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Original Article

A novel system for analyzing indocyanine green (ICG) 
fluorescence spectra enables deeper lung tumor localization 
during thoracoscopic surgery
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Background: Palpation of tumors during thoracoscopic surgery remains difficult, and identification 
of deep-seated tumors may be impossible. This preclinical study investigated the usefulness of a novel 
indocyanine green (ICG) fluorescence spectroscopy system for tumor localization.
Methods: ICG was diluted to 5.0×10−2 mg/mL in fetal bovine serum (FBS) and mixed with silicone resin 
to prepare pseudo-tumors. Sponges of different densities and a porcine lung were placed on top of the 
pseudo-tumors, which were examined using a novel fluorescence spectroscopy system and a near-infrared 
(NIR) camera. Spectra were measured for different sponge and lung thicknesses, and the lung spectra were 
measured during both inflation and deflation.
Results: The fluorescence spectroscopy system was able to identify tumors at depths ≥15 mm, while the 
NIR system was not. The spectroscopy system also detected tumors at greater depths when the density of 
the intervening material was lower. Depending on the density and thickness of the intervening material, the 
system could detect spectra as deep as 40 mm for sponges and 30 mm for lungs.
Conclusions: This new fluorescence spectroscopy system can be used to identify lung tumors up to a depth 
of 30 mm in experiments using pseudo-tumors and a porcine lung, which may aid in tumor identification 
during thoracoscopic surgery.
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Introduction

In recent years, widespread implementation of computed 

tomography (CT) screening has enabled the detection of 

small lung cancer lesions at an early stage, and rates of 
surgical treatment among patients with early-stage lung 
cancer have increased (1,2). Partial lung resection is often 
the treatment of choice for small lesions with ground-glass 
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opacities. Previous studies have also reported prolonged 
survival after resection of metastatic lung tumors (3,4), and 
partial resection is often the treatment of choice in these 
cases.

In addition, recent advancements in video-assisted 
thoracoscopic surgery (VATS), robot-assisted thoracic 
surgery (RATS) (5,6), and uniport VATS (7,8) have 
popularized these methods as alternatives to conventional 
multiport VATS. Compared to thoracotomy, VATS results 
in a smaller wound and is less invasive, making it safer 
than open thoracotomy for older adults and high-risk 
patients (9). However, unlike a thoracotomy, VATS may 
not allow for direct palpation of the lesion depending on 
its diameter, morphology, and depth relative to the pleural 
wall. Therefore, such tumors are even more challenging to 
palpate during robotic surgery and uniport VATS. Thus, 
the development and implementation of methods for the 
reliable identification of tumors will play a key role in 
improving the quality of thoracoscopic surgery.

Various methods for tumor localization (identification) 
during thoracoscopic surgery have been proposed. 
Preoperative methods include (I) CT-guided percutaneous 
assisted localization, (II) transbronchial-guided assisted 
localization, and (III) 3D-CT-guided assisted localization (10).  
Recently, the virtual assisted lung mapping (VAL-
MAP) method has been applied in clinical settings (11). 
Intraoperative marking methods include the intraoperative 
stamping method, and intraoperative CT-guided assisted 
localization (12,13). However, these methods are all 
associated with an array of complications, such as dye 
diffusion and implant displacement, adverse events 
(pleuralgia, pneumothorax, air embolism, etc.), the 
uncertainty of marking, postponement of surgery due to 
post-procedural fever, hypoxemia, and radiation exposure 
during the procedure, and the need for trans-bronchial lung 
biopsies. Several studies have also highlighted concerns 
regarding the necessity of these techniques, the limited 
interval between marking and surgery, and the cost of these 
complex procedures (10,11,14).

Given the difficulty in tumor localization during 
thoracoscopic surgery and the various complications 
associated with available methods, developing a simple and 
minimally invasive procedure that can be performed at any 
facility is urgently required. Therefore, the present study 
aimed to investigate the utility of a novel, non-invasive 
method that utilizes the fluorescent dye indocyanine 
green (ICG) and a probe to measure the spectrum of near-
infrared (NIR) light emitted by ICG in tumor tissues. 

Pseudo-tumors combined with a sponge and porcine lungs 
were utilized in this preclinical study based on the methods 
used in previous studies attempting percutaneous or 
transbronchial tumor localization using ICG (15-17).

Importantly, although intravenous methods are often 
used during thoracic surgery to evaluate demarcation lines 
during area resection (18), the intravenous injection method 
of ICG for identifying tumors has only been investigated in 
clinical trials and has not been examined in clinical practice 
(19,20). In addition, Percutaneous or transbronchial ICG 
marking, which is currently performed in a limited number 
of centers, is a highly specialized procedure associated with 
the issues of uncertainty, invasiveness, and complications. 
Therefore, while the proposed spectral measurement system 
is intended for intravenous use, it may also aid in addressing 
issues related to current ICG-based marking methods.

Conventional NIR cameras can only capture ICG 
fluorescence with the naked eye; however, this new innovative 
system captures ICG fluorescence as a wavelength, enabling 
the identification of tumors at a greater depth.

Therefore ,  we hypothes ized that  this  spectra l 
measurement device would be able to capture fluorescence 
wavelengths deeper than conventional NIR cameras and 
conducted experiments to clarify this hypothesis. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-22-244/rc).

Methods

A novel system for the measurement of fluorescence spectra

We used the NIR fluorescence spectrum system (Advantest 
Corporation, Tokyo) described by Ebihara et al. (21). A 
laser diode (wavelength: 785 nm, maximum output power: 
5 mW) excitation source was focused onto the center of 
a Y-shaped quartz coaxial fiber. A notch filter excluded 
reflected laser signals except for the fluorescence signal. 
A photonic multichannel analyzer (PMA) detected the 
isolated fluorescence signal. The NIR fluorescence from 
the ICG samples prepared in this study was collected 
through the outside of the coaxial fiber and measured 
using spectroscopy. The central wavelength of the 
fluorescence is approximately 840 nm, which is close to 
the excitation wavelength of 785 nm. Therefore, a narrow-
band notch filter was installed in front of the input slit of 
the spectrometer to cut the signal off from the excitation 
light. Details regarding this system have been published 
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previously (21-23). The probe (diameter =10 mm, length 
=350 mm) can be inserted through a 12 mm port, requiring 
only a small incision, and is long enough to explore a wide 
area within the thoracic cavity. Furthermore, it is sterilizable 
and can be used repeatedly (Figure 1). The monitor displays 
images from the ICG camera on the left and the image 
from spectral measurement on the right side (Video 1).

NIR camera

We used a Hyper Eye Medical System Handy camera 
(MIZUHO, Tokyo, Japan) for NIR imaging. This camera 
emits light in the range of 760–780 nm, which triggers ICG 
to emit NIR light.

Adjustment of ICG concentration

ICG is a relatively hydrophobic tricarbocyanine dye with 
a molecular weight of 751.4 Da, an absorption peak at 
780 nm, and an emission peak at 830 nm. When ICG is 
administered intravascularly, it binds to serum α-lipoprotein, 
β-lipoprotein, and albumin almost immediately, with 
negligible leakage into the interstitium (24). Therefore, 
ICG was mixed with fetal bovine serum (FBS) (Gibco, 
USA), and the concentration of ICG was adjusted to 
5.0×10−2 mg/mL in reference to a previous study (21).

Pseudo-tumor preparation

Pseudo-tumors were prepared using commercially available 
silicone resin (Konishi Co., Ltd., Osaka, Japan). A 20 mm, 
round pseudo-tumor was created using 2.0 mL of silicone 
resin. Studies have indicated that tumor accumulation of 
intravenously administered ICG occurs 24 hours or more 
after delivery (25,26). Therefore, assuming intravenous 
administration of ICG, 1.0 mL of ICG (5.0×10−2 mg/mL) 
adjusted at the above concentration was quickly mixed with 
the pseudo-tumor. A negative control was prepared in the 
same way but combined with 1.0 mL of FBS rather than the 
ICG solution (Figure 2).

Sponge preparation

The lung tissue density in vivo depends on whether the 
lung is collapsed or expanded. To mimic this variability, 
we cut commercially available polyurethane foam sponges 
with different tissue densities (high- and low-density) to 
appropriate sizes for the experiments (Figure 3A).

Tracheal and lung blocks

Porcine tracheal and lung blocks were purchased from 
Tokyo Shibaura Organ Co. The lungs were frozen and 
thawed several hours before use.

Figure 1 Novel system for the analysis of NIR spectra. NIR, near-
infrared.

Video 1 Spectrum measurement device monitor. Images from 
the indocyanine green (ICG) camera and spectrometer are 
displayed on the left and right sides of the monitor, respectively. 
First, a compound without ICG was irradiated with an excitation 
light source, followed by a compound containing ICG, and the 
luminescence was observed. With the ICG-containing substance, 
the wavelength increase in the near-infrared (NIR) light 
wavelength range can be observed as luminescence by the naked 
eye, the ICG camera, and by measurement of the spectrum.
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Ethical considerations

The heart and both lungs were taken en bloc from freshly 
slaughtered porcine. Since the tissues were obtained only 
from animals slaughtered for nutritional purposes, ethical 
approval from the relevant authorities for animal studies 
was not required.

Dry lab experiments using sponges

First, we confirmed that ICG-mixed pseudo-tumors and 
negative control pseudo-tumors could be detected without 
intervening objects using a spectrophotometer and an ICG 

camera (Figure 2). The pseudo-tumors were wrapped in 
plastic to prevent ICG from adhering to the surrounding 
area. The high- and low-density sponges were sliced to 
the following thickness: 15, 25, and 30 mm. An additional  
40 mm-thick slice of the low-density sponge was also 
prepared (Figure 3B). The sponges were placed on top of the 
pseudo-tumor, and the spectra were measured by pressing 
the spectroscope probe on top of the sponge. The probe 
of the NIR was not fixed; when it was difficult to confirm 
the intensity of the ICG emission, the distance between the 
target and probe was varied to assess whether the emission 
was indeed not measurable.

Wet lab experiments using porcine lungs (ex vivo)

Similarly, the plastic-wrapped ICG-mixed pseudo-tumors 
were covered with deflated porcine lungs. The lungs were 
not sliced, but lung thickness was measured at different sites. 
The probe of the spectrometer was placed in contact with 
portions that were 10, 15, and 20 mm-thick (Figure 4A).  
Then, with the main bronchus clamped, the lungs were 
inflated, and measurements were taken at 20, 25, and  
30 mm-thick portions. Spectra were measured before and 
after inflating the lungs (Figure 4B). As in the dry lab 
experiment, the NIR camera was placed at various distances.

Evaluation of experiments

All NIR camera images and spectral system wavelengths 
were evaluated by three surgeons who were aware of the 
nature of the pseudo-tumors they were assessing.

Statistical analysis

When the spectral probe was applied to sponges or porcine 
lungs of various thicknesses, the values when the system 
responded within the peak wavelength range for ICG 
fluorescence (approximately 805–845 nm) were recorded 
as continuous variables. Mann-Whitney U-tests were used 
to compare values between groups. Values were compared 
between the high- and low-density sponges for each sponge 
thickness. Values for inflated and deflated porcine lungs 
were analyzed separately. Statistical analysis was performed 
using JMP Pro 16® (SAS Institute, Cary, NC, USA). All 
P values were based on a two-tailed test, and statistical 
significance was set at P<0.05.

Silicone + FBS Silicone + ICG

White light

ICG
Near-infrared

Spectrum
system

silicone + FBS silicone + ICG

White light

ICG
Near-infrared

Spectrum
system

Figure 2 Comparison of pseudo-tumors made of silicon resin and 
FBS alone (negative control) or mixed with ICG (5.0×10−2 mg/mL)  
diluted to the optimal concentration in FBS. Pseudo-tumors 
mixed with FBS alone exhibited no spectral response, while ICG-
mixed pseudo-tumors exhibited spectral accumulation at NIR 
wavelengths. FBS, fetal bovine serum; ICG, indocyanine green; 
NIR, near-infrared.
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Results

Dry lab experiments

Before the pseudo-tumors solidified, they were quickly 
mixed with FBS or ICG adjusted for concentration in 
a well-plate and allowed to stand in a light-shielded 

condition until solidification. Then, the ICG camera and 
spectroscopy system were applied to the negative control 
and ICG-mixed pseudo-tumors. The control did not emit 
light with the ICG camera, and the spectroscopy system 
showed no increase in wavelength around 830 nm, the 
emission wavelength range of ICG. On the other hand, in 

Figure 3 Dry lab experiments using sponges. (A) High- and low-density sponges. (B) Pseudo-tumors mixed with ICG were placed in plastic 
bags and covered with sponges for spectral measurements. The probe of the fluorescence spectrometer was placed directly on the sponges of 
varying thicknesses. ICG, indocyanine green.

High-density 
sponge

Low-density 
sponge

A B

Deflated lung

Inflated lung

A B

Figure 4 Wet lab experiments using porcine lungs (ex vivo). (A) Inflated and deflated porcine lungs. The probe of the spectrometer has a  
20 mm cap at the tip, and the cap was placed on the porcine lung for spectral measurements. The thickness of the sponge was also assessed 
in porcine experiments. (B) The actual measurement in progress. As in the sponge experiment, a pseudo-tumor was placed in a bag, and the 
lung was covered with lung tissue to detect the spectral increase in the NIR range. NIR, near-infrared.
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the ICG-mixed pseudo-tumor, the ICG camera showed 
tumor luminescence, and spectral measurements detected 
an increase in wavelength in the wavelength range of ICG 
luminescence (Figure 2).

The ICG-mixed pseudo-tumor was then wrapped in 
plastic, and a sponge was placed on top of it for evaluation. 
The ICG camera had difficulty detecting the spectrum 
when covered by even the least thick (10 mm) high-
density sponge. At the same time, the spectral system 
was still able to detect spectra covered by the 30 mm-
thick high-density sponge. The ICG camera and spectral 
systems detected spectra when covered by low-density 
sponges up to a thickness of 20 and 40 mm, respectively. 
The spectrophotometer detected tumors deeper than the 
ICG camera in high-density and low-density sponges. 
Significantly more spectral attenuation was observed for the 
denser material across all thicknesses (Figure 5).

Wet lab experiments

The pseudo-tumors were mixed with ICG adjusted for 
concentration, as in the sponge experiment, and wrapped 
in plastic. The porcine lung was not sliced but was placed 
so that the thickness was measured, and the pseudo-tumor 
was positioned under the part of the desired thickness. The 
ICG camera and spectroscopy system were then applied 
and evaluated on it. In the deflated porcine lung, the ICG 
camera had difficulty detecting spectra covered by 10 mm-
thick tissue. In contrast, the spectrophotometer detected 

spectra covered by 15 mm-thick tissue. Moreover, when 
the lungs were inflated, the ICG camera was still unable 
to detect the tumor at any thickness. In contrast, the 
spectrophotometer detected spectra covered by 20, 25, and 
30 mm-thick tissue (Figure 6). Like the sponge experiments, 
the spectrophotometer was able to detect deeper tumors 
than the ICG camera in both the deflated and inflated lung. 
Moreover, in spectrophotometer, tumors in deeper locations 
could be detected when the lungs were inflated (Figure 6).

Discussion

We investigated the usefulness of a novel ICG fluorescence 
spectroscopy system for tumor localization during 
thoracoscopic surgery. Our findings indicate that this 
method can identify tumors deeper than the lung surface 
that are difficult to identify using conventional ICG 
cameras.

ICG accumulates in solid tumors due to the enhanced 
permeability and retention (EPR) effect. This EPR effect 
refers to the property of small molecules, such as ICG, to 
accumulate systemically and passively in tumors due to 
defective endothelial cells and wide fenestrations (600–800 nm) 
associated with tumor neovascularization (27). Once in the 
tumor microenvironment, these particles are retained solely 
based on global properties such as molecular size, shape, 
charge, and polarity, rather than tumor-specific targeting 
mechanisms, such as ligand-receptor interactions (28).  
This property allows more ICG to accumulate and be 
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Figure 5 The fluorescence intensity in the NIR range was measured for different sponge densities and thicknesses. Fluorescence intensity 
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retained in tumors relative to the surrounding tissues. This 
difference in ICG concentration marks the tumor and 
distinguishes it from background and is called the tumor-
to-background ratio (TBR), which is greatest approximately 
24 hours after intravenous administration of ICG (25,26).

Up to 98% of ICG binds to proteins in the blood and 
accumulates in tumors. Therefore, ICG was diluted in FBS 
and mixed with the pseudo-tumors. The optimal dilution 
concentration was adjusted based on methods used in the 
previous study (21).

Identifying lung tumors under 5 mm in size and more 
than 20 mm in depth from the surface is difficult when 
using an ICG camera and the naked eye (20). However, the 
novel spectral system developed in the current study detects 
NIR light wavelengths using specialized instrumentation; 
hence, it may be able to detect lesions that cannot be 
identified by the conventional ICG camera. Our findings 
indicated that the conventional ICG camera had difficulty 
detecting pseudo-tumors when covered by tissue or tissue 
substitute thicker than 10 mm, while the spectral analysis 
device could detect spectra covered by thicker tissue or 
tissue substitute. These results suggest that the distance 
between the tumor and the probe, as well as the density of 
the intervening tissue between the tumor and the probe, are 
important factors in detecting ICG wavelength. The lung is 
an air-containing tissue, and the thickness and density of the 
tissue, even in the same area differ depending on whether 
the lung is inflated. The density of lung tissue also varies 
depending on the background lung condition. For example, 
in patients with emphysema, the lung tends to overexpand, 

resulting in low tissue density. The results of our wet-
lab experiments indicated that spectral values for deflated 
lungs decreased significantly as the thickness of the lung 
increased. However, when lungs are inflated, the spectral 
values significantly increased as the thickness of the lung 
increased. These results indicate that tissue transmittance 
of NIR light is higher in air-filled lungs than in deflated 
lungs, even though the distance from the lung surface to 
the tumor is longer. This also suggests that the spectrum 
is easier to detect when the lung contains some air, which 
is a characteristic unique to the lung that is not observed 
in other tissues. According to a previous study, the detection 
limit of the spectrum in the stomach is approximately  
13 mm (21). However, in the lungs, identification of deeper 
tumors may be possible depending on the conditions of 
measurement.

Factors affecting the detection of NIR light in biological 
tissues include scattering and absorption in the tissue. Of 
these, the effect of scattering is particularly strong (29). 
NIR light scatters through biological tissue at a distance of 
several tens of micrometers, and the average distance the 
light travels prior to absorption is reported to be several 
tens of millimeters (30). Thus, in normal biological tissues, 
the intensity gradually decreases with complex scattering 
in the range of several tens of micrometers. In the lungs, 
if increased air content results in decreased density at 
the alveolar level (i.e., a change in density from a few 
micrometers to a few tens of micrometers), both scattering 
and absorption are affected. In the medical field, the 
processes by which reflection and absorption of NIR light 
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occur are complex and challenging to evaluate. However, 
in our study, significant differences in detection were 
noted even with subtle changes measured in millimeters. 
Naturally, the detection limit of the tumor may be affected 
by the condition of the lung, the density of tumor cells, 
and the location of blood vessels and bronchi in each case. 
However, ICG probes that detect this spectrum of NIR 
light allow for the detection of tumors located deeper from 
the surface than conventional ICG cameras used in clinical 
settings.

In addition, we would like to emphasize that the safety 
and versatility of this method are largely associated with the 
use of ICG, which is widely used in clinical practice today. 
ICG is commonly administered intravenously 24 hours 
before surgery and does not need complicated procedures. 
The intraoperative procedure used in this study solely 
involved applying the ICG probe to the lung to detect 
the NIR light spectrum. Thus, tumor identification can 
be performed both preoperatively and intraoperatively, 
regardless of the surgeon’s experience. Therefore, the 
procedure is less invasive, which reduces the risk of 
postprocedural complications, and it can be performed at 
any facility since it does not require the use of expensive 
equipment. Although we cannot present detailed equipment 
prices now, costs are presumed to be lower because there 
are no consumables and equipment costs may be lower 
than those of the ICG cameras currently in clinical use. 
In addition, the probe can be used in conjunction with a 
thoracoscopic camera, thus eliminating the need to purchase 
a new endoscopy system. Furthermore, although it has 
not yet been examined, it could be used for sentinel node 
biopsies, blood flow measurements, and other procedures 
performed by physicians from other departments and 
on different organs. Considering the potential versatility 
relative to the required investment, the overall cost is not 
expensive.

Limitations

The present study had several limitations, including the 
use of porcine lungs. In addition, the experiments were 
not performed using actual biological tissues, which is 
an important consideration given that the water content 
in tissues and organs with blood flow may affect the 
results. Furthermore, the experiments were conducted 
using pseudo-tumors of a fixed size, in which the optimal 
concentration of ICG was adjusted. In this study, ICG was 
mixed with 2 mL of silicone sealant, while actual tumors 

may be frosted or as small as a few millimeters. However, 
based on our promising results, we aim to conduct a clinical 
study in which ICG will be administered intravenously to 
measure spectra in human lung tumors.

Conclusions

Tumor identification using a system for analyzing ICG 
spectra may aid in the intraoperative localization of tumors 
during VATS, which is becoming increasingly popular. Our 
findings indicate that spectral detection using this system 
may be possible for deeply located tumors and in expanded 
lungs, highlighting the need for further analysis in clinical 
settings.
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