value of this biomarker in allowing for 
individualized treatment regimens. 
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Supplementary

Figure S1 Kaplan-Meier (K-M) survival curve of differential expression groups in 16 genes out of 50 immune-related hub genes.



© Journal of Thoracic Disease. All rights reserved.  https://dx.doi.org/10.21037/jtd-22-494

Figure S2 Oncoplot displaying the mutation status of 50 immune-related hub genes in The Cancer Genome Atlas (TCGA) cohort. Mutated 
genes are ordered by mutation numbers of the whole sample, the colors represent the mutation type. TMB, tumor mutation burden.

A B

Figure S3 The relationship between immune-related gene prognostic index (IRGPI) and tumor mutation burden and programmed death-
ligand 1 (PD-L1) expression. (A) Differential analysis of tumor mutation burden in 2 IRGPI subgroups. (B) Differential analysis of PD-L1 
expression in 2 IRGPI subgroups.
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Figure S4 Kaplan-Meier (K-M) survival analysis of immune cells with different distributions in 2 immune-related gene prognostic index 
(IRGPI) subgroups.
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Figure S5 Kaplan-Meier (K-M) survival analysis of immune-related functions with different expressions in 2 immune-related gene 
prognostic index (IRGPI) subgroups.
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Table S1 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in immune-related differentially expressed genes (DEGs)

ID Description GeneRatio BgRatio P value P. adjust

hsa04060 Cytokine-cytokine receptor interaction 89/394 295/8091 2.42E-48 6.04E-46

hsa04061 Viral protein interaction with cytokine and cytokine receptor 37/394 100/8091 1.09E-23 1.36E-21

hsa04080 Neuroactive ligand-receptor interaction 54/394 341/8091 4.54E-15 3.76E-13

hsa04062 Chemokine signaling pathway 37/394 192/8091 2.86E-13 1.78E-11

hsa04630 JAK-STAT signaling pathway 32/394 162/8091 6.27E-12 3.12E-10

hsa04657 IL-17 signaling pathway 21/394 94/8091 2.88E-09 1.20E-07

hsa05323 Rheumatoid arthritis 19/394 93/8091 7.74E-08 2.75E-06

hsa04610 Complement and coagulation cascades 18/394 85/8091 9.58E-08 2.98E-06

hsa05417 Lipid and atherosclerosis 29/394 215/8091 5.02E-07 1.39E-05

hsa04064 NF-kappa B signaling pathway 18/394 104/8091 2.24E-06 5.58E-05

hsa05171 Coronavirus disease - COVID-19 28/394 232/8091 7.32E-06 0.000165615

hsa04380 Osteoclast differentiation 19/394 128/8091 1.22E-05 0.000253638

hsa04010 MAPK signaling pathway 32/394 294/8091 1.44E-05 0.000276659

hsa04668 TNF signaling pathway 17/394 112/8091 2.61E-05 0.000458062

hsa04621 NOD-like receptor signaling pathway 23/394 184/8091 2.76E-05 0.000458062

hsa04151 PI3K-Akt signaling pathway 35/394 354/8091 4.52E-05 0.00070387

hsa04014 Ras signaling pathway 26/394 232/8091 5.70E-05 0.000834168

hsa04360 Axon guidance 22/394 182/8091 6.89E-05 0.000953554

hsa04015 Rap1 signaling pathway 24/394 210/8091 8.05E-05 0.001054898

hsa04933 AGE-RAGE signaling pathway in diabetic complications 15/394 100/8091 8.92E-05 0.001110638

hsa05144 Malaria 10/394 50/8091 0.000119246 0.001355588

hsa05169 Epstein-Barr virus infection 23/394 202/8091 0.000119771 0.001355588

hsa05218 Melanoma 12/394 72/8091 0.000162323 0.001710843

hsa04350 TGF-beta signaling pathway 14/394 94/8091 0.000164901 0.001710843

hsa05133 Pertussis 12/394 76/8091 0.00027485 0.002737505

hsa05418 Fluid shear stress and atherosclerosis 17/394 139/8091 0.000397396 0.003667049

hsa01521 EGFR tyrosine kinase inhibitor resistance 12/394 79/8091 0.000397632 0.003667049

hsa04620 Toll-like receptor signaling pathway 14/394 104/8091 0.000482954 0.004294839

hsa04650 Natural killer cell mediated cytotoxicity 16/394 131/8091 0.000593909 0.005099427

hsa04614 Renin-angiotensin system 6/394 23/8091 0.000638591 0.005300309

hsa04024 cAMP signaling pathway 22/394 219/8091 0.000963935 0.007742578

hsa05167 Kaposi sarcoma-associated herpesvirus infection 20/394 194/8091 0.001180665 0.00918705

hsa04020 Calcium signaling pathway 23/394 240/8091 0.001411756 0.010652344

hsa04924 Renin secretion 10/394 69/8091 0.001729835 0.0126685

hsa05150 Staphylococcus aureus infection 12/394 96/8091 0.002302274 0.016286295

hsa04066 HIF-1 signaling pathway 13/394 109/8091 0.002354645 0.016286295

hsa04012 ErbB signaling pathway 11/394 85/8091 0.002627403 0.017681713

hsa04145 Phagosome 16/394 152/8091 0.002891555 0.018947294

hsa05219 Bladder cancer 7/394 41/8091 0.003289964 0.021005154

hsa05146 Amoebiasis 12/394 102/8091 0.003831773 0.023852788

hsa04625 C-type lectin receptor signaling pathway 12/394 104/8091 0.004493435 0.027289397

hsa04270 Vascular smooth muscle contraction 14/394 133/8091 0.005171768 0.030364107

hsa04928 Parathyroid hormone synthesis, secretion and action 12/394 106/8091 0.005243601 0.030364107

hsa05161 Hepatitis B 16/394 162/8091 0.005423714 0.030693293

hsa05226 Gastric cancer 15/394 149/8091 0.005864391 0.032402127

hsa05134 Legionellosis 8/394 57/8091 0.005985935 0.032402127

hsa05207 Chemical carcinogenesis - receptor activation 19/394 212/8091 0.007361743 0.039001573

hsa05162 Measles 14/394 139/8091 0.007608567 0.039469439

hsa05223 Non-small cell lung cancer 9/394 72/8091 0.007875125 0.040018494

hsa05143 African trypanosomiasis 6/394 37/8091 0.00827002 0.0411847

hsa04640 Hematopoietic cell lineage 11/394 99/8091 0.008465363 0.041330888

hsa04672 Intestinal immune network for IgA production 7/394 49/8091 0.009008454 0.043136636

hsa05340 Primary immunodeficiency 6/394 38/8091 0.009428056 0.044294073

hsa04926 Relaxin signaling pathway 13/394 129/8091 0.009882914 0.045571216

hsa05214 Glioma 9/394 75/8091 0.010229837 0.045687772

hsa05166 Human T-cell leukemia virus 1 infection 19/394 219/8091 0.010275161 0.045687772
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Table S2 Univariate and multivariate cox regression analysis of immune-related gene prognostic index (IRGPI) and clinical factors [age, gender, 
tumor (T), metastasis (M), and lymph node (N)]

Variables
Univariate Cox analysis Multivariate Cox analysis

HR HR95L HR95H p-value HR HR95L HR95H P value

Age 1.004 0.985 1.023 0.7 1.013 0.994 1.033 0.195

Gender 1.078 0.749 1.55 0.687 0.92 0.632 1.339 0.662

T 1.631 1.314 2.025 <0.001 1.241 0.978 1.576 0.075

M 1.78 0.976 3.242 0.06 1.717 0.917 3.214 0.091

N 1.794 1.462 2.201 <0.001 1.623 1.29 2.041 <0.001

IRGPI 1.098 1.068 1.129 <0.001 1.078 1.046 1.111 <0.001

Table S3 Enriched pathways of immune-related differentially expressed genes (DEGs) in gene set enriched analysis (GSEA)

Description setSize enrichmentScore NES P value P. adjust

SYSTEMIC_LUPUS_ERYTHEMATOSUS 108 -0.700210169 -2.236714273 1.00E-10 1.84E-08

CELL_CYCLE 121 0.574703456 2.19402952 4.03E-07 3.70E-05

FOCAL_ADHESION 177 0.490064778 1.970109543 3.85E-06 0.000235869

PROTEASOME 42 0.693281363 2.206226372 5.07E-05 0.002332459

ECM_RECEPTOR_INTERACTION 71 0.592614811 2.049230703 6.34E-05 0.002332829

PATHWAYS_IN_CANCER 288 0.371385484 1.543639028 0.000209649 0.006429231

REGULATION_OF_ACTIN_CYTOSKELETON 175 0.412060839 1.665088775 0.000944204 0.024819067

SMALL_CELL_LUNG_CANCER 79 0.510180417 1.823864275 0.001846318 0.042465306

DNA_REPLICATION 35 0.626889593 1.913638336 0.002571949 0.052582077

ASTHMA 20 -0.730757742 -1.762992145 0.002863025 0.052679661

PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 19 -0.730437212 -1.727719996 0.003633549 0.06077936

PATHOGENIC_ESCHERICHIA_COLI_INFECTION 49 0.537429773 1.739493574 0.007362404 0.11289019

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 193 0.359432836 1.455147952 0.008425906 0.117256955

P53_SIGNALING_PATHWAY 65 0.485176919 1.677399639 0.008943621 0.117256955

AXON_GUIDANCE 111 0.422190879 1.593107835 0.009985658 0.117256955

ADIPOCYTOKINE_SIGNALING_PATHWAY 59 -0.539358508 -1.574700597 0.010196257 0.117256955

SPLICEOSOME 125 0.40663282 1.564202992 0.011162246 0.117806307

NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 104 0.418019857 1.53885823 0.011559573 0.117806307

MELANOMA 54 0.481120743 1.605560995 0.012317879 0.117806307

HOMOLOGOUS_RECOMBINATION 26 0.625166147 1.835475822 0.012805033 0.117806307

OOCYTE_MEIOSIS 94 0.448305493 1.635022164 0.014123624 0.12374985

ALPHA_LINOLENIC_ACID_METABOLISM 15 -0.724497581 -1.634535987 0.015027571 0.125685142

ARRHYTHMOGENIC_RIGHT_VENTRICULAR_
CARDIOMYOPATHY_ARVC

58 0.467601692 1.588697323 0.016563866 0.132510926

LINOLEIC_ACID_METABOLISM 17 -0.696664401 -1.597793528 0.018117388 0.138899978

ADHERENS_JUNCTION 69 0.441414319 1.540072764 0.024371308 0.179372827

PYRIMIDINE_METABOLISM 90 0.408774297 1.4872183 0.034616773 0.244980241

PPAR_SIGNALING_PATHWAY 55 -0.495789945 -1.422290124 0.03974359 0.262503671

PENTOSE_PHOSPHATE_PATHWAY 23 0.567769515 1.599608724 0.039946211 0.262503671

GLIOMA 58 0.42900605 1.45756693 0.044950999 0.281226567

FC_EPSILON_RI_SIGNALING_PATHWAY 69 -0.465332046 -1.390163002 0.045962733 0.281226567

RENAL_CELL_CARCINOMA 67 0.413786129 1.43035015 0.048223898 0.281226567


