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Introduction

Tetralogy of Fallot (TOF) is a combined congenital heart 
malformation characterized by the simultaneous presence 
of pulmonary artery stenosis, aortic straddle, ventricular 
septal defect, and right ventricular hypertrophy, resulting 
in hemodynamic changes such as right ventricular 
hypertension and hypertrophy (1). TOF is one of the 
most common cyanotic congenital heart diseases (CHDs). 

It affects about 3–5 per 10,000 newborns and represents 
7%-10% of all CHD cases (2,3). With dramatic advances 
in surgery and medication, the early survival of TOF 
patients has improved significantly, but long-term 
sequelae, including cardiac dysfunction and arrhythmia, 
still cause great distress to most TOF patients (4). A better 
understanding of the possible causes of TOF will help us 
better understand the disease’s pathophysiology and help 
reduce the risk of disease development.
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TOF is closely related to prenatal infection, teratogenic 
exposure, maternal disease, and genetic factors, and rare 
genetic variants have been confirmed as important risk 
factors of TOF. Previous studies have identified that a 
number of genetic variants, such as NKX2-5, GATA4, 
TBX5, ZIC3, FOXH1, NODAL, and GJA1, are involved 
in TOF and other cardiac defects (5,6). A study on exome 
sequencing of 2,871 CHD patients confirmed the important 
contribution of GDF1, MYH6, and FLT4 mutations in the 
pathogenesis of CHD (7). By analyzing exome sequencing 
data from 811 probands with TOF, Reuter et al. (8) 
identified likely causative variants in FLT4 and NOTCH1, 
and revealed 1–3 variants in 21 other genes, including 
ATRX, DLL4, EP300, GATA6, JAG1, NF1, PIK3CA, RAF1, 
RASA1, SMAD2, and TBX1. Manshaei et al. (9) confirmed 
the involvement of FLT4 truncating variants and NOTCH1 
missense variants in TOF, accounting for 11–14% of 
individuals in the TOF cohort. Page et al. (10) assessed the 
genetic variants in 829 non-syndromic TOF patients and 
confirmed that the NOTCH1 gene variants are the most 
frequent genetic variants in non-syndromic TOF, followed 
by FLT4, accounting for almost 7% of TOF patients. Lin  
and his colleagues identified mutations in PEX5, NACA, 
ATXN2, CELA1, PCDHB4 and CTBP1 as potential genetic 
risk factors of sporadic TOF (11). 

Although changes in genetic material associated with 
TOF have been reported more frequently, there have 
been fewer reports of simple and sporadic TOF. Familial 
studies have shown that 80% of patients with sporadic 
CHD may have significant, complex genetic conditions 
or single nucleotide polymorphisms (SNPs), while 20% 
of the remaining CHD patients have chromosomal 
abnormalities or syndromes of multi-system malformation. 
Although genetic studies using next-generation sequencing 
technology have revealed the involvement of hundreds of 
genetic variants in TOF, these are not sufficient to fully 
elucidate the pathology of TOF.

In this study, we examined the genetic information of 
19 sporadic TOF patients by whole exome sequencing 
(WES) and screened possible pathological variations by 
bioinformatics analysis. In addition, Sanger sequencing was 
used to verify these pathological mutations. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-970/rc).

Methods

Study design and participants

A cohort of 19 unrelated patients who received surgical 
TOF treatment were recruited from Guizhou Provincial 
People’s Hospital between March 2018 and July 2021 in this 
study. TOF was confirmed by echocardiography, clinical 
symptoms, signs, and intraoperative findings. The detailed 
phenotyping data was listed in Table 1. The 19 patients aged 
9 months to 34 years included 8 females and 11 males. This 
study was a non-randomized and double-blind trial. The 
study protocol was approved by the Ethics Committee of 
Guizhou Provincial People’s Hospital (No. 2018040) and 
performed in accordance with the Declaration of Helsinki 
(as revised in 2013). Informed consent was obtained from 
enrolled participants or participants’ parents.

DNA extraction

For DNA testing, 10 mL of peripheral blood was 
collected in an EDTA-containing tube. The isolation of 
genomic DNA from the peripheral blood of the patient 
was performed with the EasyPure Blood Genomic DNA 
kit (TransGen Biotech, Beijing, China) according to the 
standard operating protocol. The quality and quantity 
of DNA samples were analyzed using a NanoDrop 
spectrophotometer (Thermo Fisher, USA). 

WES analysis

WES analysis was performed on 19 patients with sporadic 
TOF at ANOROAD (Beijing, China). In brief, the 
sequencing library was prepared using the SureSelectXT 
Target Enrichment kit (Agilent, Santa Clara, CA, USA) and 
captured using the Agilent SureSelect Human Whole Exon 
kit V5 (Agilent, Santa Clara, CA, USA). Double-terminal 
sequencing was performed using the HiSeq2500PE100 
platform (Illumina, San Diego, CA, USA). The reading 
length of each sample was 100 bp, and the average coverage 
depth was at least 100×. Each sample was repeated 
independently three times.

Data analysis

Base calling and quality control were conducted by real-time 
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Table 1 The clinical characteristics of the subjects

Subjects Age (years) Sex
RV diastolic 

diameter (mm)
RVAW  

(thickened) (mm)
RVOT (mm) Acropachia Cyanosis

TOF-1 16 F 15.1 – 7.6 Yes Yes

TOF-2 11 M 15 – 7.4 Yes Yes

TOF-3 0.83 M 15.5 – 6 No Yes

TOF-4 0.75 F 8.5 – 7 No Yes

TOF-5 1 M 18.6 6.9 – Yes Yes

TOF-6 2 M 10.3 5.7 5.4 Yes Yes

TOF-7 24 F 21 8.6 – Yes Yes

TOF-8 22 M 16.1 7.0 – No No

TOF-9 34 F 30 11 7.7 No No

TOF-10 1 F 13.4 6.4 – No Yes

TOF-11 1 M 10 9.3 – No Yes

TOF-12 5 M 11.1 5.3 4.8 No Yes

TOF-13 13 F 20.7 10.9 – Yes Yes

TOF-14 2 F 12.3 5.4 8.9 No Yes

TOF-15 4 F – – – No No

TOF-16 2 F 10.4 8.1 – No Yes

TOF-17 1 F 13.8 6.1 5 Yes Yes

TOF-18 1 M 9.6 4.6 7.5 No No

TOF-19 2 F 12.3 6.8 5.9 Yes Yes

TOF, tetralogy of Fallot; F, female; M, male; RV, right ventricle; RVAW, right ventricular anterior wall; RVOT, right ventricular outflow tract.

analysis on the NextSeq500 system. The BCL files were 
converted into FASTQ files using Bcl2fastq Conversion 
Software. The whole sequenced data were trimmed for low-
quality sequences and aligned to UCSC human reference 
genome (GRCh38/HG38) using Burrows-Wheeler 
Alignment (BWA). The Genome Analysis Toolkit (GATK) 
and VarScan were used to detect SNPs and small insertions/

deletions. ANNOVAR was used to annotate the variants 
with several databases including dbSNP, GnomAD (12),  
1000 Genomes Project (13), and ExAC (14). Finally, four 
online mutation pathogenicity prediction and analysis 
software including PolyPhen, SIFT, MutationTaster, 
and FATHMM were used to predict the influence of 
polymorphic variation on coding proteins and conservation, 
so as to conduct mutation pathogenicity analysis.

Variant validation

Sanger sequencing was used to validate candidate 
variants from WES. The sequences of primers for PCR 
amplification are shown in Table 2. The ABI PRISM BigDye 
kit and ABI 3130 DNA sequencer (Applied Biosystems, 
Carlsbad, USA) were used for sequencing. Sequencing data 
were analyzed with Chromas software (version 2.23). The 

Table 2 Sequences of primers for PCR amplification

Genes Primer sequence

RNF135 Forward: 5' GCTGGAGCTGTGAGAGGTTT 3'

Reverse: 5' CAGGTCTGTCTGAGCCAAGG 3'

APOB Forward: 5' AAGGGTTCGGTTCTTTCTCGG 3'

Reverse: 5' AGAGAGTTCCAGGGTGGCTT 3'

PCR, polymerase chain reaction.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927530/table/T1/
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samples were repeated independently three times

Results

A total of 19 TOF patients and 3 healthy volunteers were 
included in this study. The clinical characteristics of the 
participants were shown in Table 1. For all subjects, the age 
at diagnosis ranged from 9 months to 34 years. 

WES analysis was performed on DNA samples from 
19 TOF patients and 3 healthy controls. Considering that 
the incidence of TOF is 1 in 3000 live births, variants 
with a minor allele frequency (MAF) of less than 1% were 
retained. Then, only missense mutations, frame-shift 
mutations, nonsense mutations, and intron splicing site 
mutations were retained. As a result, 21 genetic variants 
involving 16 genes were found in 12 patients with sporadic 
TOF (Table 3). The types of mutations included missense 
and splicing variants. None of these genes were detected in 
samples from the 3 healthy controls.

By reviewing exome sequencing databases including the 
dbSNP, GnomAD, 1000 Genomes and ExAC, 13 of the 21 
variants identified in this study had allele frequencies of 0 
in these databases, indicating that these variants are very 
rare. Then, 4 online pathogenicity prediction and analysis 
software, including Polyphen-2, SIFT, MutationTaster, and 
FATHMM, were used to analyze the variant pathogenicity 
at the bioinformatics level. We found 9 pathogenic variants, 
6 variants that might be dangerous, and 6 variants that were 
not dangerous (Table 3).

Furthermore, we analyzed the clinical symptoms of 
TOF patients with gene variations and found that patients 
with APOB and RN135 variants had more serious clinical 
symptoms. The 2 variations were then analyzed using 
Sanger sequencing, and the results showed that the 2 
variants were heterozygous in the patients (Figure 1).

Discussion

In this study, we performed WES on DNA samples from 
19 patients with TOF. We identified 21 variants related 
to TOF that were found in 12 patients, including 9 
pathogenic variants, 6 suspected pathogenic variants, and 
6 variants of unknown significance (VUS). Patients who 
had heterozygous APOB and RNF135 variants had more 
severe symptoms of TOF, which indicates that they may be 
important genetic factors for sporadic cases of TOF as well.

WES, the high-throughput sequencing of whole 
genome exon regions by sequence capture method, has 

been used to investigate coding variation. The exome 
of 30 million bp represents about 1% of the human 
genome, but accounts for about 80% of disease-related  
variation (15). Therefore, WES is a cost-effective method 
for TOF-related variants. Previous studies have revealed 
several rare variants of TOF via WES technology. Wang 
et al. (16) revealed a novel missense variant of MYOM2 
associated with TOF by analyzing WES data from a 
Chinese family whose twins were affected by TOF. Several 
WES analyses for fetuses with antenatal diagnosis of 
TOF identified de novo heterozygous frameshift variants 
in SMARCC2 and one homozygous variant in OTUD6B 
(17,18). In this study, WES was used to characterize the 
genetic information of 19 TOF patients and 3 healthy 
controls. The reads mapping and variant calling of WES 
data was performed as previously reported (19), and 
the variants were filtered and annotated following the 
standards and guidelines for the interpretation of sequence  
variants (20). Finally, we identified 21 genetic variants 
involving 16 genes in 12 patients with sporadic TOF. 
Importantly, we found that APOB and RN135 were 
associated with serious clinical symptoms of TOF.

The APOB protein is the major apolipoprotein that 
carries chylomicron and low density lipoprotein (LDL). 
There are two isoforms of APOB in plasma, namely APOB-
48 and APOB-100. The two isoforms have the same 
N-terminal sequence. The shorter APOB-48 protein was 
tested against residue 2180. The APOB-100 transcript is 
produced after RNA editing, resulting in the termination 
codon and premature termination of  translat ion. 
Mutations in APOB gene result in low lipoproteinemia, 
normal triglyceridemia, and hypercholesterolemia due 
to ligand-deficient APOB, as well as disorders that 
affect plasma cholesterol and APOB levels (21,22). 
APOB has been identified as a causative gene of familial 
hypercholesterolemia (FH) (23,24). The investigation from 
Benedek et al. (25) showed that APOB c.10580G>A is the 
most common mutation in Swedish patients with FH. The 
agnostic genetic investigation by Zuber et al. (26) prioritized 
APOB as a key lipid risk factor for coronary artery diseases. 
In our study, we found that the TOF patient with APOB 
c.10700C>T presented with severe developmental defects 
of the heart, indicating the possible pathogenic activity of 
the APOB variant.

The RNF135 gene is located at the NF1 locus of 
17q11.2, encoding a protein containing a RING finger 
domain at the N-terminal. The RING domain is a zinc 
finger domain with ubiquitin and sumo ligase activity. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927530/table/T1/
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Several studies have indicated the correlation between 
RNF135 mutations and neuronal diseases. The RNF135 
gene is located in a chromosomal region that is often 
frequently absent in patients with neurofibromatosis (27,28). 
Furthermore, Tastet et al. (29) showed a significant increase 
in the frequency of genotypes carrying a missense variant of 
the rare allele rs111902263 (p.R115K) in a cohort of French 

patients with autism, while three unrelated patients showed 
a homozygous genotype for K115. Besides, mutations in 
the RNF135 gene were also associated with an overgrowth 
syndrome (30). So far, RNF135 has not been reported to 
be associated with cardiovascular disease. In our study, we 
found that RNF135 c.1015del was observed in patients with 
TOF. Considering the extensive function and importance of 

Table 3 List of variants in 19 TOF patients identified by whole exome sequencing

Subjects Gene Nucleotide variation Amino acid variation Pathogenicity Frequency (f)

1 Not detected

2 TBX1 NM_001379200.1:c.1001C>T p.Thr334Met LiPath NA

3 CD96 NM_001318889.2:c.791C>T p.Thr264Met Path 8.2e-6

4 BRCA1 NM_007294.4:c.3257T>A p.Leu1086Ter Path NA

RNF135 NM_032322.4:c.1015del p.Val339fs Path 1e-4

TBX1 NM_005992.1:c.929G>C p.Gly310Ala VUS 3.5e-5

5 Not detected

6 Not detected

7 G6PD NM_001360016.2:c.1388G>A p.Arg463His Path

8 ABCC6 NM_001171.5:c.232G>A p.Ala78Thr Path NA

9 Not detected

10 Not detected

11 NF1 NM_001042492.2:c.3198-2A>T Splicing LiPath NA

12 KCNQ4 NM_004700.4:c.546C>G p.Phe182Leu Path 3e-4

APOB NM_000384.3:c.10700C>T p.Thr3567Met LiPath 7.4e-5

13 PNPLA2 NM_020376.4:c.757+1G>T Splicing Path NA

NF1 NM_001042492.2:c.3198-2A>T Splicing LiPath NA

14 Not detected

15 KLF13 NM_001302461.2:c.319T>A p.Ser107Thr VUS NA

16 KLF13 NM_001302461.2:c.310G>C p.Glu104Gln VUS NA

TBX15 NM_001330677.2:c.980G>A p.Arg327His VUS 5e-4

ROM1 NM_000327.3:c.339dupG p.Leu114fs LiPath 1.6e-5

17 FLG NM_002016.1:c.7264G>T p.Glu2422Ter Path 1.9e-4

NF1 NM_001042492.2:c.3198-2A>T Splicing LiPath NA

KLF13 NM_001302461.2:c.319T>A p.Ser107Thr VUS NA

18 GATA4 NM_002052.3:c.191G>A p.Gly64Glu Path (VSD) NA

FOXC2 NM_005251.2:c.794A>G p.Asn265Ser VUS NA

19 Not detected

TOF, tetralogy of Fallot; VUS, variants of unknown significance; VSD, ventricular septal defect; NA, not available.
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this gene in protein-protein and protein-DNA interactions, 
we speculated that the RNF135 mutation might be a novel 
pathogenic mutation in TOF.

However, there are still some problems to be solved 
before these possible pathogenic genes can be used as 
diagnostic markers or therapeutic targets for TOF. Firstly, 
the relationship between variants in APOB or RNF135 and 
TOF needs to be analyzed on large cohorts. Furthermore, 
the effects of these variants on protein structure, stability 
and expression need to be uncovered. In addition, the 
potential functional involvement of these genes in the 
pathogenesis of TOF needs to be explored by further in vivo 
and in vitro experiments.

In this study, we identified several genetic variants 
associated with TOF and confirmed that variants of 
RNF135 and ABOB were associated with TOF severity. 
These findings contribute to the genetic etiopathogenesis  
of TOF.
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