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Introduction

Mechanical ventilation leads to underuse of the respiratory 
muscles, which may result in diaphragm dysfunction 

within a few hours (1,2). Ventilation-induced diaphragm 

dysfunction is a risk factor for weaning failure and is 

associated with poor outcomes and increased morbidity and 
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mortality in the intensive care unit (3-5). The mechanisms 
of ventilation-induced diaphragm dysfunction include time-
dependent muscle atrophy which occurs because of changes 
in microstructure: no preventive or curative treatments 
are currently available (6-9). It has been proposed that 
electrical pacing of the diaphragm could prevent or alleviate 
ventilation-induced diaphragm dysfunction (10-12). Phrenic 
nerve neurostimulation has already been used in patients 
with high spinal injuries for short-term weaning from 
mechanical ventilation and for long-term ventilation where 
weaning is not possible (13,14). Critically ill patients may 
benefit from temporary phrenic nerve neurostimulation 
to mitigate ventilator-induced diaphragm dysfunction and 
to anticipate and prevent weaning failure, which may be 
of particular interest in thoracic/cardiac surgery patients 
(15-17). The present study evaluated a new method of 
electrical pacing of the diaphragm by stimulation of the 
distal portion of the phrenic nerve, which is free from the 
pericardium in the cardiophrenic angle and easily accessible 
through anterior thoracotomy (18). The objectives of 
the present study were to assess the feasibility and safety 
of a surgically implanted and non-invasively removable 
temporary neurostimulation system in an ovine model using 
the distal portion of the phrenic nerve. We investigated the 
hypothesis that this technique would enable similar minute-
ventilation compare to mechanical ventilation. We present 
the following article in accordance with the ARRIVE 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-21-1944/rc).

Methods

This interventional animal study used an adult female 
ovine model and was carried out at the Carpentier 
laboratory (Georges Pompidou European Hospital, 
Paris, France) in accordance with the guidelines for 
the care and use of laboratory animals. This study 
was approved by the French Ministry of Research and 
Superior Studies, University of Paris institutional ethical 
committee and received authorization under the number 
APAFIS#26050-2020041918484991 v5. 

Animal preparation

Surgery was performed after induction of general anesthesia 
using intravenous propofol (4 mg/kg). Animals were 
intubated orally and no muscle paralysis was used. Minute-
ventilation was set to ensure normocapnia (Evita XL, 

Dräger, Germany). Volume-controlled ventilation was 
used with initial tidal volume set to 8 mL/kg of ideal body 
weight, respiratory rate of 18 breaths·min−1, and positive 
end-expiratory pressure set to 5 cmH2O. Continuous 
fluid infusion was provided during the procedure, and 
electrocardiogram (ECG) and transcutaneous oxygen 
saturation were monitored.

Surgical procedure and implantation of the phrenic nerve 
electrodes

Right and left anterior thoracotomy in the 7th intercostal 
space were used to access the phrenic nerves (Figure 1A) in 4 
anaesthetized female animals. Median weight of the animals 
was 43 kg (95% CI: 30–45 kg). Median diameter of the right 
and left phrenic nerves was respectively, 2 mm (95% CI: 
1.21–2.90 mm) and 1.305 mm (95% CI: 1.12–1.7 mm). 

Surgery was performed first on the right side. Lung 
exclusion for uni-pulmonary ventilation was done using 
EZ-blocker (Cook Medical, Bloomington, Indiana, 
USA) (Figure 1B). The trunk of the phrenic nerve was 
then identified and followed to its distal portion. Access 
to the distal portion of the right and left phrenic nerves 
before entry to the diaphragm was obtained by moving 
the lung parenchyma manually. A prototype temporary 
phrenic pacer lead was positioned and maintained on 
the distal portion of the phrenic nerves using absorbable 
thread (polyglactine 910 3/0, Ethicon, New Jersey, USA)  
(Figure 1C). The temporary phrenic nerve stimulator (tPNS) 
electrode was a biocompatible electrode (Atrotech, Tampere, 
Finland) that was specially designed for this study. The 
electrode was 16 mm long with a diameter of 1.35 mm and 
comprised 4 contact rings, each separated by 4 mm. The 
4 contact rings allowed sequential multipolar simulation. 
Only a portion of motor units in the diaphragm muscle were 
activated by a single stimulus pulse. Most of the motor units 
were at rest during successive stimulus pulses, allowing an 
extended recovery time after the contractile phase.

The lung was then re-inflated to release any potential 
atelectasis, and the procedure was repeated on the left side. 
The electrode wires were externalized through intercostal 
spaces and connected to the stimulator to initiate the 
stimulation sessions (see below).

Phrenic nerve stimulation settings

Day 1 stimulator settings were respiratory rate of  
18 breaths·min−1, pulse duration 200 μs and pulse frequency 
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of 20 Hz (adapted from previous investigations (19,20). 
Correct functioning of the stimulations was checked by 
visual examination directly inside the chest and palpation of 
the abdomen. 

Experimental protocol

After the preparation described above, bilateral phrenic 
nerve stimulations were applied for 15 minutes (first session). 
During this time, mechanical ventilation was stopped 
and oxygen administration was maintained. Diaphragm 
contraction from the stimulator allowed the animals to 
inspire air enriched in oxygen from the ventilation unit 
and expire air into the ventilation unit (Video 1). We were 
able to assess ventilation-minute by using the ventilation 
unit monitor. The electrode wires were then disconnected 
from the stimulator and concealed under the skin, and the 
chest was surgically closed. The animals were woken up 
and returned to their care facility. On day 15, two of the 
animals were anaesthetized and a neurostimulation session 
was conducted using each electrode separately (second 
session). Bilateral thoracotomy was then performed to allow 
visualization of the percutaneous removal of the electrodes. 
Afterwards, two portions of the phrenic nerve were harvested 
for pathological examination: a proximal portion that was 
not in contact with the electrode and a distal portion that 
was in contact and stimulated by the electrode. At day 30, 
the two remaining animals underwent the same procedure as 
described for day 15. Animals were sacrificed after the end of 
the procedure on day 15 or day 30.

Primary and secondary endpoints

The primary endpoint was the ability to successfully match 
the animal’s minute ventilation upon implantation of both 
phrenic nerve pacers on day 1. This was compared to 
ventilation-minute produced by mechanical ventilation only. 
Ventilation-minute over 1 minute was obtained from the 
ventilator screen before initiating bilateral neurostimulation 
and at the end of the 15-minute stimulation sessions.

Secondary endpoints were successful neurostimulation 
by both electrodes on day 15 and day 30 using the same 
thresholds as day 1. We also assessed the safe removal of the 
electrodes on day 15 or day 30. The integrity of right and 
left phrenic nerves was confirmed by pathologic analysis.

Pathological analysis

Each portion of the phrenic nerve was fixed by immersion 
in 4% paraformaldehyde, embedded in paraffin, and 
sectioned in 4 µm slices. Axial sections of the phrenic 
nerve were then obtained. After hematoxylin-eosin 
staining, microscopic evaluation was conducted to assess 

A B
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Figure 1 Procedures of tPNS electrode implementation in ovine 
model (by Pierre BOURCIER). (A) Bilateral anterior thoracotomy 
in the 7th intercostal space. (B) Implementation of the left electrode 
on the phrenic nerve. Unipulmonary ventilation allow left lung 
exclusion by using a bronchial blocker. (C) Focus on the fixation 
technique of the tPNS electrode by three knots of vicryl rapid on the 

mediastinal pleura. tPNS, temporary phrenic nerve stimulator.

Video 1 Diaphragm contraction in the ovine model following 
bilateral phrenic nerve neurostimulation. 
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the integrity of the distal portion of the phrenic nerve. 
This was compared to the proximal portion that had not 
been in contact with the electrode (Leica Microsystems, 
Switzerland; nanozoomer digital slide scanner and NDP 
viewing software, Hamamatsu photonics, Japan).

Statistical analysis

Categorical variables were presented as numbers and 
proportions, and were compared using Fisher’s exact 
test. Continuous variables were reported as median (95% 
confidence interval) and compared using the Wilcoxon test. 
A P value less than 0.05 was considered to be statistically 
significant. Statistics were done using Prism GraphPad© (San 
Diego, CA, USA).

Results

Electrode implantation and phrenic nerve neurostimulation

Six of eight leads were successfully implanted into three 
of the four animals and neurostimulation was considered 
effective for each of these three animals (Table 1). In the first 
ovine model, it was impossible to fix the electrode on the 
right phrenic nerve because of intense pleural adhesions. 
No specific diagnosis of the right lung could be determined 
after sacrifice and pathologic analysis. In the same ovine 
model, we were able to place the electrode on the left 
phrenic nerve but it was not possible to pace the diaphragm 
because of technical difficulties.

For the six successfully implanted electrodes, median 
stimulation threshold was significantly higher on the right 

Table 1 Electrode placement and efficacy at first session, day 15, and day 30

Animal Side 
Electrode 

implantation

Pacing

First session Day 15 Day 30

Animal #1 Left phrenic nerve Possible Not possible Possible

Right phrenic nerve Not possible Not possible Not possible 

Animal #2 Left phrenic nerve Possible Possible Possible

Right phrenic nerve Possible Possible Not possible

Animal #3 Left phrenic nerve Possible Possible Possible

Right phrenic nerve Possible Possible Possible

Animal #4 Left phrenic nerve Possible Possible Possible

Right phrenic nerve Possible Possible Not possible 
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phrenic nerve (0.7 mA; 95% CI: 0.6–1.0 mA) compared 
to the left phrenic nerve (0.5 mA; 95% CI: 0.4–0.7 mA) 
(P=0.01) (Figure 2A). 

Minute ventilation 

On day 1 (controlled-volume ventilation), median minute-
ventilation was 4.4 L·min-1 (95% CI: 4.3–5.2 L·min-1) 
which was not significantly different from the minute-
ventilation produced during the first bilateral phrenic 
nerves neurostimulation session (4.9 L·min-1; 95% CI: 
4.4–5.5 L·min-1) (P=0.40) (Figure 2B).

Neurostimulation on day 15 and day 30

Neurostimulation was successful on day 15 and day 30 in 
all left phrenic nerves (n=4). On the left side, the level of 
the thresholds was the same as the day of implantation 
(0.5 mA; 95% CI: 0.4–0.7 mA). In two of the right side 
phrenic nerves, stimulation was ineffective due to an 
electrode displacement. The remaining right electrode 
kept the same thresholds of stimulation as the first day of 
implantation. Percutaneous removal of the electrodes was 
possible for all the electrodes (n=6) except one (n=1) of the 
displaced right side electrodes. This electrode was blocked 
in intense fibrotic tissue in the pulmonary fissure. Table 1 
summarizes electrode implantation and efficacy in each 
animal.

Pathologic analysis

Pathologic analysis showed integrity of distal portion of 
the phrenic nerve after percutaneous removal (Figure 3). 
Fibrotic tissue was visible in the mediastinal pleura that was 
in contact with the electrodes 15 days after implantation. 
In Animal #1, the intense fibrotic tissue in the left phrenic 
nerve was characterized by the presence of fibroblastic 
cells (blue arrow); yellow arrows indicate the presence of 
absorbable thread. The same intense fibrotic tissue was 
visible in Animal #2 (blue arrow) with an intact left phrenic 
nerve. However, the right phrenic nerve did not show any 
fibrotic tissue, as the electrode was displaced. Thirty days 
after implantation, fibrotic tissue was either completely 
absent (Animal #4) or minimal (Animal #3, blue arrow). 
The phrenic nerves were all intact.

Discussion

In this experimental study, we explored the feasibility and 
safety of a new anatomical approach enabling bilateral 
temporary phrenic nerve stimulation. Specially designed 
electrodes were surgically implanted on the distal portion of 
the phrenic nerve. Efficient bilateral neurostimulation was 
possible in 75% (3 out of 4) of the animals included on day 1.  
Both the right and left distal portion of the phrenic nerve 
were easily accessible through an anterior mini-thoracotomy 
without any additional intra-thoracic dissection. This 
approach minimizes the risk of injuring the phrenic nerve. 
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Figure 3 Pathology slides of distal portion of all phrenic nerves stained with hematoxylin and eosin. Black arrows indicate the phrenic 
nerves. Blue arrows indicate the inflammatory reaction with fibrotic tissue. Yellow arrow indicate absorbable threads. In Animal #1, the right 
phrenic nerve was not analyzed because of intense pleural adhesions.
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Even though the current thresholds were significantly 
different on the right and left phrenic nerve, they remained 
low (<1 mA) and were comparable to those reported for 
conventional intra-thoracic phrenic neurostimulation (21). 
With the low current threshold, we were able to provide 
efficient bilateral neurostimulation at baseline. This is 
important as it minimizes the risk of adverse events such 
as referred shoulder pain or cardiac arrhythmias that have 
been seen in other stimulation techniques (10,22). 

It was possible to provide efficient minute-ventilation 
15 and 30 days after implantation. Upon withdrawal of the 
electrodes, the phrenic nerves were visually intact, which was 
confirmed by the pathological analysis. The development 
of fibrotic tissue due to the presence of the electrode was 
limited to the thoracic cavity. This did not directly affect 
the phrenic nerve, which was protected by the mediastinal 
pleura. This inflammatory reaction seemed to decrease 
over time and was less evident on day 30 than day 15.  
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The use of rapidly absorbable surgical thread allowed the 
safe removal of the electrode without resistance.

However, diaphragm neurostimulation was not possible 
in all animals. At day 1, we faced technical problems related 
to the learning curve of a new stimulation system and an ill 
animal. In addition, at day 15 and day 30, displacement of 
the electrode on the right phrenic nerve was observed in 
one animal. Importantly, no surgical complications occurred 
in any animal. The temporary feasibility of the technique 
was demonstrated, and it appeared to be safe for both the 
animals and the phrenic nerves. However, following the 
significant displacement of the leads on the right side, 
further research is needed to improve the design of the leads 
and the method of fixation before starting clinical studies in 
patients undergoing cardio-thoracic surgery.

Short-term phrenic or direct diaphragmatic pacing 
may be an option to preserve diaphragmatic structure 
and function. It may slow the biological mechanisms 
responsible for venti lator induced diaphragmatic 
dysfunction and have a consequent impact on morbidity 
and mortality. In the future, temporary phrenic stimulation 
may help optimise ventilator management in patients 
with respiratory failure (23). We previously published a 
pilot study of unilateral phrenic nerve neurostimulation 
in an ovine model and showed reduced muscle atrophy 
and muscle fiber injury in the neurostimulated hemi-
diaphragm (12). These results have been corroborated 
by other experimental studies: pigs under mechanical 
ventilation that received transvenous phrenic nerve 
stimulation had less diaphragm atrophy (11). Similarly, 
in small cohort of cardio-thoracic patients, intermittent 
neurostimulation during surgery significantly increased the 
force of specific myofibers and mitochondrial respiration 
(24,25). Markers of oxidative stress are also significantly 
decreased in the stimulated hemi-diaphragm (26).  
In post-operative cardio-thoracic patients or patients in 
intensive care under prolonged mechanical ventilation, 
single arm studies have confirmed the feasibility and 
safety of specifically designed electrodes for phrenic nerve 
stimulation (15,27-29). However, the potential benefits of 
temporary phrenic nerve neurostimulation still need to be 
confirmed by randomized controlled trials (10).

Diaphragmatic stimulation, whether via the motor points 
within the diaphragm itself or via phrenic stimulation, has 
been used successfully for decades in the context of high 
spinal cord injuries (14,30). Outside the scope of central 
respiratory paralysis, providing neurostimulation of the 
diaphragm may be useful in different clinical scenarios (8).  

First, it can be used in critically ill patients to improve 
the likelihood of successful weaning (10). It could be 
also used to enhance diaphragm contraction after major 
cardiac or thoracic surgery (16,17). Such strategy would 
require phrenic nerve electrodes to be positioned during 
the surgery and subsequently removed non-invasively as is 
currently the case for epicardial electrodes. Our approach 
offers this possibility. We only studied bilateral diaphragm 
stimulation to stabilize minute-ventilation. We cannot 
confirm that we can stabilize minute-ventilation with only 
a single hemidiaphragm stimulation. Further investigations 
are necessary to assess this possibility as well as effect 
on esophageal pressure and tidal volume. Randomized 
controlled clinical trials will be necessary to establish 
whether phrenic nerve neurostimulation during the post-
surgery period in intubated patients can be effective in 
reducing the risk of atelectasis and pneumonia, leading to 
improved outcomes. 

Our experimental animal study aimed to assess the 
feasibility and safety of a novel temporary neurostimulation 
system. One significant limitation was the secondary 
displacement of two electrodes, by day 15 and 30, both 
in the right thoracic cavity. This can be accounted for by 
anatomical considerations. Mediastinal pleura in sheep 
are thinner than in humans and tear more easily when 
manipulated. Moreover, in the right thoracic cavity of the 
ovine model, the phrenic nerve is in close proximity to both 
the superior and inferior vena cava, which complicates the 
attachment of the electrode compared to the left thoracic 
cavity. Since anatomic relations of the right phrenic nerve 
with the right atrium in ovine models are limited, we were 
aware of possible vascular injury and the electrodes on the 
right side may have been attached less tightly than on the 
left side. As a result, although the initial stimulation was 
efficient, on the right, side two lead displacements occurred 
following the first surgical procedure. Such difficulties 
would not be expected in humans as the right phrenic 
nerve in humans descends along the right atrium before 
terminating in the diaphragm, in front of the inferior vena 
cava. Furthermore, it is accompanied by fatty tissue that is 
not present in the ovine model (18).

Other limitations of this study included the small number 
of animals. We were able, however, to achieve the primary 
objective of the study and address the secondary endpoints. 
It was therefore ethical to refrain from further including 
other animals to respect the 3 Rs principle: replace, reduce, 
and refine (31). Further studies will be necessary to assess 
implantation of the electrodes in a clinical setting.
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Conclusions

In an experimental animal model, the use of temporary and 
easily removable electrodes for neurostimulation of the 
distal portion of the phrenic nerve was feasible and safe. 
Neurostimulation remained possible at day 15 and day 
30 if the electrodes were still in contact with the phrenic 
nerves. Pathological analysis confirmed that the electrodes 
could safely be removed percutaneously at the end of the 
procedure without any damage to the phrenic nerve. 
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