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Background: Coronary artery disease (CAD) is a multifactorial disease and its pathogenesis remains 
unclear. We aimed to explore the optimal feature genes (OFGs) for CAD and to investigate the function 
of immune cell infiltration of CAD. It will be helpful for better understanding of the pathogenesis and the 
development of genetic prediction of CAD. 
Methods: Datasets related to CAD were obtained from the Gene Expression Omnibus (GEO) database. 
Cases from the datasets met diagnostic criteria including clinical symptoms, electrocardiographic (ECG) 
and angiographic evidence. We identified differentially expressed genes (DEGs) and conducted functional 
enrichment analysis. OFGs were obtained from the least absolute shrinkage and selection operator (LASSO) 
algorithm, support vector machine recursive feature elimination (SVM-RFE) algorithm, and random forest 
(RF) algorithm. CIBERSORT was used to compare immune infiltration between CAD patients and normal 
controls, and the correlation between OFGs and immune cells was analyzed.
Results: DEGs were involved in the interleukin (IL)-17 signaling pathway, nuclear factor (NF)-kappa 
B signaling pathway, and tumor necrosis factor (TNF) signaling pathway. Gene Ontology (GO) analysis 
revealed DEGs were enriched in lipopolysaccharide (LPS), tertiary granule, and pattern recognition receptor 
activity. Disease Ontology (DO) analysis suggested DEGs were enriched in lung disease, arteriosclerotic 
cardiovascular disease (CVD). Matrix metalloproteinase 9 (MMP9), Pellino E3 ubiquitin protein ligase 1 
(PELI1), thrombomodulin (THBD), and zinc finger protein 36 (ZFP36) were screened by the intersection 
of OFGs obtained from LASSO, SVM-REF, and RF algorithms. CAD patients had a lower proportion of 
memory B cells (P=0.019), CD8 T cells (P<0.001), resting memory CD4 T cells (P<0.001), regulatory T 
cells (P=0.028), and gamma delta T cells (P<0.001) than normal controls, while the proportion of activated 
memory CD4 T cells (P=0.014), resting natural killer (NK) cells (P<0.001), monocytes (P<0.001), M0 
macrophages (P=0.023), activated mast cells (P<0.001), and neutrophils (P<0.001) in CAD patients were 
higher than normal controls. MMP9, PELI1, THBD, and ZFP36 were correlated with immune cells.
Conclusions: MMP9, PELI1, THBD, and ZFP36 may be predicted biomarkers for CAD. The OFGs and 
association between OFGs and immune infiltration may provide potential biomarkers for CAD prediction 
along with the better assessment of the disease.
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Introduction

Coronary artery disease (CAD) is a multifactorial 
chronic disease with complex pathology resulted from 
environmental and genetic factors as well as their 
interactions (1,2). CAD is characterized by the formation of 
plaques in the coronary arteries then atherosclerosis occurs. 
The mechanisms contributing to atherosclerosis are diverse, 
including dyslipidemia, hypercoagulability, endothelial 
dysfunction, oxidative stress and inflammation (2). There 
are multiple factors associated with CAD, containing age, 
gender, dyslipidemia, hypertension, smoking, diabetes 
mellitus, obesity and family history (3). In the previous 
study, researchers have found some biomarkers related to 
CAD, for instance cardiac troponin T, lipoprotein(a) [Lp(a)], 
C-reactive protein (CRP) and high-sensitive C-reactive 
protein (hs-CRP) (4-6). As the most common cardiovascular 
disease (CVD), CAD causes a heavy burden on human 
health globally (7-9). The morbidity and mortality of CAD 
has been continually rising in low- and middle-income 
countries and is now close to the level of that in developed 
counties, making it a global issue. According to the 2018 
China CVD report, approximately 290 million people suffer 
from CVD and about 3.79% of them are CAD patients (10). 

With rapid advancements in technology, the management 
of CAD is constantly being remodeled and is now more 
efficiently based on scientific classification and targeted 
treatment (11). Microarray analysis has been used as a 
practical method for studying changes in gene expression (12).  
The Gene Expression Omnibus (GEO) database (13) is a 
publicly available website supported by the National Center 
for Biotechnology Information (NCBI) and is used to 
identify key genes and potential mechanisms of the onset and 
development of diseases. Therefore, we can detect the gene 
expression information more efficiently and time-saving by 
conducting bioinformatics analysis.

CAD is life-threatening and in the stage of CAD 
initiation experts may miss diagnosis for the absence of 
typical symptoms (14). Meanwhile, the mechanisms of 
CAD remain still complicated and unclear. While coronary 
angiography is the gold standard diagnostic technique for 
CAD, it is invasive and costly. Therefore, combinations 
of more biomarkers need to be integrated using various 
methods for creating predictive, diagnostic, or prognostic 
tools for CAD. Machine learning (ML) has undergone an 
expansion in its application as a component of artificial 
intelligence (AI) and has enhanced the efficiency of the 
health care system (15). A previous study has shown 
that ML algorithms are effective for risk prediction, 

diagnosis, and imaging analysis of CVD (16). ML provides 
a more intelligent approach and increases confidence in 
the investigation of potential biomarkers compared to 
traditional methods.

The results of accumulating studies are helping 
researchers better understand the crucial role of immune 
cell infiltration in the onset and progression of CAD (17,18). 
CIBERSORT is widely used to investigate the expression 
of 22 subgroups of immune cells in order to determine the 
proportions of these immune cells in study samples (19). 

The purpose of our study is to investigate the potential 
predictive biomarkers and provide fresh insights into the 
pathogenesis of CAD and direction for future studies of 
innovative therapies. If these potential biomarkers indicate 
the probability of occurrence of CAD accurately then early 
prevention can be carried out.

Methods

Overview of research procedures

In the present study, CAD-related gene chip data were 
obtained from GEO open resources. The GEO database 
was used to conduct bioinformatic analysis of differentially 
expressed genes (DEGs) between CAD patients and normal 
controls. Subsequently, we utilized 3 ML algorithms, 
including least absolute shrinkage and selection operator 
(LASSO), support vector machine recursive feature 
elimination (SVM-RFE), and random forest (RF) classifier, to 
screen optimal feature genes (OFGs) from DEGs for CAD. 
In addition, we investigated the correlation of OFGs with 
immune infiltration. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Data collection and preprocessing

The gene expression profiles of datasets GSE66360, 
GSE61144, GSE60993, and GSE42418 were downloaded 
from the GEO (13) database (https://www.ncbi.nlm.nih.
gov/geo/). GSE66360, GSE61144, and GSE60993, based 
on GPL570, GPL6106, and GPL6884, respectively, were 
used to identify the DEGs. GSE66360 contained 49 CAD 
samples and 50 control samples, GSE61144 consisted 
of 14 CAD and 10 samples, and GSE60993 was made 
up of 26 CAD and 7 control samples. The GSE66360, 
GSE61144, and GSE60993 datasets were normalized and 
the batch effect was eliminated using the “sva” package in 
R. We merged the 3 datasets to enlarge the sample size. 
Subsequently, the merged data became a gene expression 
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profile of 89 CAD patients and 67 normal controls. The 
GSE42418 dataset, based on GPL13607, was used as the 
validation set and included 13 CAD samples and 11 control 
samples.

Identification of DEGs

To screen DEGs between patients and controls, the “limma” 
package in R was used. A P value <0.05 and fold change 
(FC) ≥2 (|log2FC| >1) was considered statistically different. 
Those with log2FC >0 were considered upregulated genes 
and log2FC <0 downregulated genes. Heatmaps and volcano 
plots for DEGs were carried out in R using “pheatmap” and 
“ggplot2” packages, respectively. 

Functional enrichment analysis

Gene ontology (GO) analysis [comprising biological 
processes (BP), molecular functions (MF), and cellular 
components (CC)], Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis, and Disease Ontology 
(DO) analysis were carried out using “clusterProfile”, 
“enrichplot”, “ggplot2”, “org.Hs.eg.db”, “GOplot”, and 
“DOSE” packages in R. A P value <0.05 was used as the 
threshold to screen significantly enriched GO terms, DO 
terms, and KEGG pathways.

Screening of OFGs

Three ML methods were used to screen OFGs. LASSO 
binomial logistic regression was used to select the OFGs 
from DEGs by applying the “glmnet” package in R. Optimal 
penalty parameter λ was determined by minimal binomial 
deviance. The SVM-RFE algorithm was used with “e1071”, 
“kernlab”, and “caret” packages in R to investigate the point 
with the smallest cross-validation error to select OFGs. The 
“randomForest” package in R was used for implementing 
the RF algorithm to identify the point where error was the 
most minimal. MeanDecreaseGini score >2 was used as the 
threshold to determine whether a gene was an OFG. In 
addition, a Venn diagram visualized the key OFGs obtained 
from the results of the 3 ML methods (LASSO, SVM-REF, 
and RF).

Construction of receiver operating characteristic (ROC) 
curves

The R package “pROC” was used to construct ROC curves 

and calculate the area under the curve (AUC) for hub genes.

Validation of the OFGs and ROC

The expression matrix of the GSE42418 dataset was used to 
verify each OFG as well as the ROC.

Infiltrating differential analysis of 22 immune cells

CIBERSORT algorithm in R was used to quantify the 
proportion of 22 types of immune cells in the merged 
dataset. We filtered out samples with P<0.05. A bar plot and 
violin diagram were used to visually represent differences in 
immune cells between CAD and normal samples.

Correlation analysis between OFGs and infiltrating 
immune cells 

Relationships between the hub genes and infiltrating immune 
cells were investigated using R software. The analysis results 
were visualized using the “ggpubr” package in R.

Statistical analysis

All statistical analysis and graphics were conducted with R 
software (version 4.1.2). Differential expression analysis was 
performed with the cut-off threshold of P<0.05 and FC ≥2 
or |log2FC| >1. A P value of less than 0.05 was two-sided 
and considered statistically significant.

Results 

Identification of DEGs

Figure 1 shows an overview of the present study. We 
performed differential gene expression analysis (Figure 2) 
to investigate gene expression in CAD patients and normal 
controls. When comparing the blood samples of 89 CAD 
patients and 67 normal controls, 100 upregulated and 5 
downregulated genes were identified in the merged dataset 
(GSE66360, GSE61144, and GSE60993). Figure 2 shows 
the volcano plot and heatmap for DEGs of the merged 
dataset.

Functional enrichment analysis

GO analysis of the DEGs in the merged dataset revealed 
the top 10 most significantly enriched BP, CC, and MF 
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items (Figure 3). In the BP category, upregulated DEGs 
were enriched in lipopolysaccharide (LPS); for CC, 
upregulated DEGs were significantly enriched in tertiary 
granule; and for MF, upregulated DEGs were enriched 
in pattern recognition receptor activity. KEGG pathway 
analysis was also performed and upregulated DEGs were 
abundantly enriched in the interleukin (IL)-17 signaling 
pathway, nuclear factor (NF)-kappa B signaling pathway, 
and tumor necrosis factor (TNF) signaling pathway. DO 
analysis indicated that the DEGs were enriched in lung 
disease, arteriosclerotic CVD, and atherosclerosis.

Screening OFGs

Eighteen genes were identified from the CAD-related DEGs 
using the LASSO algorithm (Figure 4), and 40 genes were 
selected using the SVM-REF algorithm. In addition, 8 genes 
were screened by the RF algorithm. After overlapping the 
hub genes obtained from the 3 ML methods, 4 candidate hub 

genes were identified: thrombomodulin (THBD), Pellino E3 
ubiquitin protein ligase 1 (PELI1), matrix metallopeptidase 
9 (MMP9), and zinc finger protein 36 (ZFP36). The AUC 
of ROC analysis (Figure 5) was 0.870 for THBD, 0.872 for 
PELI1, 0.847 for MMP9, and 0.839 for ZFP36.

Verification of the OFGs  

Validation was performed using the GSE42418 dataset 
[CAD patients (n=13), normal controls (n=11)] to evaluate 
whether the 4 hub genes were differentially expressed 
in CAD samples when compared with normal controls 
(Figure 6). The expression levels of both PELI1 and 
ZFP36 were higher in CAD patients than normal controls 
(P<0.05). However, there was no significant difference in 
the expression levels of MMP9 and THBD between CAD 
patients and normal controls. The results of ROC analysis 
(Figure 6) showed that AUC was 0.552 for THBD, 0.832 
for PELI1, 0.727 for MMP9, and 0.769 for ZFP36.

Gene expression omnibus 
GSE66360, GSE61144, GSE60993

Merged gene expression dataset

Optimal feature genes  
(MMP9, PELI1, THBD, ZFP36)

Immune infiltration 

Validation of 
GSE42418 dataset

ROC curve

Identification of differentially 
expressed genes

SVM-REFLASSO RF

DO

KEGG

GO

Figure 1 Schematic overview of study. GO, Gene Ontology; DO, Disease Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination; RF, random 
forest; MMP9, matrix metalloproteinase 9; PELI1, ellino E3 ubiquitin protein ligase 1; THBD, thrombomodulin; ZFP36, zinc finger 
protein 36; ROC, receiver operating characteristic.
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Immune infiltration analysis

The CIBERSORT algorithm was used to explore the 
relative proportion of 22 types of immune cells in samples 
from 88 CAD patients and 67 normal controls (Figure 7). 
The bar plot shows the contents of varied subpopulations in 
each individual clearly (Figure 7). The violin diagram shows 
that the proportion of memory B cells (P=0.019), CD8 T 
cells (P<0.001), resting memory CD4 T cells (P<0.001), 
regulatory T cells (P=0.028), and gamma delta T cells 
(P<0.001) in CAD samples were significantly lower than in 
normal control samples. However, activated memory CD4 
T cells (P=0.014), resting natural killer (NK) cells (P<0.001), 
monocytes (P<0.001), M0 macrophages (P=0.023), activated 
mast cells (P<0.001), and neutrophils (P<0.001) in CAD 
samples were significantly higher than in normal control 
samples (Figure 7).

The correlation between MMP9, PELI1, THBD, and 
ZFP36 and immune cells

Correlation analysis between hub genes and immune cells 

(Figure 8) revealed that MMP9 had a significant positive 
correlation with neutrophils (r=0.652, P<0.001), monocytes 
(r=0.405, P<0.001), and M0 macrophages (r=0.402, 
P<0.001) and a negative correlation with CD8 T cells 
(r=−0.426, P<0.001). PELI1 was positively correlated with 
neutrophils (r=0.583, P<0.001) and activated mast cells 
(r=0.436, P<0.001) and negatively correlated with CD8 T 
cells (r=−0.405, P<0.001). THBD was positively correlated 
with neutrophils (r=0.573, P<0.001) and monocytes 
(r=0.432, P<0.001) and negatively correlated with CD8 T 
cells (r=−0.412, P<0.001). ZFP36 was positively correlated 
with neutrophils (r=0.555, P<0.001) and activated mast cells 
(r=0.432, P<0.001) and negatively correlated with CD8 T 
cells (r=−0.405, P<0.001). It can be concluded that MMP9, 
PELI1, THBD, and ZFP36 were all correlated with 
immune cells.

Discussion 

Coronary heart disease (CHD) is characterized as a 
multifactorial disease and has become an economic 
burden globally (7). With rapid advances in technology, 
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ML algorithms are being used to achieve a deeper 
understanding of clinical diagnoses, prediction and 
treatments through gene expression data (20). In the current 
study, we investigated the key feature genes associated 
with CAD by comparing differences in gene expression 
chips between CAD patients and normal controls. In this 
study, we combined 3 CAD datasets and then identified 

105 DEGs and 4 upregulated hub genes (MMP9, PEIL1, 
THBD, and ZFP36) using bioinformatics analyses and ML 
methods, respectively. In addition, we performed functional 
enrichment. Further, we used the CIBERSORT algorithm 
to reveal that the 4 OFGs participated in immune cell 
infiltration.

GO enrichment analysis showed that the DEGs screened 
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from the merged dataset were mainly related to LPS, 
tertiary granule, and pattern recognition receptor activity. 
Previous studies have demonstrated that LPS is related 
to heart injury. A study by Lepper et al. reported that the 
serum LPS-binding protein concentration in CAD patients 
was significantly increased compared with individuals 
without coronary atherosclerosis (21). A study conducted 
by Justo-Junior et al. found higher levels of chemokine 
and pattern-recognition receptor expressed in patients 
with unstable angina (22). According to KEGG pathways 
analysis, DEGs were abundantly enriched in the IL-17 
signaling pathway, NF-kappa B signaling pathway, and 
TNF signaling pathway. It is already known that interferon 
gamma (IFN-γ) secreted by T cells is highly expressed in 
atherosclerotic lesions, and that regulation of the IL-17 
signaling pathway plays a key role in atherosclerosis (23). 

NF-kappa B regulates the expression of genes targeting 
the initiation and progression of atherosclerosis. Under the 
action of NF-kappa B, multiple processes are integrated 
in the formation of atherosclerotic plaques (24). As one of 
the inflammatory markers, TNF was confirmed to be an 
indicator of increasing risk of CAD. The results of DO 
analysis indicated that the DEGs were enriched in lung 
disease, arteriosclerotic CVD, and atherosclerosis.

In recent years, the application of AI technology in 
CVD has made significant progress (20,25). It is important 
to consider whether the features selected at each point 
are true biomarkers or false positives (15). The OFGs 
obtained from ML algorithms may improve the efficiency 
of clinical diagnosis and prediction and provide more clues 
to guide doctors to make a diagnosis as ML methods can 
identify more complex, nonliner relationships. LASSO 
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is a regression-based methodology, and it has the unique 
feature of penalizing the absolute value of a regression 
coefficient (26,27). SVM is a powerful ML method for 
building a classifier (28), and the present study used 
SVM-REF to screen OFGs because it can select relevant 
features using a separating hyperplane (28-30). The RF 
algorithm was used to screen feature items to obtain their 
importance ranking and is not vulnerable to overfitting. 
“Gini importance” is a measure of feature importance 
and is available in RF implementations (31,32). Our main 
aim in the present study was to screen the OFGs, not to 
develop a diagnostic or predictive tool. In this study, we 
preprocessed the original GEO data first, then investigated 
the OFGs through multiple feature selection algorithms. 

Therefore, by intergrading with LASSO, RF, and SVM-
REF algorithms, 4 OFGs (MMP9, PELI1, THBD, and 
ZFP36) were eventually selected. Additionally, the SVM-
REF and LASSO algorithms reduced the risk of overfitting 
through cross-validation. The selected 4 OFGs ranked 
highly in terms of importance. 

MMP9, also known as GELB, CLG4B, MMP-9, and 
MANDP2, is a member of the matrix metalloproteinase 
family and is abundant in the interruption of extracellular 
matrix in normal physiological processes. MMP9 also 
plays an important role in disease processes, including in 
embryonic development, reproduction tissue remodeling, 
arthritis, and metastasis (33). Goerg et al. (34) reported 
that downregulation of MMP9 protein expression in 
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the heart by empagliflozin could improve systolic heart 
function after myocardial infarction (MI) in rats. A study by 
Mujumdar et al. demonstrated that the activation of MMP9 
decreased cardiac tensile strength (35). PELI1 can facilitate 
the activity of ubiquitin protein ligase, and it participates 
in negative regulation of necroptotic procedure, protein 
polyubiquitination, and reaction to LPS (36). A mouse 
model of MI confirmed that PELI1 was an important 
downstream target of vascular endothelial growth factor 
(VEGF), which can salvage impaired collateral blood vessel 
formation, diminish fibrosis, and improve myocardial 
function (37). Another study reported that PELI1 was a 
potential clinical marker for therapies to repair the damaged 
heart following MI in humans (38). THBD is an intronless 
gene and is also known as TM, THRM, AHUS6, BDCA3, 
CD141, BDCA-3, and THPH12. THBD encodes a protein 

that is an endothelial-specific type I membrane receptor 
and can bind thrombin. The combination of this protein 
and thrombin results in the activation of protein C, which 
degrades clotting factors Va and VIIIa and decreases the 
amount of thrombin generated. Mutations in THBD are a 
driver of thromboembolic disease, also known as inherited 
thrombophilia (39). A study from Iran (40) investigated 
the association of the rs1042579 single nucleotide 
polymorphism (SNP) in THBD with the risk of CVD 
and found that rs1042579 SNP could increase the risk of 
CVD. A study from Pakistan showed that the relationship 
between THBD and inflammatory cytokines in CAD 
helped to identify new prognostic and therapeutic targets 
for CVD treatments (41). ZFP36 is also known as TTP, 
G0S24, GOS24, TIS11, NUP475, zfp-36, and RNF162A, 
and it enables several functions, including 14-3-3 protein 

Figure 6 Validation of the OFGs and ROC curves. (A) Expression of PELI1 and ZFP36 in CAD patients compared to normal controls in 
the validation dataset (only genes with P<0.05 are shown). (B) ROC curves of the predictive efficacy of PELI1 and ZFP36 in the validation 
set. Con, control; PELI1, Pellino E3 ubiquitin protein ligase 1; AUC, area under the curve; CI, confidence interval; ZFP36, zinc finger 
protein 36; OFGs, optimal feature genes; ROC, receiver operating characteristic; CAD, coronary artery disease.
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binding activity, heat shock protein binding activity, and 
mRNA 3'-UTR AU-rich region binding activity. Moreover, 
ZFP36 is extensively involved in cellular response to 
cytokine stimulation and growth factor stimulation as well 
as regulation of gene expression (42). Zhang et al. reported 
that ZFP36 was expressed in vascular endothelial cells and 
macrophage foam cells of atherosclerosis, and thereby 
ZFP36 expression may reduce vascular inflammation and 
prevent or treat atherosclerosis (43).

Atherosclerosis is characterized by hyperlipidemia and 
inflammation, and it is a major cause of CAD (11). Previous 
studies have shown that inflammatory macrophages and foam 
cell formation are crucial factors in atherosclerotic plague 
progression (44,45). T cells target the vessel wall in line with 
macrophages and react to antigens in the arterial wall (46).  
After activation of T cells, proinflammatory mediators 
are produced, exaggerating the inflammatory response, 
and disease development is worsened (47). In addition 
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to macrophages and T cells, other innate and immune 
cells contribute to the pathogenesis of atherosclerosis, 
including neutrophils,  B cells,  and NK cells (48).  
Another study showed that CAD patients presented a 
highly activated CD+CXCR5+T cell subset (49). However, 
Olson et al. (50) evaluated innate and adaptive immune cells 
subsets in CHD patients and found that peripheral blood 
monocyte subsets were not strongly associated with CD4+ 

naive, memory, CD28−, or T helper cell subsets in MI or MI 
angina cases. CIBERSORT evaluation in the present study 
suggested that memory B cells, CD8 T cells, resting memory 

CD4 T cells, regulatory T cells, and gamma delta T cells in 
CAD samples infiltrated less than in normal control samples. 
On the contrary, activated memory CD4 T cells, resting NK 
cells, monocytes, M0 macrophages, activated mast cells, and 
neutrophils in CAD samples infiltrated more than in normal 
control samples. One previous study found that the number 
of neutral endopeptidase positive neutrophils was higher 
in acute MI patients with ruptured plaques compared with 
eroded plaques (51).

To further discover the relationship between OGFs and 
the main pathogenic mechanism of CAD, we analyzed the 
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correlation between immune cells and the 4 selected OFGs. 
The present study revealed that MMP9 had a significant 
positive correlation with neutrophils, monocytes, and M0 
macrophages, and a negative correlation with CD8 T 
cells. PELI1 was positively correlated with neutrophils and 
activated mast cells, and negatively correlated with CD8 
T cells. THBD was positively associated with neutrophils 
and monocytes, while negatively correlated with CD8 T 
cells. ZFP36 was positively correlated with neutrophils and 
activated mast cells, and negatively correlated with CD8 
T cells. It can be concluded from the results that MMP9, 
PELI1, THBD, and ZFP36 were all correlated with 
immune cells.

The current study had several strengths. Firstly, our 
approach identified 4 OFGs for CAD patients using 3 ML 
feature selection algorithms. The combined application 
of LASSO, SVM-RFE, and RF in this study to screen the 
OFGs associated with CAD reduced bias to the maximum 
extent. Secondly, we merged 3 different datasets to enlarge 
the sample size and removed the unqualified samples. In 
addition, we eliminated the batch effect between GEO 
datasets to make the statistical analyses more trustworthy. 
Finally, the expression levels of the 4 OFGs were validated 
in another independent dataset and showed good 
performance. However, several limitations in this study 
should be addressed. This was a bioinformatic analysis, and 
the identified hub genes as well as the interaction of these 
genes and immune cells need to be confirmed by functional 
validation in vitro and in vivo. Moreover, despite merging 
3 GEO datasets, a larger sample is still needed for better 
results in the future.

Conclusions

In  conclus ion,  105  DEGs were  ident i f ied  us ing 
bioinformatics analyses, and 4 OFGs were obtained using 3 
ML methods, providing a focus for further investigation of 
prediction for CAD. We investigated immune infiltration 
in CAD samples using CIBERSORT analysis and found a 
significant difference in immune infiltration between CAD 
and normal control samples. The relationship between 
OFGs and immune infiltration in the occurrence and 
development of CAD needs more in-depth study.
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