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Introduction

Lung cancer is the leading cause of cancer-related 
death (1,2). The emergence of targeted therapy and 
immunotherapy in recent years has greatly improved the 
overall survival (OS) of patients; however, drug resistance 
and the low expression of immune checkpoints are still 
key issues that need to be solved (3). The mortality rate of 
lung squamous cell carcinoma (LUSC) patients continues 

to increase due to a lack of effective targeted drugs (3,4). 
Drug resistance in lung cancer is mainly caused by the 
heterogeneity of cancer cells and metabolic reprogramming-
driven microenvironment adaptation phenotypes (5). 
Thus, it is very important to focus on the development 
of individualized treatment strategies and to find new 
treatments for lung cancer to address existing problems.

Cancer vaccines and chimeric antigen receptor T 
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(CAR-T) cell therapy are emerging hot topics in cancer 
treatment. Cancer vaccines mainly activate the immune 
system of cancer patients to recognize and remove cancer 
cells by vaccinating specific antigens of cancer, while 
CAR-T therapy mainly enhances the anti-tumor immunity 
of patients by engineering the T cells extracted from the 
patients themselves and expanding them before transfusion 
(6-9). Cancer vaccines have received much attention in 
recent years due to their economical nature, and clinical 
studies have been conducted in the treatment of a variety 
of cancers (10-14). Cancer vaccines are mainly divided 
into messenger ribonucleic acid (mRNA) vaccines, peptide 
vaccines, and lentiviral vaccines, and their main difference is 
the different vectors that deliver the cancer antigens (6,15). 

The mRNA tumor vaccine is generally prepared by using 
the template mRNA of translated proteins and injected 
into the body to synthesize specific antigenic proteins as 
“targets” through the protein synthesis system of human 
cells to induce an immune response to the "targets" 
and then target the tumor cells. mRNA vaccines have 
attracted much attention in the study of a variety of cancer 
vaccines because of their easy synthesis and economic 
advantages (16). mRNA vaccines do not integrate into 
the genome and can also be degraded by mRNA enzymes  
in vivo with good long-term safety (9,17), and their safety 
has also been confirmed in the process of counteracting 
coronavirus disease 2019 (18). Meanwhile, mRNA has the 
limitations of causing strong immune response and high 
storage conditions. However, to date no relevant studies 
on mRNA cancer vaccines in the treatment of LUSC have 
been conducted.

In this article, we used bioinformatics methods based 
on the specificity and immunogenicity of the vaccine to 
identify potential LUSC tumor antigens and revealed 
the immune landscape of patients with LUSC through a 
subsequent analysis, identified the characteristics of the 
population suitable for mRNA vaccination, provided a new 
perspective for the development of mRNA vaccines for 
LUSC, and emphasized the importance of individualized 
therapy. We present the following article in accordance with 
the STREGA reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-22-1113/rc).

Methods

Acquisition of public data on LUSC

The LUSC transcriptome and mutation data used in this 
study were downloaded from University of California, Santa 

Cruz website (https://xena.ucsc.edu/) [cohort: GDC The 
Cancer Genome Atlas (TCGA)-LUSC]. High-throughput 
sequence (HTSeq)-Fragments per kilobase of exon model 
per million mapped fragments (FPKM), somatic mutation 
data, and sample clinical information were downloaded (19).  
Masked copy number segment data for LUSC were 
downloaded from TCGA (https://portal.gdc.cancer.gov/). 
Genes associated with OS in LUSC were obtained from the 
Gene Expression Profiling Interactive Analysis 2 (GEPIA 
2; http://gepia2.cancer-pku.cn/#survival) database. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of potential tumor antigens

A copy number variation analysis was performed using 
genomic identification of significant targets in cancer 
(GISTIC) 2.0 software (20). The human genome reference 
consortium human build 38 (GRCh38) was used as the 
reference genome, and the significance threshold was set at 
0.01. Software default values were used for the remaining 
parameters. The genomic localization of all significantly 
amplified genes was visualized using the “RCircos” R 
package. The functional enrichment analysis of genes with 
significantly amplified copy numbers was performed using 
the “clusterprofiler” R package (21). All the mutated genes 
were visualized using the “maftools” R package (22). Venn 
diagrams identifying the mutations and amplified genes 
associated with OS in patients with LUSC were plotted by 
online tools (http://www.ehbio.com/test/venn/#/).

Identification of LUSC tumor antigens

To iden t i f y  LUSC tumor  an t igens  w i th  h igher 
immunogenicity, we analyzed the correlations of all potential 
tumor antigens with the level of infiltration of the 3 antigen-
presenting cells using the tumor immune estimation resource 
(TIMER) online tool (23) (https://cistrome.shinyapps.
io/timer/). Survival curves showing the expression of the 
potential tumor antigens were plotted using GEPIA 2 (24). In 
addition, the cohorts were divided into high and low groups 
using the expression of the 2 tumor antigens separately 
and analyzed for functional enrichment using the “gene set 
variation analysis (GSVA)” R package (25).

Identification of LUSC immune subtypes

All the immune-related genes were obtained from the 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-1113/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-1113/rc
https://xena.ucsc.edu/
https://portal.gdc.cancer.gov/
http://gepia2.cancer-pku.cn/#survival
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IMMPORT database (https://www.immport.org/shared/). 
Immune-related gene expression matrices from the TCGA-
LUSC cohort were extracted and subjected to consensus 
clustering using the “ConsensusClusterPlus” R package. 
The optimal number of clusters was determined to be 5 
using the elbow method. The HALLMARK gene set used 
for the gene set enrichment analysis (GSEA) of patients 
in the 5 clusters was obtained from the MSigDB database 
(http://www.gsea-msigdb.org/gsea/downloads.jsp).

Immune landscape analysis among clusters

Immune-stromal scores were calculated using the R 
package “ESTIMATE”. The calculation of tumor purity 
was based on a previous publication (26). Tumor purity = 
cos (0.6049872018+0.0001467884× ESTIMATE score). 
A GSVA algorithm enrichment analysis was performed 
using 28 immune cell gene sets from previous publications 
(27). The immune checkpoints and immunogenic cell 
death modulators genes have been referred to in previously 
published articles (28).

Mutational landscape of LUSC immune subtypes

The tumor mutation burden (TMB) was calculated using 
the R package “maftools”. The mutated driver genes were 
identified using MutsigCV software (29) and visualized 
using the R package “maftools”.

Weighted gene co-expression network analysis (WGCNA)

The “WGCNAR” package (30) was used for the WGCNA 
with a soft threshold set at 50 to exclude outlying samples. 
In total, 6 gene co-expression modules were ultimately 
identified, and we calculated the correlations of the modules 
with the phenotypes of suitable vaccinated mRNA cancer 
vaccines from the above-mentioned immune landscape 
analysis. Finally, a univariate Cox regression analysis was 
performed of suitable vaccinations using genes in the 
most relevant modules to identify potential prognostic 
biomarkers after vaccination.

Drug sensitivity analysis

The drug sensitivity analysis was performed using the R 
package “pRRophetic” (31). In the analysis, we used the 
(genomics of drug sensitivity in cancer) GDSC database as 
the reference data to construct the model and performed an 

analysis of the sensitivity of multiple anti-cancer drugs on 
the 2 TCGA-LUSC subtypes that we had identified.

Statistical analysis

R software (version 4.1.1) (http://www.r-project.org/) and 
its corresponding R packages were used for statistical data 
analysis. Spearman correlation analysis was used to analyze 
the correlation between antigen-presenting cells and gene 
expression. A log-rank test was used to compare K-M curves 
for DFS and OS analysis. Kruskal-Wallis signed-rank test 
was used to compare gene expression, ESTIMATE scores, 
and TMB between multiple groups. Wilcoxon signed-rank 
test was used to compare the IC50 of anti-cancer drugs 
between two groups.

Results

Screening of potential tumor antigens in LUSC

To search for characteristic LUSC tumor antigens, we 
started with genomic variant events. First, regions of 
chromosomal copy number amplification in LUSC were 
identified by GISTIC software (see Figure 1A). We used all 
the copy number amplified genes as candidates for LUSC 
tumor antigens and plotted the chromosomal localization 
of partial genes (see Figure 1B). A Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analysis of all the copy number amplified genes showed 
their involvement in the regulation of cancer-related 
pathways and immune-related pathways (see Figure 1C). 
In addition, as genetic mutations play an important role 
in tumor development and progression, we also included 
all genes with mutations as candidates (see Figure 1D). All 
the LUSC tumor antigen candidates were intersected with 
genes related to patient survival obtained from the GEPIA 
database, and ultimately, 14 potential tumor antigens related 
to LUSC prognosis were obtained for the downstream 
analysis (see Figure 1E).

Identification of LUSC tumor antigens

The key mechanism of mRNA vaccines lies in the activation 
of adaptive immunity by recognition by antigen-presenting 
cells (9). Thus, we used the correlation between the 
expression of potential tumor antigens and the infiltration 
level of the 3 antigen-presenting cells to screen for potential 
mRNA vaccine antigens. Using the TIMER online tool 
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Figure 1 Identification of prognostic mutated genes in LUSC. (A) Significant copy number amplified genomic regions in LUSC 
identified by GISTIC2.0 Software. (B) Genomic mapping of genes with significantly amplified copy numbers. (C) KEGG functional 
enrichment analysis of all copy number amplified genes, x-axis is the number of enriched genes. (D) Gene mutation landscape in LUSC. 
(E) Identification of prognostically relevant mutated genes. TMB, tumor mutation burden; OS, overall survival; LUSC, lung squamous cell 
carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

(https://cistrome.shinyapps.io/timer/), we identified  
2 genes [i.e., bone morphogenetic protein 5 (BMP5) and 
claudin 5 (CLDN5)] in the 14 candidate tumor antigens 
whose expression presented a positive correlation with 
the level of infiltration of the antigen-presenting cells (see 
Figure 2A,2B). In addition, patients with high expression 

of these genes had worse OS and disease-free survival 
(see Figure 2C-2F). After grouping patients according 
to the expression of these 2 genes, the GSEA-based 
KEGG pathway enrichment analysis showed that the high 
expression group of these 2 genes had enriched immune-
related pathways, while the low expression group had a 

Growth hormone synthesis, secretion and action

JAK-STAT signaling pathway

PI3K-Akt signaling pathway

IL-17 signaling pathway

Missense mutation
Nonsense mutation
Splice site
Frame shift del
Frame shift ins

0.01

0.02

0.03

0.04

q value

In frame del
Translation start site
In frame ins
Multi hit

2330

0
TP53
TTN

CSMD3
MUC16

RYR2
LRP1B
USH2A
SYNE1
ZFHX4

KMT2D
FAM135B

XIRP2
CDH10
SPTA1
NAV3

PCDH15
PAPPA2

RYR3
DNAH5
PKHD1
DNAH8

PKHD1L1
HCN1

COL11A1
DNAH9
ERICH3

ADAMTS12
FLG

MUC17
Sl

77%
68%
40%
36%
35%
30%
30%
29%
26%
22%
22%
19%
19%
19%
19%
18%
18%
18%
17%
17%
16%
16%
15%
15%
15%
15%
15%
15%
15%
15%

Amplification

720

0           10         20
Genes (number)

0                     377
No. of samples

TM
B

759 15,337

14

4 285

197

Mutation

OS-related genes

Altered in 482 (98.17%) of 491 samples.

A

B

C

D

E



Journal of Thoracic Disease, Vol 14, No 9 September 2022 3521

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(9):3517-3530 | https://dx.doi.org/10.21037/jtd-22-1113

Figure 2 Identification of potential tumor antigens in LUSC. (A) Correlation of BMP5 expression with the infiltration of 3 antigen-
presenting cells. (B) Correlation of CLDN5 expression with the infiltration of 3 antigen-presenting cells. (C) Disease-free survival curves 
after grouping TCGA-LUSC cohorts according to BMP5 expression. (D) OS curves after grouping TCGA-LUSC cohorts according to 
BMP5 expression (E) OS curves after grouping TCGA-LUSC cohorts according to CLDN5 expression (F) Disease-free survival curves 
after grouping TCGA-LUSC cohorts according to CLDN5 expression. (G) GSEA functional enrichment analysis of samples after BPM5 
expression grouping. (H) GSEA functional enrichment analysis of samples after CLDN5 expression grouping. TPM, transcripts per 
kilobase of exon model per million mapped reads; cor, correlation; BMP5, bone morphogenetic protein 5; CLDN5, claudin 5; HR, hazard 
ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes; LUSC, lung squamous cell carcinoma; TCGA, The Cancer Genome Atlas; OS, 
overall survival; GSEA, gene set enrichment analysis. 
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more active cell cycle (see Figure 2G,2H). Taken together 
with the above results, while the high expression of BMP5 
and CLDN5 positively regulates immune-related pathways, 
the high expression of tumor cells is associated with a worse 
prognosis. Thus, mRNA vaccines developed based on these 
2 genes to exogenously vaccinate patients can be recognized 
by antigen-presenting cells and promote tumor immunity, 
while avoiding the worse prognosis brought about by the 
high expression of the tumor cells themselves.

Immune subtypes in patients with lung adenocarcinoma

To identify a potentially beneficial population for mRNA 
vaccination, we used immune-related genes to identify 
the different immune statuses of patients with lung 
adenocarcinoma by consensus clustering. Using the elbow 
method, we ultimately identified 5 lung adenocarcinomas 
with different immune statuses (see Figure 3A-3C). In 
addition, a survival analysis of these patients with different 
immune statuses showed that Clusters C and D had a poor 
prognosis (see Figure 3D). To understand the tumor statuses 
of different patients, we performed an enrichment analysis 
of the HALLMARK gene set using the GSVA algorithm. 
The results showed that Cluster D was significantly 
enriched in multiple carcinogenic pathways, which may 
be responsible for the poor prognosis of cluster D (see 
Figure 3E). Finally, we also checked the expression of the 
2 potential tumor antigens identified above that could 
be used for mRNA vaccine development. The results 
showed that BMP5 and CLDN5 were highly expressed in 
stage I and Cluster B, which suggests that mRNA vaccines 
developed based on our identified tumor antigens may have 
potentially better benefits for early stage and Cluster B 
patients than other patients (see Figure 3F,3G).

Immune cell infiltration landscape of different immune 
subtypes

To identify the immune landscape between immune 
subtypes, we evaluated the immune-stromal scores of each 
cluster using the ESTIMATE algorithm. In the results, the 
higher scores of immune and stromal cells in Clusters B, C, 
and D, and the lower tumor purity predicted a high level 
of immune cell infiltration in the tumor microenvironment 
(see Figure 4A-4D). To quantify different immune cells 
in the tumor microenvironment, we conducted a GSVA 
enrichment analysis using gene sets of 28 immune cells 
previously published (27). After comparing the immune cell 

enrichment scores of different clusters, we also observed 
that Clusters B, C, and D had significantly higher immune 
cell infiltration than Clusters A and E (see Figure 4E). 
Thus, Clusters B, C, and D are immune “Hot” subtypes, 
while Cluster A and E are immune “Cold” subtypes (32), 
and patients in Clusters B, C and D may have better 
immunogenicity to mRNA vaccinations. In addition, we 
also compared the expression of immune checkpoints and 
immunogenic cell death modulator genes in each cluster (see 
Figure 4F). These genes were highly expressed in Clusters 
B, C, and D, which indicates that patients from these 
clusters may also have better sensitivity to immunotherapy, 
targeted therapy, or chemotherapy than other patients (see  
Figure 4G,4H). In conclusion, our findings reflect the 
diversity of tumor treatment for lung adenocarcinoma, and 
treatments should be precisely individualized for individuals 
to obtain better benefits.

Identification of mutation landscapes of different clusters

To identify the different mutational landscapes, we 
visualized the top 20 mutation genes of the TCGA-
LUSC cohort and calculated the TMB for each sample 
(see Figure 5A,5B). We found that among all the clusters, 
only Cluster C had a lower TMB, which suggests that the 
development of a mutation-based gene-targeted therapy 
strategy for Cluster C will be limited, but the development 
of mRNA vaccines may provide a new therapeutic method 
for Cluster C. We also identified driver mutation genes in 
LUSC using the MutsigCV algorithm (29) and investigated 
the correlations among them (see Figure 5C). Overall, 
most of the mutations that occurred between them were 
independent, but there was a significant mutual exclusion 
of mutations in cyclin dependent kinase inhibitor 2A 
(CDKN2A) and retinoblastoma protein transcriptional 
corepressor 1 (RB1), while there was significant co-
occurrence of mutations in neurofibromin 1 (NF1) and RAS 
P21 protein activator 1 (RASA1) (see Figure 5D).

WGCNA

To identify the genes associated with suitable vaccination 
clusters, we performed the module identification of all 
immune-related genes by WGCNA. The outlier samples 
were first sieved out by clustering the samples, and an 
optimal soft threshold of 8 was determined by connectivity 
(see Figure 6A-6C). Ultimately, we identified 5 modules in all 
the immune-related genes, and merged Clusters B, C, and 
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Figure 3 Identification of immune subtypes in patients with LUSC. (A-C) Consensus clustering of patients from the TCGA-LUSC cohort 
according to the expression of the immune-related genes. (D) Survival analysis of patients with different immune subtypes. (E) GSEA 
of the hallmark gene set in patients with different immune subtypes. (F) Expression of BMP5 and CLDN5 at different stages of LUSC. 
(G) Expression of BMP5 and CLDN5 in different immune subtypes. *, P value <0.05; ***, P value <0.001; ****, P value <0.0001. CDF, 
cumulative distribution function; BMP5, bone morphogenetic protein 5; CLDN5, claudin 5; LUSC, lung squamous cell carcinoma; TCGA, 
The Cancer Genome Atlas; GSEA, gene set enrichment analysis. 
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Figure 4 Immune landscape of different immune subtypes. (A-D) The estimate algorithm was used to calculate the immune-stromal 
scores for different immune subtypes. (E) Evaluation of immune cell infiltration in different immune subtypes using the GSVA algorithm. 
(F) Comparison of immune cell infiltration levels in different immune subtypes. (G) Immunogenic cell death modulates genes expression 
comparison between clusters. (H) Comparison of immune checkpoint expression between clusters. *, P value <0.05; **, P value <0.01; ***, P 
value <0.001; ****, P value <0.0001. GSVA, gene set variation analysis. 
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Figure 5 Mutational landscape of different immune subtypes in patients with LUSC. (A) Top 20 mutated genes in patients grouped 
according to immune subtypes. (B) Comparison of TMB in patients with different immune subtypes. (C) Driver mutations identified by 
the MutSigCV algorithm. (D) Co-mutations between the driver mutant genes. **, P value <0.01. ns, no significance; TMB, tumor mutation 
burden; LUSC, lung squamous cell carcinoma.

D as the “Suitable” group and Clusters A and E as the “Not-
suitable” group. After calculating the association between 
the modules and phenotypes, we found that the population 
suitable for mRNA vaccination had the highest correlation 
coefficient with the “brown” module (see Figure 6D,6E).  
In addition, in a prognostic univariate Cox analysis in a 
suitable vaccinated population, we found 2 genes in “brown” 
module with P values <0.05 and a hazard ratio >1 [i.e., 
immunoglobulin heavy variable 7-81 (IGHV7-81) and 
immunoglobulin kappa variable 2-40 (IGKV2-40)] (see 
Figure 6F). These 2 genes were previously reported to be 
immunoglobulin component related genes (33). Thus, these 
2 genes may be used as vaccine response biomarkers in 
LUSC patients suitable for mRNA vaccination.

Finally, we performed a drug sensitivity analysis of 
commonly used clinical treatments for samples suitable and 
unsuitable for mRNA vaccination and observed that patients 
unsuitable for mRNA vaccination were more sensitive to 
2 chemotherapeutic agents (i.e., cisplatin, and etoposide) 
(see Figure 6G,6H). In addition, in relation to the current 
epidermal growth factor receptor (EGFR)-tyrosine kinase 
inhibitors (TKIs) commonly used in clinical practice, there 
was no significant difference in the sensitivity of gefitinib 
between the 2 groups, but there was a significant difference 
in the sensitivity of erlotinib between the 2 groups. We 
speculated that this may be due to the different EGFR 
mutation landscapes between the 2 groups (see Figure 6I,6J).  
Thus, the treatment of LUSC should focus on the 
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Figure 6 Weighted gene co-expression network and drug sensitivity analyses. (A-E) The WGCNA revealed the association of gene modules 
with the phenotypes of suitable mRNA vaccinations. (F) The univariate Cox regression revealed potential monitoring biomarkers after 
mRNA vaccination in LUSC patients. (G-J) Anti-cancer drug sensitivity analysis of TCGA-LUSC. **, P value <0.01; ****, P value <0.0001. 
ns, no significance; WGCNA, weighted gene co-expression network analysis; Mrna, messenger ribonucleic acid; LUSC, lung squamous cell 
carcinoma; TCGA, The Cancer Genome Atlas. 
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development of an individualized treatment strategy.

Discussion

As an emerging immunotherapy, cancer vaccines have 
attracted much attention from researchers (6,9). In addition, 

because mRNA vaccines do not integrate into the genome 
avoiding mutations generated during genome integration 
and can be degraded by abundant mRNA enzymes in the 
body, they are also easier to prepare than peptide vaccines 
(16,17,34). Thus, mRNA vaccines have potential clinical 
application value because of their easy preparation and long-
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term safety (16,17,34). The main mechanism of action of 
cancer vaccines is that tumor antigens delivered by various 
carriers can be recognized by antigen-presenting cells and 
induce the body to produce immune memory to activate 
the immune system to produce anti-tumor effects (35,36). 
Thus, it is essential to search for tumor antigens with good 
specificity and immunogenicity for vaccine development in 
different cancers.

In this study, we screened mutant and copy number 
amplified genes associated with the prognosis of patients with 
LUSC to identify potential specific tumor antigen candidates 
for squamous cell carcinoma of the lung, and further analyzed 
their expression in correlation with the level of infiltration 
of 3 common antigen-presenting cells to determine their 
immunogenicity. Ultimately we identified 2 potential tumor 
antigens (i.e., BMP5 and CLDN5) that could be used for the 
development of mRNA vaccines for LUSC.

It has been reported that BMP5 is associated with 
clinical prognosis and plays a role as a tumor suppressor in 
patients with a variety of cancers (37-39). However, there 
are no relevant studies on BMP5 in LUSC. In our study, we 
found that patients with high BMP5 expression had a worse 
prognosis. Additionally, the activity of cell cycle-related 
pathways in patients in the high BMP5 expression group 
revealed the multiple role of BMP5 in cancer. In addition, 
BMP5 expression is associated with the infiltration of a 
variety of antigen-presenting cells in LUSC. Thus, due to 
its good immunogenicity, BMP5 can be used as a potential 
mRNA vaccine tumor antigen to block BMP5 targets by 
inducing immune memory.

In a previous study, CLDN5 was identified as a diagnostic 
biomarker for lung adenocarcinoma and LUSC (40).  
Additionally, CLDN5 can inhibit the cell cycle G1-S 
transition by decreasing the expression of cyclin D1 in 
LUSC cells (41). However, to date, no anti-tumor immune-
related studies of CLDN5 in LUSC appear to have been 
conducted. Our study showed the good specificity and 
immunogenicity of CLDN5 as a potential LUSC tumor 
antigen, which could potentially be developed as a mRNA 
vaccine.

Individualized treatment is essential in overall cancer 
treatment (42,43), and different immune subtypes can 
reflect the current immune status of patients, and are 
informative for the prediction of treatment responsiveness 
(44,45). In this study, we clustered the entire TCGA-
LUSC cohort using all the immune-related genes and 
identified 5 immune subtypes. A further analysis showed 

that different immune subtypes had different survival states, 
different activation states of cancer-related pathways, and 
different mutational landscapes. Ultimately, we identified 
subtypes with abundant immune cell infiltration in the 
tumor microenvironment as potential markers of good 
responsiveness to mRNA vaccination, and further identified 
predictive potential benefits after vaccination by a WGCNA 
analysis. Through anti-cancer drug sensitivity analysis, we 
also found that patients who are not suitable for mRNA 
vaccine therapy may respond better to chemotherapy 
regimens based on Cisplatin, Etoposide and molecularly 
targeted drug regimens based on Erotinib.

Cancer vaccines are now considered to have potential 
clinical applications; however, there are still some problems 
to be solved in the development of vaccines (9). For 
example, the discovery of cancer antigens requires in-
depth study and clinical validation by researchers, and the 
selection of vaccine vectors is related to the efficacy and 
long-term safety of cancer vaccines (46,47), and further 
studies are needed. However, the unique advantages of 
mRNA vaccines also make them an excellent prospect for 
application, and the development of LUSC mRNA vaccines 
based on BMP5, CLDN5 or other potential antigens will 
enrich the treatment options for LUSC patients.

Since our study is a bioinformatics-based study, the lack 
of experimental validation is a shortcoming of this paper. 
We have added a description in the discussion section to 
point out our shortcomings.

In conclusion, in this article, we identified 2 potential 
tumor antigens by bioinformatics methods that can be used 
for mRNA vaccine development in LUSC and analyzed 
the immune landscape of patients with LUSC, providing 
a new perspective for mRNA vaccine development in 
LUSC. There have been related studies on mRNA vaccine 
development in other cancers (28,48-52); however, this is 
the first study on mRNA vaccine development in LUSC. 
In addition, drug sensitivity analyses of populations with 
different immune subtypes also emphasize the importance 
of individualized treatment.

Acknowledgments

The survival analysis in this article used the GEPIA2 online 
tool (http://gepia2.cancer-pku.cn). The correlation analysis 
between gene expression and immune cell infiltration was 
performed using the TIMER online tool (https://cistrome.
shinyapps.io/timer/).

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/


Zhao et al. mRNA vaccine development for lung squamous cell carcinoma3528

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(9):3517-3530 | https://dx.doi.org/10.21037/jtd-22-1113

Funding: None.

Footnote

Reporting Checklist: The authors have completed the 
STREGA reporting checklist. Available at https://jtd.
amegroups.com/article/view/10.21037/jtd-22-1113/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://jtd.amegroups.
com/article/view/10.21037/jtd-22-1113/coif). The authors 
have no conflicts of interest to declare. 

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer 
statistics 2018: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin 2018;68:394-424.

2. Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 
2021. CA Cancer J Clin 2021;71:7-33.

3. Wu SG, Shih JY. Management of acquired resistance to 
EGFR TKI-targeted therapy in advanced non-small cell 
lung cancer. Mol Cancer 2018;17:38.

4. Yuan H, Liu J, Zhang J. The Current Landscape of 
Immune Checkpoint Blockade in Metastatic Lung 
Squamous Cell Carcinoma. Molecules 2021;26:1392.

5. Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, 
Adaptive, and Acquired Resistance to Cancer 
Immunotherapy. Cell 2017;168:707-23.

6. DeMaria PJ, Bilusic M. Cancer Vaccines. Hematol Oncol 

Clin North Am 2019;33:199-214.
7. Feins S, Kong W, Williams EF, et al. An introduction to 

chimeric antigen receptor (CAR) T-cell immunotherapy 
for human cancer. Am J Hematol 2019;94:S3-9.

8. Khan P, Siddiqui JA, Lakshmanan I, et al. RNA-based 
therapies: A cog in the wheel of lung cancer defense. Mol 
Cancer 2021;20:54.

9. Xu S, Yang K, Li R, et al. mRNA Vaccine Era-
Mechanisms, Drug Platform and Clinical Prospection. Int 
J Mol Sci 2020;21:6582.

10. Snook AE, Baybutt TR, Xiang B, et al. Split tolerance 
permits safe Ad5-GUCY2C-PADRE vaccine-induced 
T-cell responses in colon cancer patients. J Immunother 
Cancer 2019;7:104.

11. Sahin U, Oehm P, Derhovanessian E, et al. An RNA 
vaccine drives immunity in checkpoint-inhibitor-treated 
melanoma. Nature 2020;585:107-12.

12. Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal 
neoantigen vaccine for patients with melanoma. Nature 
2017;547:217-21.

13. Charles J, Chaperot L, Hannani D, et al. An innovative 
plasmacytoid dendritic cell line-based cancer vaccine 
primes and expands antitumor T-cells in melanoma 
patients in a first-in-human trial. Oncoimmunology 
2020;9:1738812.

14. Cafri G, Gartner JJ, Zaks T, et al. mRNA vaccine-induced 
neoantigen-specific T cell immunity in patients with 
gastrointestinal cancer. J Clin Invest 2020;130:5976-88.

15. Jahanafrooz Z, Baradaran B, Mosafer J, et al. Comparison 
of DNA and mRNA vaccines against cancer. Drug Discov 
Today 2020;25:552-60.

16. Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines 
- a new era in vaccinology. Nat Rev Drug Discov 
2018;17:261-79.

17. Sullenger BA, Nair S. From the RNA world to the clinic. 
Science 2016;352:1417-20.

18. Polack FP, Thomas SJ, Kitchin N, et al. Safety and 
Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N 
Engl J Med 2020;383:2603-15.

19. Goldman MJ, Craft B, Hastie M, et al. Visualizing and 
interpreting cancer genomics data via the Xena platform. 
Nat Biotechnol 2020;38:675-8.

20. Mermel CH, Schumacher SE, Hill B, et al. GISTIC2.0 
facilitates sensitive and confident localization of the targets 
of focal somatic copy-number alteration in human cancers. 
Genome Biol 2011;12:R41.

21. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R 
package for comparing biological themes among gene 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-1113/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-1113/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-1113/coif
https://jtd.amegroups.com/article/view/10.21037/jtd-22-1113/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Thoracic Disease, Vol 14, No 9 September 2022 3529

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(9):3517-3530 | https://dx.doi.org/10.21037/jtd-22-1113

clusters. OMICS 2012;16:284-7.
22. Mayakonda A, Lin DC, Assenov Y, et al. Maftools: efficient 

and comprehensive analysis of somatic variants in cancer. 
Genome Res 2018;28:1747-56.

23. Li T, Fan J, Wang B, et al. TIMER: A Web Server for 
Comprehensive Analysis of Tumor-Infiltrating Immune 
Cells. Cancer Res 2017;77:e108-10.

24. Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web 
server for large-scale expression profiling and interactive 
analysis. Nucleic Acids Res 2019;47:W556-60.

25. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. BMC 
Bioinformatics 2013;14:7.

26. Yoshihara K, Shahmoradgoli M, Martínez E, et al. 
Inferring tumour purity and stromal and immune 
cell admixture from expression data. Nat Commun 
2013;4:2612.

27. Charoentong P, Finotello F, Angelova M, et al. Pan-
cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors 
of Response to Checkpoint Blockade. Cell Rep 
2017;18:248-62.

28. Huang X, Zhang G, Tang T, et al. Identification of 
tumor antigens and immune subtypes of pancreatic 
adenocarcinoma for mRNA vaccine development. Mol 
Cancer 2021;20:44.

29. Lawrence MS, Stojanov P, Polak P, et al. Mutational 
heterogeneity in cancer and the search for new cancer-
associated genes. Nature 2013;499:214-8.

30. Langfelder P, Horvath S. WGCNA: an R package 
for weighted correlation network analysis. BMC 
Bioinformatics 2008;9:559.

31. Geeleher P, Cox N, Huang RS. pRRophetic: an R package 
for prediction of clinical chemotherapeutic response from 
tumor gene expression levels. PLoS One 2014;9:e107468.

32. Galon J, Bruni D. Approaches to treat immune hot, altered 
and cold tumours with combination immunotherapies. Nat 
Rev Drug Discov 2019;18:197-218.

33. Lefranc MP. Immunoglobulin and T Cell Receptor Genes: 
IMGT(®) and the Birth and Rise of Immunoinformatics. 
Front Immunol 2014;5:22.

34. Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA 
vaccines. Adv Drug Deliv Rev 2021;170:83-112.

35. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer 
immunotherapy. Mol Cancer 2021;20:41.

36. Grunwitz C, Kranz LM. mRNA Cancer Vaccines-
Messages that Prevail. Curr Top Microbiol Immunol 
2017;405:145-64.

37. Tremblay M, Viala S, Shafer ME, et al. Regulation of 
stem/progenitor cell maintenance by BMP5 in prostate 
homeostasis and cancer initiation. Elife 2020;9:54542.

38. Karim MA, Samad A, Adhikari UK, et al. A Multi-Omics 
Analysis of Bone Morphogenetic Protein 5 (BMP5) mRNA 
Expression and Clinical Prognostic Outcomes in Different 
Cancers Using Bioinformatics Approaches. Biomedicines 
2020;8:19.

39. Chen E, Yang F, He H, et al. Alteration of tumor 
suppressor BMP5 in sporadic colorectal cancer: a genomic 
and transcriptomic profiling based study. Mol Cancer 
2018;17:176.

40. Paschoud S, Bongiovanni M, Pache JC, et al. Claudin-1 
and claudin-5 expression patterns differentiate lung 
squamous cell carcinomas from adenocarcinomas. Mod 
Pathol 2007;20:947-54.

41. Akizuki R, Shimobaba S, Matsunaga T, et al. Claudin-5, 
-7, and -18 suppress proliferation mediated by inhibition 
of phosphorylation of Akt in human lung squamous 
cell carcinoma. Biochim Biophys Acta Mol Cell Res 
2017;1864:293-302.

42. Vormehr M, Türeci Ö, Sahin U. Harnessing Tumor 
Mutations for Truly Individualized Cancer Vaccines. Annu 
Rev Med 2019;70:395-407.

43. Jackson SE, Chester JD. Personalised cancer medicine. Int 
J Cancer 2015;137:262-6.

44. Pan Y, Han H, Labbe KE, et al. Recent advances in 
preclinical models for lung squamous cell carcinoma. 
Oncogene 2021;40:2817-29.

45. Li B, Cui Y, Nambiar DK, et al. The Immune Subtypes 
and Landscape of Squamous Cell Carcinoma. Clin Cancer 
Res 2019;25:3528-37.

46. Oberli MA, Reichmuth AM, Dorkin JR, et al. Lipid 
Nanoparticle Assisted mRNA Delivery for Potent Cancer 
Immunotherapy. Nano Lett 2017;17:1326-35.

47. Midoux P, Pichon C. Lipid-based mRNA vaccine delivery 
systems. Expert Rev Vaccines 2015;14:221-34.

48. Zhou Q, Yan X, Zhu H, et al. Identification of three 
tumor antigens and immune subtypes for mRNA 
vaccine development in diffuse glioma. Theranostics 
2021;11:9775-90.

49. Zheng X, Xu H, Yi X, et al. Tumor-antigens and immune 
landscapes identification for prostate adenocarcinoma 
mRNA vaccine. Mol Cancer 2021;20:160.

50. Ye L, Wang L, Yang J, et al. Identification of tumor 
antigens and immune subtypes in lower grade gliomas for 
mRNA vaccine development. J Transl Med 2021;19:352.

51. Ye L, Wang L, Yang J, et al. Identification of Tumor 



Zhao et al. mRNA vaccine development for lung squamous cell carcinoma3530

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(9):3517-3530 | https://dx.doi.org/10.21037/jtd-22-1113

Antigens and Immune Landscape in Glioblastoma 
for mRNA Vaccine Development. Front Genet 
2021;12:701065.

52. Huang X, Tang T, Zhang G, et al. Identification of tumor 

antigens and immune subtypes of cholangiocarcinoma for 
mRNA vaccine development. Mol Cancer 2021;20:50. 

(English Language Editor: L. Huleatt)

Cite this article as: Zhao J, Xu R, Lu T, Wang J, Zhang L. 
Identification of tumor antigens and immune subtypes in lung 
squamous cell carcinoma for mRNA vaccine development. J 
Thorac Dis 2022;14(9):3517-3530. doi: 10.21037/jtd-22-1113 


