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Background: The peripheral blood gene expression profile of patients with coronary artery disease (CAD) 
has not been fully resolved. The aim of this study was to further analyze the peripheral blood transcriptome 
information of CAD patients and to uncover key genes and regulatory mechanisms in the pathogenesis and 
disease progression of CAD.
Methods: The Gene Expression Omnibus (GEO) database was applied to screen out differentially 
expressed genes (DEGs) in the peripheral blood of CAD patients, and the DEGs were subjected to Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis 
(GSEA). The core genes were screened by GO, KEGG, and GSEA, and the gene-gene interaction (GGI) 
and protein-protein interaction (PPI) networks of DEGs were constructed. The GeneCards database 
was used to obtain CAD-related genes, and the GEO dataset was used to obtain intersecting genes. The 
intersecting genes were analyzed for bioenrichment and prediction of potential therapeutic agents, and 
predictive models were constructed for the intersecting genes. Finally, immune infiltrating cells from the 
GEO dataset were analyzed.
Results: A total of 79 DEGs were screened in the peripheral blood of CAD patients, of which three 
were autophagy-related genes. Biological enrichment analysis showed that the DEGs were associated with 
metabolic pathways, and vascular smooth muscle contraction and were mainly involved the MAPK signaling 
pathway, metabolic pathways, and the PI3K-Akt signaling pathway. The S100A8, ENTPD1, and MMP9 
further screened were screened. A total of 11 CAD crossover genes and 75 potential therapeutic agents were 
obtained, and the column line graph prediction models constructed for S100A8, HSPB1, F5, MMP9, and 
PDE9A had good predictive power. There were significant differences in immune cells in CAD patients 
compared to healthy individuals, especially in T cells regulatory (Tregs) and B cells naïve.
Conclusions: The peripheral blood of CAD patients screened by the GEO dataset was significantly 
different from that of the healthy population, and the DEGs and intersecting genes were involved in 
numerous key biological processes that may be involved in the development and progression of CAD and 
could serve as its regulatory sites and therapeutic drug targets.
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Introduction

The development of coronary artery disease (CAD) is 
controlled by multiple risk factors and is one of the most 
common causes of death (1). Clinical observations as early 
as the 1950s support the idea that CAD risk is heritable (2), 
and environmental and genetic factors such as hypertension, 
obesity, dyslipidemia, and family history may contribute 
to the development of CAD (3-5). According to the latest 
global burden of disease report, ischemic heart disease 
is the tenth highest cause of disease in the middle-aged 
and elderly population (6), and CAD is the leading cause 
of death due to cardiovascular disease, accounting for 
approximately 45% of all cases (7). Currently, percutaneous 
transluminal coronary angiography, which is the standard 
for the diagnosis of CAD, is an invasive test that may 
cause serious adverse effects and, to a certain extent, limit 
its use in clinical practice. However, at this stage, there is 
a lack of effective biomarkers to predict the risk of CAD 
development in clinical practice.

The literature shows that as early as 1967, the 
Framingham cohort study revealed the association of 
many risk factors with CAD, established a cardiovascular 
disease risk assessment model, and calibrated the model to 
be applicable to populations around the world (8,9). This 
model is more accurate in predicting short-term disease 
in middle-aged and older adults, but is less effective in 
younger patients, and does not predict long-term disease 
risk. Based on Framingham’s model, subsequent researchers 
have made improvements, but it still has some shortcomings 
(10,11). The above models are based on traditional CAD 
risk factors such as gender, age, blood pressure, and lipids, 
and the prediction results are more reliable only when the 
risk factors accumulate to a certain level, thus limiting their 
generalizability, predictive value, and capacity to predict 
early-onset CAD.

The transcriptome is a collection of all RNAs produced 
by a species or a specific cell type. Based on high-
throughput analysis and detection technology, thousands 
of targets and pathways can be screened to obtain common 
gene variant loci for CAD, which can reveal the differences 
in gene expression and structure of CAD, elucidate the 
molecular mechanism, predict and intervene in CAD, and 
potentially prevent serious adverse cardiovascular events. 
Seven common disease genes, including CAD, have been 
identified in previous studies, and a database of related 
genetic information has been established (12). In recent 
years, a genome-wide association study has identified more 

than 160 susceptibility loci for CAD (13), which has greatly 
facilitated the process of CAD genetic research. The aim 
of this study was to analyze the RNA expression profiles of 
CAD patients in anticipation of discovering new biomarkers 
as predictors of CAD pathogenesis for early diagnosis 
and specific targeted therapy for CAD. We present the 
following article in accordance with the STREGA reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-991/rc).

Methods

Dataset acquisition

The GSE20680 and GSE20681 datasets were downloaded 
from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi .nlm.nih.gov/geo/) .  Cases  with 
intraluminal stenosis less than 50% were considered the 
control group and those greater than 50% were considered 
the disease group. In GSE20680, there were 87 cases in 
the disease group and 108 cases in the control group. In 
GSE20681, there were 99 cases in the disease group and 
99 cases in the control group. The datasets were based on 
the GPL4133 platform, and we used R language (version 
3.6.3; The R Foundation for Statistical Computing, Vienna, 
Austria) to normalize the data using the “limma” package 
(Figure S1).

Differentially expressed genes and autophagy intersection 
genes

We used R language to pre-process and analyze the 
microarray data, and used the “limma” package to screen 
the differentially expressed genes (DEGs) for CAD. 
The “pheatmap” package was used to visualize the 
differential genes. The VennDiagram package was used 
to analyze the DEGs of the two datasets separately to 
obtain the intersecting genes. Autophagy-related genes 
were downloaded from the HADb database (http://www.
autophagy.lu/index.html), and the “VennDiagram” package 
was used to obtain their intersecting genes.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) bioenrichment analysis

GO and KEGG enrichment analysis of DEGs was 
performed using the clusterProfiler, enrichplot, and ggplot2 
packages in R. Significant functional enrichment was 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-991/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-991/rc
https://www.ncbi.nlm.nih.gov/geo/
https://cdn.amegroups.cn/static/public/JTD-22-991-Supplementary.pdf
http://www.autophagy.lu/index.html
http://www.autophagy.lu/index.html
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considered when Q<0.05. The enrichment analysis of GO 
was performed from three aspects: biological process (BP), 
cellular composition (CC), and molecular function (MF). 
Significant molecules or genes in signaling pathways were 
identified by KEGG.

Gene set enrichment analysis (GSEA)

GSEA of differential genes was performed using the 
clusterProfiler, ReactomePA, and enrichplot packages in R 
language. The top five enrichment results were visualized.

Gene-gene interaction (GGI) and protein-protein 
interaction (PPI) network establishment and core gene and 
microRNA screening

Construct A GGI network of differential genes was 
constructed using the genemania database (http://
genemania.org/). The PPI network was constructed using 
the Search Tool for the Retrieval of Interacting Genes/
Genomes database (STRING; https://string-db.org) 
and the dataset was visualized using cytoscape (version 
3.9.0; https://cytoscape.org/index.html) for the top ten 
differentially linked genes calculated using Cytohubba. The 
microRNAs (miRNAs) of CAD differential genes were 
predicted using the FunRich database (version 3.1.3; http://
www.funrich.org/). The results were entered into cytoscape 
for visualization and analysis.

CAD crossover gene function and drug sensitivity analysis

Using the GeneCards database (https://www.genecards.
org/), CAD therapeutic targets were retrieved using the 
keyword “coronary heart disease” and then intersected 
with the GSE20680 and GSE20681 datasets. Then, GGI, 
GO, and KEGG enrichment analyses were performed on 
the intersecting genes. Finally, potential drugs targeting 
the intersecting genes were predicted using The Drug-
Gene Interaction Database (DGIdb; www.dgidb.org) and 
visualized using Cytoscape for network modules.

CAD intersection gene prediction model construction

The prediction performance of the intersecting genes was 
analyzed using the “pROC” package in R to compare the 
prediction performance of the genes intersecting the two 
datasets. The top five area under the curve (AUC) values of 
the intersecting genes in the two datasets were included in 

the subsequent model building, and the “rms” package was 
used to build the CAD prediction model.

Immuno-infiltration analysis of DEGs

Two normalized datasets, GSE20680 and GSE20681, were 
imported into the Cell Tpe Identification by Estimating 
Relative Subsets of RNA Transcripts (CIBERSORT; 
https://cibersort.stanford.edu/), and the expression matrices 
of human immune cell subtypes were deconvoluted to 
obtain the percentages of 22 immune cell types. The results 
were visualized using R language.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Statistical analysis

All bioinformatics analyses in this study were performed 
using the R software. The PHEATMap package was used 
to construct the expression heat maps of important genes 
in CAD patients and healthy controls. Limma package 
in R language was used for statistical test to compare the 
expression differences of important genes between CAD 
patients and healthy controls. The AUC value in the ROC 
curve was used to evaluate the diagnostic efficacy, and 
P<0.05 was considered statistically significant.

Results

DEGs and autophagy crossover genes

Based on the screening criteria of adj. P<0.05 and FC 
absolute value >2,221 DEGs were screened in the 
GSE20680 dataset, of which 150 were up-regulated and 
71 were down-regulated; 297 DEGs were screened in the 
GSE20681 dataset, of which 212 were up-regulated and 85 
were down-regulated. The expression changes in the test 
and control groups and their gene and sample clustering 
results are shown in Figure 1. Some 79 co-expressed DEGs 
existed in the GSE20680 and GSE20681 datasets, which 
were further intersected with autophagy-related genes and 
three of them were found to be autophagy-related genes 
(Figure 2).

Biological enrichment analysis of DEGs

The GO analysis revealed that the functions of the co-
expressed DEGs were mainly focused on the following 

http://genemania.org/
http://genemania.org/
https://string-db.org
https://cytoscape.org/index.html
http://www.funrich.org/
http://www.funrich.org/
https://www.genecards.org/
https://www.genecards.org/
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Figure 2 Venn diagram. (A) DEGs of GSE20680 and GSE20681 datasets taken as intersection; (B) intersection of DEGs with mitochondrial 
autophagy-related genes taken as intersection. DEGs, differentially expressed genes.

Figure 1 Differential expression analysis of the GEO dataset. (A,B) Heat map and volcano plot of differential expression analysis of 
GSE20680 dataset; (C,D) Heat map and volcano plot of differential expression analysis of GSE20681 dataset. FC, fold change; GEO, Gene 
Expression Omnibus.
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aspects: BP was mainly the immune response-regulating 
signaling pathway, cellular polysaccharide catabolic 
process and polysaccharide CC is a ficolin-1-rich granule, 
external side of plasma membrane, and cytoplasmic vesicle 
lumen; MF was mainly involved in monocarboxylic acid 
binding, 3,5-cyclic-GMP phosphodiesterase activity 
and 1-acylglycerol-3-phosphate-acyltransferase activity, 
nucleotide metabolism, glycerophospholipid metabolism, 

the NF-kappa B signaling pathway, and cell adhesion 
molecules (Figure 3).

The GSEA analysis of DEGs in the GSE20680 dataset 
showed that DEGs were concentrated in amyotrophic 
lateral sclerosis, metabolic pathways, Parkinson’s disease, 
phagosome, and vascular smooth muscle contraction. In 
contrast, the GSE20681 data mainly involved the MAPK 
signaling pathway, metabolic pathways, pathways in cancer, 
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Figure 3 GO and KEGG analysis of differentially expressed genes. (A) GO analysis; (B) KEGG analysis. BP, biological process; CC, cellular 
composition; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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pathways of neurodegeneration—multiple diseases, and the 
PI3K-Akt signaling pathway (Figure 4).

GGI and PPI network establishment and core gene and 
miRNA screening

We first analyzed the interactions between the differential 
genes to find the genes that might share functions with it, 
then explored the reciprocal proteins of the corresponding 
proteins of these genes by STRING, and then screened 
the top 10 core genes: RPL39, RPL19, RPS12, RPL18A, 
BYSL, ENTPD1, S1OOA8, LY96, MNDA, and MMP9 core 
genes (Figure 5). To further explore the potential role of 
these DEGs in miRNA, we used the funrich database for 
prediction. The results yielded 29 genes including S100A8, 

ENTPD1, and AP1S2ADA and their possible target 
miRNAs (Figure 6).

Functional and drug sensitivity analysis of CAD crossover 
genes

A total of 2,282 potential pathogenic genes for CAD were 
obtained from the GeneCards database and were intersected 
with the GSE20680 and GSE20681 datasets to obtain 11 
genes: EPOR, ALOX5AP, PDE9A, PYGL, F5, MMP9, 
ADA, S100A8, CBS, ENTPD1, and HSPB1 (Figure 7A,7B). 
These genes are closely related to the regulation of body 
fluid levels, cytoplasmic vesicle lumen, and monocarboxylic 
acid binding, and are mainly involved in purine metabolism, 
nucleotide metabolism, and the VEGF signaling pathway 
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Figure 4 GSEA analysis of DEGs. (A) GSE20680 dataset; (B) GSE20681 dataset. GSEA, gene set enrichment analysis; DEGs, differentially 
expressed genes.
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Figure 5 DEG network construction and core gene analysis. (A) DEG GGI; (B) core gene PPI; (C) visualization network of top 10 core 
genes. DEG, differentially expressed gene; GGI, gene-gene interaction; PPI, protein-protein interaction.
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Figure 6 Analysis of DEG-miRNA interaction network. DEG, differentially expressed gene.
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(Figure 7C,7D). Based on the drug sensitivity analysis of the 
intersecting genes, we also identified 75 potential target 
therapeutics (Figure 7E).

CAD intersection gene prediction model construction

To explore the diagnostic efficacy of these intersecting 

genes, we analyzed the GSE20680 and GSE20681 
datasets and constructed prediction models, respectively. 
The results showed that five genes, S100A8, HSPB1, 
F5, MMP9, and PDE9A, had good AUC values and the 
constructed column line graph prediction models had 
good predictive power in both GSE20680 and GSE20681 
datasets (Figure 8).

Regulation of body fluid levels
Wound healing

Nucleoside phosphate catabolic process
Organophosphate catabolic process

Blood coagulation
Coagulation
Hemostasis

Purine ribonucleotide catabolic process
Purine nucleotide catabolic process

Ribonucleotide catabolic process
Cytoplasmic vesicle lumen

Vesicle lumen
Secretory granule lumen

External side of plasma membrane
Proteasome complex axon cytoplasm

Platelet alpha granule lumen
Endoplasmic reticulum-golgi

Intermediate compartment membrane
Endopeptidase complex

Neuron projection cytoplasm
Monocarboxylic acid binding

Carboxylic acid binding
Long-chain fatty acid binding

Fatty acid binding
Pyridoxal phosphate binding

Vitamin B6 binding
Organic acid binding

Vitamin binding
Lyase activity

RAGE receptor binding

Purine metabolism

Nucleotide metabolism

Starch and sucrose metabolism

Primary immunodeficiency

Glycine, serine and threonine metabolism

Cysteine and methionine metabolism

Pyrimidine metabolism

VEGF signaling pathway

Fc epsilon RI signaling pathway

Biosynthesis of amino acids

11 
(0.3%)

69 
(1.9%)

102 
(2.8%)

2,100 
(57.5%)

594 
(16.3%)

706 
(19.3%)

68 
(1.9%)

GSE20680

Gene card

GSE20681

0.1 0.2 0.3 0.4 0.10 0.15 0.20 0.25 0.30

M
F

Gene ratio

Count Count

P value
P value

1
2
3
4

1.0
1.5
2.0
2.5
3.0

0.04
0.03
0.02
0.01

0.08
0.06
0.04
0.02

Gene ratio

C
C

B
P

A B

C D

E

Figure 7 CAD intersection gene function and drug sensitivity analysis. (A) CAD intersection gene Venn diagram; (B) intersection gene 
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coronary artery disease; GGI, gene-gene interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.



Journal of Thoracic Disease, Vol 14, No 9 September 2022 3423

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(9):3415-3428 | https://dx.doi.org/10.21037/jtd-22-991

CAD immune infiltration

The inflammatory response is an important factor in 
the development of CAD, so we analyzed the level and 
correlation of 22 immune infiltrating cells in the GSE20680 
and GSE20681 datasets, respectively. In the GSE20680 
dataset, the levels of T cells CD4 naïve, T cells CD4 
memory activated, T cells CD8, monocytes, and neutrophils 
fluctuated significantly between controls and CAD patients, 
and there were complex positive or negative correlations 
between these immune cells. The T cells regulatory (Tregs) 
were significantly reduced in CAD patients compared to 
controls (Figure 9). In the GSE20681 dataset, T cells CD8, 
macrophages M0, B cells naïve, T cells CD4 memory 
activated, and natural killer (NK) cells resting were the 
immune cells that changed more in controls and CAD 
patients, with a significant difference in the level of B cells 
naïve (Figure 10). 

Discussion

In this study, two sets of genes related to CAD were 
obtained by screening microarray data from the GEO 
database through bioinformatics analysis, and they were 
analyzed separately from controls to obtain DEGs and 
autophagy-related genes. The GO, KEGG, and GSEA 
analyses of DEGs revealed that some DEGs were involved 
in purine metabolism, metabolic pathways, the MAPK 
signaling pathway, and the PI3K-AKT signaling pathway. 
The main lesion of CAD vessels is coronary atherosclerosis 
(AS), and the main hallmark is inflammatory cell infiltration 
of the arterial vessel wall and abnormal proliferation of 
vascular smooth muscle cells or macrophages (14). To 
further explore the relationship with CAD pathogenesis-
related genes, enrichment functions, transcription factors, 
and possible immune cells involved, we performed PPI 
and miRNA analysis in an attempt to identify potential 
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target genes and performed immune infiltration and drug 
sensitivity analysis.

Mitochondria are the main site of nutrient metabolism 
and adenosine triphosphate (ATP) production in most 
cells, and normal mitochondrial structure and function is a 
prerequisite for various intracellular activities. Myocardial 
ischemia-reperfusion injury (MIRI) can cause significant 
mitochondrial damage, and the damaged mitochondria 
can be encapsulated by intracellular membrane structures 
to form autophagic vesicles and eventually mitochondrial 
autophagy (15). When myocardial tissue ischemia occurs, 
mitochondrial autophagy can help cardiomyocytes adapt 
to tissue ischemic and hypoxic conditions and improve the 
chances of cell survival (16). In addition, it has been found 
that basal level autophagy helps to slow down the rate 

of AS plaque formation and maintain the stability of AS 
plaques (17). However, current studies are inconclusive as to 
whether autophagy actually facilitates cell survival after the 
onset of MIRI (18,19). Autophagy is involved throughout 
the development of AS, and in our present study we also 
observed that autophagy is involved in the regulation of 
CAD, but its specific mechanism of action is not yet clear.

In functional enrichment analysis, it was shown that the 
intermingled genes are involved in regulating signaling 
pathways such as MAPK and PI3K-AKT. Mitogen-
activated protein kinase (MAPK) is involved in regulating 
various physiological functions such as cell growth, division, 
death, and stress apoptosis, with ERK1/2 and p38 MAPK 
being key targets of endothelial cell inflammation and 
apoptosis in the mechanism of AS development (20-22). 
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Figure 9 GSE20680 dataset immune infiltration analysis. (A) Bar graph. (B) heat map; (C) immune cell correlation analysis; (D) violin plot 
of immune cell infiltration levels in healthy individuals and CAD patients. CAD, coronary artery disease.
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In addition, the MAPK pathway may be involved in the 
differentiation of monocytes to macrophages, and blocking 
this process may contribute to the treatment of AS (23). 
The phosphatidylinositol 3-kinase (PI3K)/phosphokinase 
B (AKT) signaling pathway has a wide range of biological 
effects and is involved in regulating cell division, 
proliferation, apoptosis, metabolism, and other activities 
that are closely associated with cardiovascular diseases such 
as hypertension, ischemic cardiomyopathy, and AS (24-26). 
These studies confirm the importance of the MAPK and 
PI3K-AKT signaling pathways in the development of pre-
CAD and also remind us to focus on the management of 
inflammation in CAD.

The S100A8 gene encodes a protein that is a member of 
the S100 protein family and is involved in regulating many 
cellular processes. Stress-induced elevation of S100A8/A9 

has been evidenced in patients with CAD with impaired 
cortisol response and is associated with poor prognosis 
in CAD patients (27). Recent studies have shown that 
S100A8/A9 is positively correlated with bactericidal/
permeability-increasing protein and is a potential biomarker 
of myocardial infarction in patients with acute myocardial 
infarction (28). In addition, some researchers found that 
HSP27 expression was increased in single nucleated cells of 
human peripheral blood and significantly correlated with 
the severity of CAD, rendering it a potential prognostic 
marker (29). Matrix metalloproteinase-9 (MMP9), an 
important member of MMP, is involved in the whole 
process of AS and high MMP9 expression is associated with 
plaque instability (30,31). In a subsequent analysis, these 
genes were found to be positively or negatively correlated 
with some immune cells, suggesting that the genes and the 
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Figure 10 GSE20681 dataset immune infiltration analysis. (A) Bar graph; (B) heat map; (C) immune cell correlation analysis; (D) violin plot 
of immune cell infiltration levels in healthy individuals and CAD patients. CAD, coronary artery disease.
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immune microenvironment influence each other, but the 
exact mechanism is unknown. Our study suggests that these 
genes have an important role in the development of CAD 
and have good predictive efficacy, and also suggests that 
these target genes may be potential therapeutic targets.

The instability of atherosclerotic plaques is a common 
pathological basis of CAD, and the process of atherosclerotic 
plaque formation involves not only lipid deposition but also 
a systemic chronic inflammatory response, with circulating 
neutrophils, lymphocytes, and other inflammatory cells 
involved in the inflammatory response and immune process 
during the course of CAD (32,33). A study confirmed that 
T lymphocytes accounted for 10–20% of all nucleated cells 
within atherosclerotic plaques (34). Moreover, different 
phenotypes of T lymphocytes have different roles in the 
development of CAD, with T helper lymphocytes 17 (Th17) 
promoting the development of AS, whereas T regulatory 
lymphocytes (Tregs) play a protective role (35,36). By 
sequencing peripheral blood from CAD patients, a study 
found that Tregs were reduced in CAD, and subsequently 
identified several markers of Tregs (37). In addition, 
clinical studies have shown that Tregs may be involved in 
immune regulation early in the atherosclerotic process (38). 
Macrophages are the “key drivers” of AS development, 
affecting plaque stability and AS outcome (39). Macrophages 
are regulated by multiple signaling pathways, among which 
the PI3K/Akt signaling pathway plays an important role in 
macrophage survival, proliferation, and migration, and is 
involved in regulating macrophage polarization, autophagy, 
and lipid metabolism (40-42). In our study, we found that a 
variety of immune cells such as Tregs, macrophages, B cells 
naïve, and T cells CD8 were imbalanced in CAD, which 
is consistent with the above-mentioned reports. B cells 
naive and T cells CD8 are significantly elevated in patients 
with CAD, which may be an indicator of potential disease 
severity and also suggest clinicians to enhance the treatment 
of aseptic inflammation, but the mechanisms of immune 
cells involved in CAD need to be investigated in depth in 
follow-up. In addition, these results further suggest that the 
role of the PI3K/Akt signaling pathway in CAD should not 
be underestimated.

In this study, we analyzed the transcriptomic information 
of peripheral blood from CAD patients by using a larger 
sample dataset. A total of 79 DEGs were obtained after 
differential expression analysis with controls, but only 11 
intersected genes were obtained after intersection with 
potential pathogenic genes of CAD, which we consider 
to be related to the large number of unknown CAD-

related genes. A predictive model consisting of five genes, 
S100A8, HSPB1, F5, MMP9 and PDE9A, can help identify 
patients who are likely to develop CAD, as well as select the 
corresponding targeted drugs for patients with combined 
mutations in such targets. In addition, peripheral blood, 
rather than coronary artery tissue, was used as the data 
set specimen for this study. Lack of research funding and 
limitations in clinical specimen collection prevented actual 
clinical gene validation in this study. In addition, we were 
unable to obtain information on coronary stenosis in these 
database patients to combine these markers for further 
correlation analysis.

Conclusions

In summary, this study found that the mRNA and immune 
infiltrating cells detected in peripheral blood of CAD 
patients were significantly different from those of the 
healthy population, and that DEGs and crossover genes 
were involved in many key biological processes. The DEGs 
and intersecting genes identified in this study can be used 
as regulatory and therapeutic targets, and the models 
constructed in this study have predictive power.
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Supplementary
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Figure S1 Normalize of GEO data sets. (A,B) GSE20680 after normalize and before normalize; (C,D) GSE20681 after normalize and 
before normalize. GEO, Gene Expression Omnibus.


