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Introduction

Lung squamous cell carcinoma (LUSC) is one of the most 

common pathological types of non-small cell lung cancer 

(NSCLC) and remains the leading cause of tumor-related 
deaths globally (1,2). Unlike lung adenocarcinoma (LUAD), 
which has oncogenic driver changes, the treatment for 
LUSC made little progress and conventional platinum-based 

Original Article

Prognostic significance of PD-L1 expression and CD8+ TILs 
density for disease-free survival in surgically resected lung 
squamous cell carcinoma: a retrospective study

Xiaomin Cheng1,2^, Lei Wang1, Zhemin Zhang1

1Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, 

China; 2School of Medicine, Tongji University, Shanghai, China

Contributions: (I) Conception and design: X Cheng, Z Zhang; (II) Administrative support: Z Zhang; (III) Provision of study materials or patients: L 

Wang; (IV) Collection and assembly of data: X Cheng, L Wang; (V) Data analysis and interpretation: X Cheng; (VI) Manuscript writing: All authors; 

(VII) Final approval of manuscript: All authors.

Correspondence to: Professor Lei Wang; Professor Zhemin Zhang. Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic 

Cancer Institute, School of Medicine, Tongji University, No. 507, Zheng Min Road, Shanghai 200433, China.  

Email: wangleixxxn@163.com; zhemindoc@163.com.

Background: This study sought to depict the genomic landscape of patients with surgically resected lung 
squamous cell carcinoma (LUSC) and its relationship with clinical outcome indicators.
Methods: We retrospectively collected the clinical data of 180 patients from the electronic medical records 
and applied targeted sequencing and immunohistochemistry (IHC) to depict the genomic landscape, 
including the tumor mutation burden (TMB), programmed cell death-ligand 1 (PD-L1), and cluster of 
differentiation CD8+ tumor-infiltrating lymphocytes (CD8+ TILs). And comparative analysis and survival 
analysis of these parameters were conducted to find prognostic factors for clinical outcome.
Results: PD-L1+ tumor cells were observed in 75 (41.7%) of the patients, the median rate of CD8+ TILs 
was 11.5 [4, 24], and the median TMB was 9.4 (7.5–13.7) mutations per megabase (mut/Mb). Patched 
receptor 1 (PTCH1) gene mutation frequency was significantly associated with CD8+ TILs density (12% vs. 
1%; P=0.024). High PD-L1 expression and CD8+ TILs+ were significantly associated with longer disease-
free survival (DFS), and a further subgroup analysis revealed that both were significantly correlated with the 
DFS of stage I/II patients but not stage III patients.
Conclusions: The results suggest that only PTCH1 gene mutation frequency was correlated with CD8+ TILs 
density. Additionally, intense CD8+ TILs density and high PD-L1 expression were found to be associated with longer 
DFS. Our findings provide insights into the precise treatment strategy for surgically resected LUSC patients.

Keywords: CD8+ tumor-infiltrating lymphocytes (CD8+ TILs); programmed cell death-ligand 1 (PD-L1); lung 

squamous cell carcinoma (LUSC); immunotherapy

Submitted Apr 14, 2022. Accepted for publication Jun 09, 2022.

doi: 10.21037/jtd-22-630

View this article at: https://dx.doi.org/10.21037/jtd-22-630

2234

 
^ ORCID: 0000-0002-0352-3961.

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-22-630


Journal of Thoracic Disease, Vol 14, No 6 June 2022 2225

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(6):2224-2234 | https://dx.doi.org/10.21037/jtd-22-630

chemotherapy remains the gold standard treatment (3-5). 
The gold standard for early LUSC treatment is lobectomy 
with peripheral lymph node dissection (3). However, the 
recurrence rate within 5 years after standard treatment is 
still more than 20% (5). Although adjuvant chemotherapy 
only provided a limited survival benefit (6), complete 
resection surgery combined with adjuvant chemotherapy 
was the optimal treatment for prolonging survival. Recently, 
neoadjuvant and adjuvant using immune checkpoint 
inhibitors (ICIs) has shown promising results. ICIs targeting 
programmed cell death protein 1 (PD-1) and its ligand 
(PD-L1), compared to conventional chemotherapy, have 
prolonged survival, and the treatment of advanced lung 
cancer has been brought into a new era (7-10). A preliminary 
study (11) found that neoadjuvant nivolumab caused 45% of 
patients to have primary pathological response in early lung 
cancer. 

Tumor mutation burden (TMB) was found having 
no relationship with pathologic response of neoadjuvant 
Atezolizumab in the LCM3 study (12), while the response 
could also be found in patients with negative PD-L1 
expression. Multiple retrospective studies (13-15) suggest 
that the disease-free survival (DFS) may be related to the 
differentiation and abundance of various immune cells in 
tumor tissues of LUSC patients. tumor-node-metastasis 
(TNM) stages (16,17) can predict the prognosis of LUSC, 
but its accuracy remains unclear. Previous studies (12,18,19) 
have shown that age, gender, smoking location and so 
on have certain limitations in predicting DFS of early 
stage LUSC after surgery. Therefore, it is necessary to 
comprehensively delineate the genomic landscape and 
immune pattern of lung cancer patients and elucidate their 
correlations to illuminate the phenotypes of lung cancer 
patients that could potentially benefit from immunotherapy, 
which could facilitate the development of neoadjuvant 
immunotherapy strategies for NSCLC patients. Several 
studies have reported data on LUAD, though, situations of 
LUSC remains largely unknown currently (20,21).

In this study, we reviewed 180 patients underwent 
completely resection of LUSC without any history of 
immunotherapy and analyzed the correlations among 
the TMB, PD-L1 expression, cluster of differentiation 8+ 
tumor-infiltrating lymphocyte (CD8+ TILs) density, and 
other clinical parameters with the genomic landscape and 
survival. We present the following article in accordance 
with the REMARK reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-22-630/rc).

Methods

Sample collection

Retrospectively, we reviewed the data of 180 patients with 
histologically confirmed LUSC that had undergone surgical 
resection of the lung (lobectomy or pulmonectomy), 
who had not previously received any immunotherapy, at 
the Shanghai Pulmonary Hospital from 2013 to 2016. 
Samples with insufficient or poor quality, missing baseline 
clinicopathological features, mixed histology, or incomplete 
follow-up data were all excluded. We confirmed the 
histological type of each case in the medical electronic 
records. Corresponding formalin-fixed and paraffin-
embedded (FFPE) tissues were used for whole-exome 
sequencing (WES) and immunohistochemistry (IHC) 
staining. Tissues were used for WES and IHC. Patients’ 
baseline characteristics were collected, including age, sex, 
smoking history, Eastern Cooperative Oncology Group 
performance status (ECOG PS), tumor maximum diameter, 
lymph node status and stage, pleural invasion status, vascular 
invasion status, tumor TNM stage, differentiation degree, 
chemotherapy regimens and tumor location classification, 
which were used to test whether the baseline features were 
biased. We also collected the data of disease free survival 
(DFS) and overall survival (OS) to analyse the association 
between biomarkers and prognosis. Survival status and 
data were followed through telephone and the follow-up 
time ended on January 31, 2022. Stage TNM was defined 
with the eighth UICC/AJCC TNM classification (22) 
and radiographic progression disease (PD) were defined 
according to the Response Evaluation Criteria in Solid 
Tumors (RECIST), version 1.1 (23). DFS refers to the 
time since initial surgical resection until recurrence. OS 
is calculated from the date of diagnosis of LUSC to death 
from any cause or to censoring at the last follow-up visit. 
This study was conducted in accordance with the provisions 
of the Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Committee of Shanghai Pulmonary 
Hospital (No. K20-288). Individual consent for this 
retrospective analysis was waived.

PD-L1 expression

Anti-human PD-L1 antibody (#13684, clone E1L3N, 
Cell Signaling Technology, Danvers, MA, diluted 1:200) 
was used to determine PD-L1 expression in accordance 
with the manufacturer’s recommendations. PD-L1 
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expression was defined as the percentage of tumor cells 
showing membranous immunoreactivity (in the central or 
marginal tumor region). The samples were also retested 
using another antibody assay (24) (clone SP142, Spring 
Bioscience, Ventana, Tucson, AZ, diluted 1:100). The cutoff 
value for dichotomizing PD-L1 positivity or negativity 
(PD-L1+/−) was 1%. Sections of human placenta tissues 
and the breast cancer cell line MCF-7 were employed as the 
positive and negative controls for the PD-L1 IHC staining, 
respectively.

CD8+ TILs density

The CD8+ TILs density was assessed using a mouse anti-
CD8 monoclonal antibody (clone C8144B, DAKO). These 
lymphocytes contain the CD8 cytoplasmic marker and 
infiltrate within tumor regions (central or marginal) were 
defined as CD8+ TILs. Similar to the approach adopted by 
previous studies (25,26), we identified positive/negative CD8+ 
TILs density (CD8+ TILs+/−) with a cutoff value of 0%.

Targeted sequencing and TMB calculation

All Genomic deoxyribonucleic acid (DNA) samples included 
in this study were extracted using the Qiagen DNeasy 
FFPE DNA Kit (Qiagen, Hilden, Germany) according to 
the manufacturer’s instructions, and a DNA library was 
constructed. The matched peripheral blood leukocytes were 
used as the source for germline DNA control. The libraries 
were prepared using a custom capture panel (Genecast, 
Beijing, China) that covers the genes associated with cancer 
diagnosis and prognosis. Afterward, Illumina Novaseq 6000 
sequencing systems were used to sequence the captured 
DNA fragments. The average unique sequence coverage 
was at least 900× for lymphocytes and 2,000× for tumor 
tissue samples. Mutect2 was used to detect single nucleotide 
variants and small indels.

In the mutation calling procedure, each individual’s 
germline mutations were filtered out during tumor-
normal paired sample calling. There was a requirement for  
≥20 reads of sequencing depth in each somatic mutation 
region, and ≥5 reads were required to support the variant 
call. Conversely, the number of reads supporting the variant 
in the germline data had to be <5, and the sequencing 
depth had to be ≥20. The variant data were annotated using 
ANNOVAR (27).

We then filtered out all common germline mutations 
with a population frequency of ≥1% using the gnomAD, 

ExAC, and esp6500 databases. And in order to ensure 
the data was reliable, common variants and potential 
background noise from the platform were also excluded. 
An in-house blacklist from Genecast was used to filter 
the sequencing-specific errors and background noises. 
Variants were converted to MAF files using vcf2maf (https://
github.com/mskcc/vcf2maf). The clinical evidence levels 
of mutations were annotated with OncoKB MafAnnotator 
(https://github.com/oncokb/oncokb-annotator).

The TMB was defined as the number of somatic coding 
mutations per megabase of genome examined, which 
included single-base substitution and indels. And we 
only considered nonsynonymous mutations and introns 
(synonymous mutations that do not affect amino acid 
sequences) were excluded. Specifically, mutations belong to 
the following ENSEMBL’s items: “frame shift del”, “frame 
shift ins”, “splice site”, “translation start site”, “nonsense 
mutation”, “nonstop mutation”, “in frame del”, “in frame 
ins”, and “missense mutation”, which were selected 
following the instructions of maftools (28).

Statistical analysis

The patient characteristics are presented using descriptive 
statistics. The continuous variables are presented as the 
median and interquartile range, and the categorical data 
are presented as the count and frequency. The comparative 
analysis of the continuous and categorical variables between 
the groups was performed with the Wilcoxon rank-sum 
test for two independent samples and Fisher’s exact test, 
respectively, using the R package ggpubr. The Kaplan-
Meier method was used for the survival analysis, and log-
rank test was used to test the significance of differences 
between survival curves. The univariable and multivariable 
survival analyses were performed with Cox’s proportional 
hazards model to generate estimates of the hazard ratios 
(HRs) and the corresponding 95% confidence intervals (CIs) 
using the R package survminer. The Spearman correlation 
matrix was calculated and plotted using the R package 
corrplot. P<0.05 was considered significant.

Results

Genomic landscape of early stage LUSC

In this study, a total of 180 patients were enrolled, and their 
baseline clinicopathological characteristics are set out in 
Table 1. Patients had a median age of 63 years (57–68 years). 
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Table 1 Baseline clinicopathological characteristics of the included patients (n=180)

Characteristics Total PD-L1+ (E1L3N_TC) PD-L1– (E1L3N_TC) P value

Age, n (%) 0.09

<65 113 (62.8) 53 (70.7) 60 (57.1)

≥65 67 (37.2) 22 (29.3) 45 (42.9)

Sex, n (%) 0.53

Female 10 (5.6) 3 (4.0) 7 (6.7)

Male 170 (94.4) 72 (96.0) 98 (93.3)

ECOG PS, n (%) 0.06

0 132 (73.3) 49 (65.3) 83 (79.0)

1 48 (26.7) 26 (34.7) 22 (21.0)

Smoking, n (%) 1.00

Never 55 (30.6) 23 (30.7) 32 (30.5)

Ever 125 (69.4) 52 (69.3) 73 (69.5)

TNM stage, n (%) 0.86

I/II 135 (75.0) 57 (76.0) 78 (74.3)

III 45 (25.0) 18 (24.0) 27 (25.7)

Lymph node invasion, n (%) 0.14

No 141 (78.3) 63 (84.0) 78 (74.3)

Yes 39 (21.7) 12 (16.0) 27 (25.7)

Lymph node stage, n (%) 0.27

0 141 (78.3) 63 (84.0) 78 (74.3)

1 25 (13.9) 7 (9.3) 18 (17.1)

2 14 (7.8) 5 (6.7) 9 (8.6)

Differentiation, n (%) 0.18

Low 51 (28.3) 19 (25.3) 32 (30.5)

Intermediate 119 (66.1) 49 (65.3) 70 (66.7)

High 10 (5.6) 7 (9.3) 3 (2.9)

Maximum diameter 4 [2.9–5] 3.5 [2.8–5] 4 [3–5] 0.52

Pleural invasion, n (%) 0.16

No 166 (92.2) 72 (96.0) 94 (89.5)

Yes 14 (7.8) 3 (4.0) 11 (10.5)

Venous invasion, n (%) 0.72

0 172 (95.6) 71 (94.7) 101 (96.2)

1 8 (4.4) 4 (5.3) 4 (3.8)

CD8
+
 TILs (%) 11.5 (4, 24) 17 (5, 30) 9 (3.5, 21) 0.002

SP142_IC (%) 0 (0–0) 0 (0–0) 0 (0–0) 0.017

SP142_TC (%) 0 (0–0) 0 (0–8) 0 (0–0) <0.001

TMB 9.4 (7.5–13.7) 9.4 (7.6–13.1) 9.4 (7.5–14.9) 0.69

Continuous variables are shown as median and interquartile range, and categorical variables are shown with number and frequency. 
ECOG PS, Eastern Cooperative Oncology Group performance status; TNM stage, tumor-node-metastasis stage; TILs, tumor-infiltrating 
lymphocytes; IC, immune cell; TC, tumor cell; TMB, tumor mutation burden; PD-L1, programmed cell death-ligand 1.
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Of the patients, 170 (94.4%) were male, and 132 (73.3%) 
had an ECOG PS of 0. Additionally, 135 (75.0%) patients 
were confirmed to have TNM stage I/II, and most patients 
(n=125, 69.4%) had a smoking history. Using a cutoff value 
of 1%, PD-L1+ tumor cells (E1L3N_TC) were observed in 
75 (41.7%) patients; a figure higher than that reported for 
Caucasian LUSC populations (29). In the CHOICE study 
(which included both Chinese LUSC and LUAD patients), 
the PD-L1 positive rate was 23.1% using a H-score ≥50, 
or 63.9% using >1% positivity in tumor cells as a cutoff; 
figures consistent with those reported in research on 
Western populations (30,31). As a control, the clone SP142 
PD-L1 antibody was used, and the rate of PD-L1+ immune 
cells (SP142_IC) was 0 [0, 0] in both groups (PD-L1+/–), 
and the rate of PD-L1+ tumor cells (SP142_TC) was 0 [0, 8] 
in the PD-L1+ group (E1L3N_TC) and 0 [0, 0] in the PD-
L1– group (E1L3N_TC). The median TMB of both the 
PD-L1+ group (E1L3N_TC) and PD-L1– group (E1L3N_
TC) were 9.4 mut/Mb, and the median rate of the CD8+ 

TILs was 17 [5, 30] in the PD-L1+ group (E1L3N_TC) 
and 9 [3.5, 21] in the PD-L1– group (E1L3N_TC).

All of the 180 samples were sequenced, and mutations 
with clinical evidence were identified using the OncoKB 
database. Altered genes were identified in 152 (84.4%) of 
the samples (see Figure 1A) and the top 8 altered genes (no 
less than 5%) were tumor suppressor p53 (TP53), cyclin-
dependent kinase inhibitor 2A (CDKN2A), F-box with 
7 tandem WD40 (FBXW7), phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), 
phosphatase and tensin homolog (PTEN), BReast-CAncer 
susceptibility gene 2 (BRCA2), notch homolog protein 1 
(NOTCH1), and Lysine demethylase 6A (KDM6A). This 
was similar to the significantly mutated genes reported 
in The Cancer Genome Atlas (TCGA) database, which 
identified 10 genes [i.e., TP53, CDKN2A, PTEN, PIK3CA, 
Kelch-1ike ECH- associated protein 1 (KEAP1), Mixed 
Lineage Leukemia 2 (MLL2), Human leukocyte antigen 
A (HLA-A), Nuclear factor erythroid 2-related factor 2 
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(NFE2L2), NOTCH1, and Retinoblastomal (RB1)] with a 
false discovery rate Q value <0.1 (31). Additionally, 14 genes 
exhibited significant enrichment for the somatic mutation in 
Caucasians with LUSC (Kadara et al. cohort): TP53, MLL2, 
PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, 
CALCR, GRM8, FBXW7, RB1, and CDKN2A (32). In our 
cohort, the TP53 mutation was most frequently found in 
68% of all cases (TCGA: 81%; Kadara et al. cohort: 60%) 
followed by CDKN2A in 21% of all cases. The mutation rates 
of TP53 (64% vs. 75%; P=0.145), CDKN2A (16% vs. 27%; 
P=0.095), BRCA2 (8% vs. 4%; P=0.365), FBXW7 (8% vs. 
8%; P=1.000), PIK3CA (7% vs. 8%; P=0.776), KDM6A (3% 
vs. 8%; P=0.167) were comparable between the PD-L1+ and 
PD-L1– patients (see Figure 1B). Similarly, gene alterations, 
including TP53 (59% vs. 69%; P=0.416), BRCA2 (18% vs. 
5%; P=0.072), PIK3CA (12% vs. 7%; P=0.353), PTCH1 (12% 
vs. 1%; P=0.024), PTEN (12% vs. 6%; P=0.316), CDKN2A 
(6% vs. 22%; P=0.203), FBXW7 (6% vs. 8%; P=1.000), and 
NOTCH1 (0% vs. 6%; P=1.000), were comparable between 

the CD8+ TILs+ group and CD8+ TILs− group, and only 
the gene mutation frequency of PTCH1 was significantly 
different between the two groups (see Figure 1C), and the 
contingency coefficient of PTCH1 between CD8+ TILs+ 
group and CD8+ TILs- group was 0.247, P=0.001. However, 
the gene variation rate did not differ significantly between the 
two groups (TNM stages I/II and III), including TP53 (69% vs. 
67%; P=0.854), CDKN2A (18% vs. 29%; P=0.136), PIK3CA (8% 
vs. 4%; P=0.523), FBXW7 (8% vs. 7%; P=1.000), NOTCH1 (7% 
vs. 2%; P=0.455), BRCA2 (6% vs. 7%; P=1.000), and PTEN (6% 
vs. 9%; P=0.498; see Figure 1D).

Effects of clinicopathological characteristics on survival

The univariate and multivariate analyses results are set 
out in Table 2. In the univariate analysis, TNM stage (HR 
=1.690; P=0.005), pleural invasion (HR =1.838; P=0.037), 
CD8+ TILs (HR =0.400; P<0.001), and PD-L1 (HR 
=0.615; P=0.005) were significantly associated with DFS. 

Table 2 Univariate and multivariate analyses of clinicopathological characteristics for DFS

Variable
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age (≥65 vs. <65 y) 1.166 (0.834, 1.632) 0.369

Sex (male vs. female) 0.891 (0.454, 1.751) 0.738

ECOG PS (1 vs. 0) 1.103 (0.766, 1.588) 0.599

Smoking (ever vs. never) 1.036 (0.729, 1.474) 0.842

TNM stage (III vs. I/II) 1.690 (1.167, 2.446) 0.005* 1.719 (1.181, 2.504) 0.005*

Lymph node invasion (yes vs. no) 1.385 (0.934, 2.053) 0.105

Lymph node stage (1 vs. 0) 1.464 (0.909, 2.357) 0.245

Lymph node stage (2 vs. 0) 1.270 (0.700, 2.306) 0.245

Differentiation (intermediate vs. low) 1.060 (0.733, 1.532) 0.817

Differentiation (high vs. low) 1.276 (0.596, 2.732) 0.817

Maximum diameter (≥4 vs. <4) 1.068 (0.979, 1.164) 0.140

Pleural invasion (yes vs. no) 1.838 (1.035, 3.261) 0.037* 1.751 (0.972, 3.155) 0.062

Venous invasion (yes vs. no) 1.883 (0.877, 4.044) 0.104

CD8
+
 TILs (>0 vs. 0) 0.400 (0.238, 0.6724) <0.001* 0.433 (0.255, 0.735) 0.002*

TMB (≥9.4 vs. <9.4) 1.253 (0.903, 1.738) 0.177

PD-L1 (≥1% vs. <1%) 0.615 (0.438, 0.864) 0.005* 0.700 (0.493, 0.993) 0.046*

Variables with a P value <0.05 in the univariate models were analyzed in the multivariate analysis model. *, P<0.05. DFS, disease-free 
survival; ECOG PS, Eastern Cooperative Oncology Group performance status; TNM stage, tumor-node-metastasis stage; CD8+, cluster of 
differentiation 8+; TILs, tumor-infiltrating lymphocytes; TMB, tumor mutation burden; PD-L1, programmed cell death-ligand 1.
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The multivariate analysis results showed that TNM stage (HR 
=1.719; P=0.005) was an independent risk factor and both 
CD8+ TILs (HR =0.433, P=0.002) and PD-L1 (HR =0.700, 
P=0.046) were independent protective factors for longer DFS.

Next, we conducted a survival analysis. The median 
follow-up time was 105 months, and the median DFS was 
33.1 months (95% CI: 28.227, 37.973), while the median 
OS didn’t reach, which maybe because 75% of the patients 
were stage I/II. Therefore, only DFS was examined in the 
survival analysis. As Figure 2A showed, a correlation matrix 
analysis and cluster analysis of the clinical characteristics 
were performed. The Kaplan-Meier method was used 
for the continuous variables that were grouped by the 
first quartile, median, and third quartile to determine the 

best cutoff value. The results indicated that patients with 
different TMB levels (see Figure 2B), maximum diameters 
(see Figure 2C), differentiation degrees (see Figure 2D), and 
venous invasion statuses (Figure 2E) had comparable DFS. 
Notably, pleural invasion (P=0.035) status was significantly 
correlated with a poorer DFS (see Figure 2F), and high PD-
L1 expression on tumor cells tested by the clone E1L3N 
PD-L1 antibody (E1L3N_TC) (HR =0.615, P=0.0046; 
see Figure 3A) and CD8+ TILs+ (CD8_IC) (HR =0.400, 
P=0.0014; see Figure 3B) were significantly associated with 
longer DFS. A further subgroup analysis revealed that both 
E1L3N_TC (see Figure 3C) and CD8_IC (see Figure 3D) 
were significantly correlated with the DFS of stage I/II 
patients, but not the DFS of stage III patients.
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Discussion

Lung cancer is one of the most pathogenic and fatal cancer 
diseases in the world (33), and LUSC is a major pathological 
subtype of lung cancer. Surgery is the standard treatment 
for early stage LUSC; however, its recurrence rate remains 
high after surgery. In the last decade, immunotherapy, 
especially ICIs that target the PD-1/PD-L1 axis, has 
brought the treatment strategies of advanced lung cancer 
into a new era. Exploring the relationship between 
immune patterns and prognosis is of great significance for 
neoadjuvant or adjuvant immunotherapy in patients with 
early LUSC.

We examined 180 samples using targeted sequencing, 
and the important somatic mutations we reported 
are consistent with those reported in previous studies 
(31,32,34,35). Understanding the interaction between the 
genetic landscape, TME patterns, and clinicopathological 
parameters may help promote the development of treatment 
for early stage or advanced non-small cell lung cancer 
(NSCLC). PTCH1 gene suppressed the Hedgehog signaling 

pathway, which plays an important role in cell embryonic 
development, by inhibiting a key signal transducer 
Smoothened receptor (SMO) (36,37). Previous studies have 
shown that PTCH1 inhibits the cell cycle and plays a critical 
role in cancer progression and metastasis (38). Wan et al. 
found that the low expression of PTCH1 may promote the 
progression of NSCLC (39). Our results of the sequencing 
and IHC staining analysis revealed that only PTCH1 gene 
mutation frequency was significantly lower in patients 
with CD8+ TILs+. And the results of the Kaplan-Meier 
survival analysis confirmed that higher CD8 infiltration 
were significantly correlated with longer DFS. These results 
suggest that lower PTCH1 gene mutation and CD8+TILs+ 
may be beneficial background for LUSC patients to have 
better prognosis. 

Higher PD-L1 expression was also significantly with 
longer DFS and the DFS data was only comparable 
between high and low TMB groups. Similar to previous 
reports (40,41), intense lymphocytic infiltration and lower 
TMB were significantly associated with better DFS. Jiang 
et al. (42) reported that TMB combined with CD8+ TILs 
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and/or PD-L1 could successfully stratify the prognosis of 
surgically resected LUSC patients and found a significant 
association between CD8+ TILs density and PD-L1 
expression. In our study, the multivariate analysis suggested 
that stage was an independent risk factor for DFS. Thus, 
we conducted a subgroup analysis to examine the effects 
of CD8+ TILs and PD-L1 expression on DFS based on 
different TNM stages, and found that the two factors were 
significantly correlated with the DFS of stage I/II patients 
but not the DFS of stage III patients. Given these results, 
a comprehensive analysis of these biomarkers in predicting 
the prognosis of early LUSC patients is warranted.

In summary, this study explored the gene molecular 
characteristics of patients with surgically resected LUSC 
who had not undergone immunotherapy previously and its 
association with clinicopathological parameters. The results 
suggested that only PTCH1 gene mutation frequency was 
correlated with CD8+ TILs density. Intense CD8+ TILs 
density and high PD-L1 expression were associated with 
a longer DFS. Our findings provide insights into the 
precision treatment of early LUSC. These preliminary 
results need to be further validated, and the mechanisms 
need to be further explored with an enlarged sample size.
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