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Background: Twenty-four-hour oscillations of circadian rhythms control comprehensive biological 
processes in the human body. In lung adenocarcinoma (LUAD), chronic circadian rhythm disruption is 
positively associated with tumorigenesis. However, few studies focus on circadian clock gene signatures 
(CGSs) for prognosis evaluation of patients with early-stage LUAD. 
Methods: In this study, we aimed to construct a robust prognostic circadian rhythm-related biomarker from 
multiple public databases, including the Gene Expression Omnibus database and The Cancer Genome Atlas 
database. The least absolute shrinkage and selection operator (LASSO)-penalized Cox regression model was 
performed to select optimal circadian clock gene pairs. Bioinformatic analyses were performed to estimate 
the abundance of different immune cells and immunohistochemical analyses were conducted to validate the 
differential proportion of tumor-infiltrating lymphocytes in different groups. 
Results: Results demonstrated that the CGS could accurately identify patients with early-stage LUAD 
at a high risk in the training dataset [hazard ratio (HR) =3.06; 95% confidence interval (CI): 2.47–3.78; 
P<0.001], testing dataset (HR =2.44; 95% CI: 1.74–3.43; P<0.001), and validation dataset (HR =2.09, 95% 
CI: 1.09–4.00; P=0.023). Bioinformatic and immunohistochemical analyses demonstrated that the abundance 
of tumor-infiltrating CD4+ T cells was higher in the low-CGS groups. Integration of the CGS and clinical 
characteristics improved the accuracy of the CGS in predicting overall survival (OS) of patients with early-
stage LUAD. 
Conclusions: In conclusion, the CGS was an independent immune-related circadian biomarker that could 

identify early-stage LUAD patients with different OS.
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Introduction

The rotation of the earth causes the day-night cycle and 
deeply influences the circadian rhythm of large mammals. 
Like many other biological processes, circadian rhythm is 
also regulated by a series of genes which include several 
core clock genes and numerous clock-controlled genes 
(CCGs) (1). The homeostasis of human body inevitably 
depends on the periodical oscillation of the clock genes. 
Once disorders have occurred in the circadian rhythm of 
body, diseases will appear. So far, many diseases have been 
found to be associated with chronic circadian disruption, 
such as cardiovascular and cerebrovascular diseases, 
metabolic diseases, and cancers (2). For example, in mouse 
lung adenocarcinoma (LUAD) models, loss of the core 
clock gene, aryl hydrocarbon receptor nuclear translocator 
like (Arntl, also termed Bmal1), caused an increased tumor 
burden and a decreased overall survival (OS), suggesting 
that genetic disruption of core genes of circadian rhythm 
increased tumorigenesis (3). Lack of the core clock gene 
Cryptochrome Circadian Regulator 1 (Cry1) and/or Cry2 
also resulted in an increased risk of tumorigenesis and 
radiation-induced tumor growth in mice (4).

As an important component of tumor microenvironment 
(TME), tumor-infiltrating lymphocytes (TILs) play critical 
roles in tumorigenesis. Focusing on the circadian rhythm 
of immune cells within the TME, accumulative studies 
revealed that molecular clocks, at least partially controlled 
the metastatic tumor burden. For example, in a breast 
cancer model, lung metastatic tumor burden in the chronic 
jet-lagged rats was higher, because of the circadian rhythm 
disruption in the natural killer (NK) cells (5). In a mouse 
melanoma model, different injection time of cancer cells 
demonstrated different lung metastatic burden, while 
deletion of Bmal1 in neutrophils eliminated the rhythms (6). 
Although the specific mechanisms of immune rhythms in 
the TME remain obscure, the immune clock appears to be 
involved in the development of lung cancer.

In this study, we aimed to construct and validate a 
circadian clock gene signature (CGS) using gene expression 
profiles of core clock genes and CCGs from multiple public 
datasets. This CGS could accurately identify high-risk early-
stage LUAD patients among different sequencing platforms 
including microarray data and RNA-sequencing (RNA-seq) 
data. To explore the association between CGS and immune 
infiltration, we performed three different algorithms 
(including ImmuCellAI, TIMER, and quanTIseq) to 
calculate the abundance of different tumor-infiltrating 

immune cells. Finally, we collected LUAD tissues from 
a local hospital and performed immunohistochemical 
analyses to validate the differential infiltration of CD4+ T 
cells in the high- and low-CGS groups. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-570/rc).

Methods

Data collection

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Ethics Committees of Tongji Medical 
College, Huazhong University of Science and Technology 
(No. UHCT-IEC-SOP-016-03-01). Transcriptome 
sequencing data and clinical data of early-stage LUAD 
patients were downloaded from public LUAD datasets, 
including the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/) and the Genomic Data 
Commons Data Portal (https://portal.gdc.cancer.gov/) 
(7-17). Early-stage LUAD tissues which were used for 
immunohistochemical analyses were obtained from Union 
Hospital (Wuhan, China) with the consent of patients 
Only patients who received no chemotherapy or other 
immunotherapy were included. Microarray datasets from 
GEO (GSE68465, GSE50081, GSE42127, GSE41271, 
GSE37745 ,  GSE31547 ,  GSE31210 ,  GSE30219 , 
GSE26939, GSE14814, GSE13213, GSE11969) were 
performed with intra-array normalization and inter-array 
normalization to remove batch effect. All early-stage 
LUAD cases from GEO database were merged into one 
dataset. The merged dataset was randomly divided into the 
training and testing datasets. The early-stage LUAD dataset 
from The Cancer Genome Atlas (TCGA) was used as an 
independent validation dataset.

Construction and validation of the CGS

The CGS was constructed according to a previously described 
method (18). The CGS is comprised of the core clock genes 
and CCGs which were downloaded from the CircaDB 
dataset (http://circadb.hogeneschlab.org/human) (19). Only 
260 core clock genes and CCGs were detected among all 
platforms, including Agilent, Affymetrix, and Illumina 
platforms. Considering the different circadian rhythm 
of clock genes, one of the core clock genes or one of the 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-570/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-570/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://circadb.hogeneschlab.org/human
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CCGs was paired to one of the core clock genes to estimate 
the relative expression of two clock genes. Finally, the clock 
gene pair was constructed by one core clock gene and one 
CCG or two core clock genes (the two core clock genes 
must be different). Univariate Cox regression analyses of 
OS were performed to screen clock gene pairs that were 
significantly related to prognosis of patients with early-
stage LUAD in the training dataset. The least absolute 
shrinkage and selection operator (LASSO)-penalized Cox 
regression model was utilized to construct the CGS from 
the clock gene pairs in the training dataset. The optimal 
model penalty parameter λ was determined by tenfold 
cross-validation following the previously recommended  
criteria (20). The time-dependent receiver operating 
characteristic (ROC) curve analyses were conducted to 
evaluate the optimal cutoff value and the predictive power 
of the CGS. The patients were stratified into high- and low-
risk groups according to the cutoff of the CGS. The same 
model was performed in the testing and validation datasets 
to validate the predictive ability of the CGS. Multivariate 
Cox regression analyses were performed to validate the 
CGS as an independent prognostic signature for early-stage 
LUAD in the training, testing, and validation datasets.

Exploration of the association between the clock gene 
signature (CGS) and the immune infiltration in early-
stage LUAD

Disruption of circadian rhythm partially contributed to the 
immunosuppression in the tumor microenvironment by 
attenuating immune infiltration. To compare the abundance 
of different tumor-infiltrating immune cells in high- and 
low-CGS groups, ImmuCellAI (http://bioinfo.life.hust.
edu.cn/ImmuCellAI#!/) that was based on the ssGSEA 
algorithm was utilized to analyze the infiltration of 24 
immune cell types including 18 T-cell subsets, B cells, 
dendritic cells, macrophages, monocytes, natural killer 
cells, and neutrophils (21). To validate the accuracy of 
ImmuCellAI, TIMER database (http://timer.cistrome.org/) 
was utilized to calculate the abundance of 6 immune cells 
including CD4+ T cells, CD8+ T cells, B cells, neutrophils, 
macrophages, and dendritic cells (22). Moreover, quanTIseq 
method (http://icbi.at/quantiseq) was also applied to 
estimate the infiltration of 10 immune cells including non-
regulatory CD4+ T cells, regulatory T cells, CD8+ T cells, 

B cells, M1 macrophages, M2 macrophages, monocytes, 
neutrophils, NK cells, and myeloid dendritic cells (23).

Immunohistochemical (IHC) analyses

The detailed IHC analysis was conducted according to a 
previous study (24). All early-stage LUAD tissues used in 
this study were placed in liquid nitrogen after surgery. The 
LUAD tissues were fixed in 4% paraformaldehyde and then 
embedded in paraffin. The paraffin blocks that contained 
LUAD tissues were cut into sections and processed for 
antigen activity restoration and endogenous peroxidase 
activity quenching. The anti-CD4 antibody (ab133616, 
Abcam, Cambridge, MA, USA) was used for immunostaining. 
The estimation of the infiltration of CD4+ T cells in the 
high- and low-CGS groups was performed by 2 independent 
pathologists. Briefly, the CD4 staining score was estimated by 
the intensity score [0 (no response), 1 (weak response), 2 (mild 
response), 3 (strong response)] and the proportional score [1 
(0–25%), 2 (26–50%), 3 (51–75%), 4 (76–100%)]. The final 
CD4 score was calculated by multiplying the intensity score 
and the proportional score. A score of 0–4 indicated low 
infiltration of CD4+ T cells, and a score of 5–12 indicated 
high infiltration of CD4+ T cells.

Statistical analyses

Continuous variables were summarized using median and 
interquartile range and compared using Wilcoxon test. 
Categorical variables were compared using chi-square test. 
The LASSO-penalized Cox proportional hazards regression 
model was utilized to minimize the risk of overfitting with 
the glmnet R package. The time-dependent ROC curve was 
used to determine the optimal cutoff and the areas under the 
curve (AUCs). The Kaplan-Meier curves and log-rank test 
were applied to compare OS of patients in high- and low-
risk groups with the survival R package and the survminer R 
package. Univariate and multivariate Cox regression analyses 
were also conducted with the survival R package and the 
survminer R package. The restricted mean survival (RMS) 
curves and the concordance index (C-index) were utilized to 
compare two models with the survRM2 R package and the 
survcomp R package. All statistical analyses were conducted 
with the R software. Two-side P values which were lower 
than 0.05 were considered statistically significant.

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://timer.cistrome.org/
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Results

Clinical data

Detailed data of patients are demonstrated in Table 1. In 
total, 1,820 early-stage LUAD patients from the GEO and 
TCGA datasets were enrolled. A flow chart demonstrated 
the complete analysis process (Figure 1). In brief, 12 early-
stage LUAD datasets from the GEO dataset were merged 
into one dataset. Then, the merged dataset was randomly 
divided into a training dataset and a testing dataset that 
consisted of 1,084 and 354 early-stage LUAD patients, 
respectively. The statistical difference between the training 
and testing datasets was also calculated (Table 1).

Construction of the CGS

Among the core clock genes and CCGs from CircaDB, 
only 260 genes were detected in all datasets. The 260-
gene list consisted of 255 CCGs and 5 core clock genes, 
including aryl hydrocarbon receptor nuclear translocator 
like (ARNTL), clock circadian regulator (CLOCK), period 
circadian regulator 2 (PER2), cryptochrome circadian 
regulator 1 (CRY1), and cryptochrome circadian regulator 
2 (CRY2). Therefore, a total of 1,285 clock gene pairs that 
contained at least one of core clock genes were constructed. 
Among them, only 258 clock gene pairs that were 
significantly associated with OS were included in the next 
LASSO regression model. Finally, 37 clock gene pairs that 

consisted of 35 circadian clock genes were included in the 
construction of the CGS (Figure 2A,2B). The pan-cancer 
analysis of 35 circadian clock genes was demonstrated in 
the supplementary materials (Figure S1). Among clock 
genes that appeared in at least 1 model, the 37 clock gene 
pairs were included. Wilcoxon rank-sum test showed 
significantly higher frequencies for the 37 clock gene pairs 
compared with the background distribution of frequencies 
for all clock gene pairs. We then constructed the CGS 
using the 37 clock gene pairs based on Cox proportional 
hazards regression model. Detailed information on the 37 
clock gene pairs was demonstrated in Table 2. The optimal 
cutoff for CGS was 1.08 based on the time-dependent ROC 
analyses. In the training dataset, the AUCs at 1, 3, and  
5 years were 0.724, 0.729, and 0.724, respectively  
(Figure 2C). The Kaplan-Meier curves were used to describe 
the survival probability of high- and low-risk groups based 
on the CGS. The log-rank test was used to compare the 
survival difference between two groups (P<0.001) and the 
univariate Cox regression model was used to calculate the 
hazard ratio [HR =3.06; 95% confidence interval (CI): 
2.47–3.78] (Figure 2D).

Validation of the CGS in the testing and validation 
datasets

To validate the robust prognostic ability of the CGS, we 
performed the same model in the testing dataset and the 

Table 1 Clinical data of patients enrolled in this study

Characteristics Training dataset, n=1,084 Testing dataset, n=354 P value* Validation dataset, n=382

Median age  
[interquartile range]

63 [56–70] 63 [57–71] 0.538 67 [59–72]

Gender

Female 551 165 0.168 205 (53.7)

Male 533 189 – 177 (46.3)

Stage

I 853 249 0.001 262 (68.6)

II 231 105 – 120 (31.4)

Median overall survival in days 1,706 1,575 0.030 701.5

Number of death (%) 402 (37.1) 150 (42.4) 0.076 118 (30.9)

Data is expressed as interquartile range and number or number (percentage). *, the difference between training and testing cohorts was calculated.

https://cdn.amegroups.cn/static/public/JTD-22-570-Supplementary.pdf
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independent TCGA validation dataset. The calculated CGS 
was divided into high- and low-risk according to the same 
cutoff used in the training dataset (1.08). In the testing 
dataset, early-stage LUAD patients were significantly 
stratified into two different prognostic groups according 
to the Kaplan-Meier curves and log-rank test (HR =2.44; 
95% CI: 1.74–3.43; P<0.001) (Figure 3A). In the TCGA 
validation dataset, the CGS remained robust predictive 
ability in differentiating patients with different prognosis 
(HR =2.09, 95% CI: 1.09–4.00; P=0.023) (Figure 3B). 
Results above demonstrated the high prognostic accuracy 
of the CGS across different platforms including microarray 

and RNA-seq platforms.

Association between the CGS and immune infiltration in 
early-stage LUAD

Tumor-infiltrating lymphocytes (TILs) play critical roles 
in the tumor microenvironment (TME). Disorders of 
circadian rhythms in TILs are, at least partially, associated 
with immunosuppression in the TME. Considering that 
the CGS is comprised of core clock genes and multiple 
CCGs, we reason that the CGS is related to TILs in early-
stage LUAD. To explore the association between the CGS 

Construction and validation of the CGS and CCPS

Patients enrolled in this study (n=1,820)

GEO datasets (n=1,438)

Training cohort (n=1,084)

Risk 
Gender
Age
Stage

Testing dataset (n=
354)

TC
G

A
 dataset (n=

382)

LASSO

CGS
Validation

RMS curves

IHC analyses

CCPS

Figure 1 Study design and flow diagram of the development and validation of the circadian CGS and CCPS for early-stage LUAD. A 
total of 1,820 patients were enrolled in the study, including 1,438 patients from the GEO database and 382 patients from TCGA database. 
The LASSO-penalized Cox regression model was performed to construct the CGS. Multivariate Cox proportional hazards regression 
model was performed to construct the CCPS. IHC analysis was performed to validate the infiltration of immune cells in high- and low-
CGS groups. The RMS curves of the CGS and the CCPS were compared by the survcomp R package. CGS, clock gene signature; CCPS, 
clock clinical prognostic signature; GEO, Gene Expression Omnibus; LASSO, least absolute shrinkage and selection operator; IHC, 
immunohistochemical; RMS, restricted mean survival; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.



Journal of Thoracic Disease, Vol 14, No 10 October 2022 3753

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(10):3748-3761 | https://dx.doi.org/10.21037/jtd-22-570

and TILs, we performed multiple methods, including 
ImmuCellAI (21), Timer (22), and quanTIseq (23), to 
analyze the immune infiltration among the high- and low-
CGS groups in the TCGA LUAD dataset. ImmuCellAI, 
Timer, and quanTIseq are robust methods to analyze the 
proportions of multiple immune cells in solid tumors. 
Immune infiltration analysis demonstrated that tumor-
infiltrating CD4+ T cells are significantly higher in the 
low-CGS group than in the high-CGS group according to 
ImmuCellAI (P<0.0001), Timer (P<0.05), and quanTIseq 
(P<0.05) (Figure 4A). Therefore, high infiltration of CD4+ 
T cells may explain the positive relationship between low 
CGS and better OS in patients with early-stage LUAD. To 
validate the high infiltration of CD4+ T cells, we collected 
several early-stage LUAD tissues from Union Hospital 
(Wuhan, China) with the consent of the patients and 

stratified these patients into high- and low-CGS groups 
based on quantitative real-time polymerase chain reaction 
(qRT-PCR) data. Detailed data of primers were shown in 
supplementary materials (Table S1). Then, we performed 
IHC to analyze the infiltration of CD4+ T cells of LUAD 
tissues. Results demonstrated that the proportion of tumor-
infiltrating CD4+ T cells was higher in the low-CGS group 
than in the high-CGS group which was consistent with 
the bioinformatic analyses (Figure 4B). Detailed qRT-PCR 
data of each patient were provided in the supplementary 
materials (Figure S2).

Validation of the CGS as an independent prognostic 
signature for early-stage LUAD

To validate the CGS as an independent prognostic 

Figure 2 Construction of the CGS derived from core clock genes and CCGs. (A,B) The LASSO-penalized Cox regression model was 
constructed from the potential clock gene pairs, and the penalty parameter was estimated based on the partial likelihood deviance with ten-
fold cross-validation in the training dataset. In total, 37 pairs of clock genes that contained at least one of the core clock genes were selected. 
(C) The time-dependent receiver operator characteristic curves of the CGS in the training dataset. The Aeras Under roc Curve at 1, 3, and 
5 years were 0.724, 0.729, and 0.724, respectively. (D) The survival curves of patients in the high-CGS and low-CGS groups were calculated 
by the Kaplan-Meier methods and compared by the log-rank tests. The low-CGS group had a better prognosis than the high-CGS group 
(P<0.001). TP, true positive; AUC, area under the curve; FP, false positive; CGS, clock gene signature; HR, hazard ratio; CI, confidence 
interval; CCGs, clock-controlled genes; LASSO, least absolute shrinkage and selection operator.
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Table 2 The circadian clock genes used to construct the CGS

Gene 1 Full name Gene 2 Full name Clock gene pair

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

RNF38 Ring finger protein 38 ARNTL-RNF38

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

MFAP4 Microfibril associated protein 4 ARNTL-MFAP4

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

CHD9 Chromodomain helicase DNA 
binding protein 9

ARNTL-CHD9

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

ITPR1 Inositol 1,4,5-trisphosphate receptor 
type 1

ARNTL-ITPR1

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

RNASE4 Ribonuclease A family member 4 ARNTL-RNASE4

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

GFOD1 Glucose-fructose oxidoreductase 
domain containing 1

ARNTL-GFOD1

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

EPB41L1 Erythrocyte membrane protein band 
4.1 like 1

ARNTL-EPB41L1

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

ETV1 ETS variant transcription factor 1 ARNTL-ETV1

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

COL4A5 Collagen type IV alpha 5 chain ARNTL-COL4A5

ARNTL Aryl hydrocarbon receptor 
nuclear translocator like

CCR1 C-C motif chemokine receptor 1 ARNTL-CCR1

CLOCK Clock circadian regulator CCR1 C-C motif chemokine receptor 1 CLOCK-CCR1

CLOCK Clock circadian regulator FHL1 Four and a half LIM domains 1 CLOCK-FHL1

CLOCK Clock circadian regulator CDKN1B Cyclin dependent kinase inhibitor 1B CLOCK-CDKN1B

PER2 Period circadian regulator 2 RNF38 Ring finger protein 38 PER2-RNF38

PER2 Period circadian regulator 2 RNF103 Ring finger protein 103 PER2-RNF103

PER2 Period circadian regulator 2 SEC61G SEC61 translocon subunit gamma PER2-SEC61G

PER2 Period circadian regulator 2 PIK3R1 Phosphoinositide-3-kinase 
regulatory subunit 1

PER2-PIK3R1

CRY1 Cryptochrome circadian 
regulator 1

RNF38 Ring finger protein 38 CRY1-RNF38

CRY1 Cryptochrome circadian 
regulator 1

CBX7 Chromobox 7 CRY1-CBX7

CRY1 Cryptochrome circadian 
regulator 1

SENP2 SUMO specific peptidase 2 CRY1-SENP2

CRY1 Cryptochrome circadian 
regulator 1

PSMC4 Proteasome 26S subunit, ATPase 4 CRY1-PSMC4

CRY1 Cryptochrome circadian 
regulator 1

PCYOX1 Prenylcysteine oxidase 1 CRY1-PCYOX1

CRY1 Cryptochrome circadian 
regulator 1

ITPR1 Inositol 1,4,5-trisphosphate receptor 
type 1

CRY1-ITPR1

Table 2 (continued)
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signature, we performed univariate and multivariate 
Cox regression analysis with the CGS and other clinical 
characteristics, including age, gender, and stage. Only 
variables that were significantly associated with OS in 
the univariate analysis were included in the following 
multivariate analysis. Multivariate Cox proportional hazards 
regression analyses demonstrated that the CGS was an 
independent prognostic factor for early-stage LUAD in 
the training (HR =2.73; 95% CI: 2.20–3.38; P<0.001), 
testing (HR =2.21; 95% CI: 1.57–3.12; P<0.001), and 
validation (HR =2.34; 95% CI: 1.22–4.48; P=0.011) datasets  
(Table  3 ) .  Because the CGS, age,  and stage were 
independent factors that were associated with OS in early-

stage LUAD, these variables were integrated to construct a 
new score which was referred to as clock clinical prognostic 
score (CCPS). The CCPS was constructed based on the 
Cox proportional hazards regression (CCPS =1.03758701 
× CGS + 0.03355251 × age + 0.69431531 × stage). The 
time-dependent ROC curve was used to determine the 
optimal cutoff value of the CCPS (Figure 5A). The RMS 
curves of the CGS and CCPS demonstrated that the CCPS 
performed better in predicting OS of patients with early-
stage LUAD in the training dataset (C-index =0.69, 95% 
CI: 0.66–0.72, vs. C-index =0.72, 95% CI: 0.69–0.74; 
P=0.003) (Figure 5B). After excluding nine missing values, 
the same model was utilized to estimate the CCPS in the 

Table 2 (continued)

Gene 1 Full name Gene 2 Full name Clock gene pair

CRY1 Cryptochrome circadian 
regulator 1

PLEKHA5 Pleckstrin homology domain 
containing A5

CRY1-PLEKHA5

CRY1 Cryptochrome circadian 
regulator 1

FHL1 Four and a half LIM domains 1 CRY1-FHL1

CRY1 Cryptochrome circadian 
regulator 1

RPS6KA5 Ribosomal protein S6 kinase A5 CRY1-RPS6KA5

CRY1 Cryptochrome circadian 
regulator 1

PIK3R1 Phosphoinositide-3-kinase 
regulatory subunit 1

CRY1-PIK3R1

CRY1 Cryptochrome circadian 
regulator 1

RORA RAR related orphan receptor A CRY1-RORA

CRY1 Cryptochrome circadian 
regulator 1

NFIL3 Nuclear factor, interleukin 3 
regulated

CRY1-NFIL3

CRY2 Cryptochrome circadian 
regulator 2

LIFR LIF receptor subunit alpha CRY2-LIFR

CRY2 Cryptochrome circadian 
regulator 2

ZBTB16 Zinc finger and BTB domain 
containing 16

CRY2-ZBTB16

CRY2 Cryptochrome circadian 
regulator 2

CBX7 Chromobox 7 CRY2-CBX7

CRY2 Cryptochrome circadian 
regulator 2

NPM3 Nucleophosmin/nucleoplasmin 3 CRY2-NPM3

CRY2 Cryptochrome circadian 
regulator 2

MGMT O-6-methylguanine-DNA 
methyltransferase

CRY2-MGMT

CRY2 Cryptochrome circadian 
regulator 2

SF3A2 Splicing factor 3a subunit 2 CRY2-SF3A2

CRY2 Cryptochrome circadian 
regulator 2

PPFIBP2 PPFIA binding protein 2 CRY2-PPFIBP2

CRY2 Cryptochrome circadian 
regulator 2

TIMELESS Timeless circadian regulator CRY2-TIMELESS

CGS, clock gene signature.
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Figure 3 Validation of the CGS in the testing and validation datasets. (A) The accuracy of the CGS in predicting OS of patients with early-
stage LUAD in the testing dataset was estimated using the Kaplan-Meier methods and log-rank tests. In the testing dataset, early-stage 
LUAD patients were significantly stratified into two different prognostic groups by the CGS (HR =2.44; 95% CI: 1.74–3.43; P<0.001). (B) 
The accuracy of the CGS in predicting OS of patients with early-stage LUAD in the independent validation dataset was estimated using the 
Kaplan-Meier methods and log-rank tests. In the TCGA validation dataset, the CGS remained robust predictive ability in differentiating 
early-stage LUAD patients with different prognosis (HR =2.09, 95% CI: 1.09–4.00; P=0.023). CGS, clock gene signature; HR, hazard ratio; 
CI, confidence interval; OS, overall survival; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.

validation dataset. The Kaplan-Meier curves and log-rank 
test showed that the CCPS could accurately identify early-
stage LUAD patients at high risk in the validation dataset 
(HR =2.08; 95% CI: 1.35–3.20; P<0.001) (Figure 5C). The 
RMS curves showed that the CCPS still remained higher 
accuracy in predicting OS in the validation dataset (C-index 
=0.55, 95% CI: 0.50–0.61, vs. C-index =0.64, 95% CI: 
0.57–0.70; P=0.008) (Figure 5D).

Discussion

Considering that some of patients with early-stage LUAD 
are in danger of recurrence, novel biomarkers are urgently 
needed to identify patients at high risk. Numerous gene 
signatures that were based on transcriptome sequencing 
data had been constructed for the prognosis evaluation 
and responses evaluation of LUAD (25,26). In addition 
to being constructed by key gene mutation profiles (27), 
prognostic signatures for LUAD could also be developed 
by a series of interrelated genes including cell-cycle-related  
genes (28), ferroptosis-related genes (29), immune-related 
genes (30), and glycolysis-related genes (31). Robust 
prognostic biomarkers were also constructed from miRNA 
alteration and DNA methylation data (32-34). However, 
few studies focused on the circadian CGSs for LUAD.

In this study, we aimed to construct a signature that was 
based on the key circadian clock genes. Given the periodical 
oscillation of molecular clock in human lung, we combined 

core clock genes and CCGs to construct multiple clock 
gene pairs. Each clock gene pair contained at least one core 
clock gene. To develop and validate a robust prognostic 
signature, multiple public datasets from GEO and 
TCGA databases were combined. LASSO-penalized Cox 
proportional hazards regression model was utilized to select 
optimal clock gene pairs. Finally, the CGS was constructed 
using the relative expression levels of two clock genes in 
each of the clock gene pairs. Considering the important 
roles of circadian clock in regulating pulmonary immune 
responses, we reasoned that there was a strong correlation 
between the CGS and immune infiltration of early-stage 
LUAD. Therefore, three bioinformatic methods, including 
ImmuCellAI, Timer, and quanTIseq, were utilized to 
evaluate the abundance of different tumor-infiltrating 
immune cells. Bioinformatic analyses demonstrated that 
tumor-infiltrating CD4+ T cells were significantly higher 
in the low-CGS group than in the high-CGS group. To 
validate the high proportions of CD4+ T cells in the low-
CGS group, we collected early-stage LUAD tissues from 
Union Hospital (Wuhan, China) and performed qRT-PCR 
to identify early-stage LUAD tissues in different groups. 
Then, we performed IHC on the paraffin sections of early-
stage LUAD tissues. IHC analyses demonstrated that the 
proportion of tumor-infiltrating CD4+ T cells was higher 
in the low-CGS group which was in coincidence with 
bioinformatic results. Recently, studies have shown that 
CD4+ T cells also function as direct tumor killers based on 
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Figure 4 The association between the CGS and immune infiltration in The Cancer Genome Atlas lung adenocarcinoma database. (A) Three 
independent bioinformatic methods (ImmuCellAI, Timer, and quanTIseq) were utilized to estimate the abundance of different immune cells in 
the high- and low-CGS groups. (B) Immunohistochemistry analyses of early-stage LUAD tissues from Wuhan Union hospital demonstrated that 
the abundance of tumor-infiltrating CD4+ T cells was higher in the low-CGS group. ns, P≥0.05; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. 
The LUAD tissues were fixed in 4% paraformaldehyde and then embedded in paraffin. The paraffin blocks that contained LUAD tissues were 
cut into sections and processed for antigen activity restoration and endogenous peroxidase activity quenching. The anti-CD4 antibody (ab133616, 
Abcam, Cambridge, MA, USA) was used for immunostaining. The estimation of the infiltration of CD4+ T cells in the high- and low-CGS groups 
was performed by 2 independent pathologists. Briefly, the CD4 staining score was estimated by the intensity score [0 (no response), 1 (weak 
response), 2 (mild response), 3 (strong response)] and the proportional score [1 (0–25%), 2 (26–50%), 3 (51–75%), 4 (76–100%)]. The final CD4 
score was calculated by multiplying the intensity score and the proportional score. A score of 0–4 indicated low infiltration of CD4+ T cells, and a 
score of 5–12 indicated high infiltration of CD4+ T cells. CGS, clock gene signature; IHC, immunohistochemical; LUAD, lung adenocarcinoma.
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a HER2-targeting trispecific antibody therapy (35). This 
may explain the strong association between the higher 
abundance of CD4+ T cells and the better prognosis of 
patients in the low-CGS group.

The CGS was constructed using 35 unique circadian 
clock genes, including 5 core clock genes (ARNTL, 
CLOCK, PER2, CRY1, CRY2) and 30 CCGs (Table 2). 
The heterodimer of CLOCK and BMAL1 (also termed 
ARNTL) serves as a transcription factor to control the 
circadian expression of approximately 15% of genes by 
binding their E-Box sequences (36). Bioinformatic analyses 
showed that the expression of CRY2 was significantly 
different between normal tissues and cancer tissues in 
the TCGA LUAD dataset (37). The Kaplan-Meier curve 
and log-rank test showed that high levels of CRY2 and 
ARNTL were positively associated with prolonged OS in 
patients with LUAD (37). Pan-cancer analyses showed 
that the expression of negative core clock genes (PER1, 
PER2, CRY1, and CRY2) was widely downregulated, 
while the expression of positive core clock genes (ARNTL 
and CLOCK) rarely changed (38). The circadian clock 
disruption partially contributed to the immunosuppression 
and T cell exhaustion in the TME (38). Accumulating 
evidence had shown that circadian rhythm disruption 

promoted tumor proliferation by reconstructing immune 
infiltration in the TME (39). For example, circadian 
clock disruption remodeled the daily patterns of tumor-
infiltrating M1 and M2 macrophages to favor tumor growth 
in a mouse melanoma model (40). Furthermore, circulating 
factors in the serum of patients with cancer could interrupt 
peripheral circadian rhythm in some degree. In one study 
by Chang et al., serum from patients with untreated LUAD 
was found to lengthen the daily oscillation of ARNTL of 
lung cancer cell lines, while heat inactivation of the serum 
eliminated the impact (41). In summary, circadian rhythm 
disruption played an important role in favoring lung 
cancer proliferation by remodeling immune infiltration in 
the TME, which partially explained the robust ability of 
prognosis evaluation and strong immune correlation of the 
CGS.

In conclusion, the CGS is a promising prognostic 
biomarker for early-stage LUAD. The positive correlation 
between low CGS and high infiltration of CD4+ T cells 
reflected the reconstruction of immune infiltration in early-
stage LUAD microenvironment caused by chronic circadian 
rhythm disruption. In addition, further studies are urgently 
needed for the efficient estimation of prognosis prediction 
of the CGS.

Table 3 Univariate and multivariate analyses of CGS and clinical data in the training, testing and TCGA validation cohorts

Datasets Variables
Univariate Multivariate

HR 95% CI P value HR 95% CI P value

Training dataset CGS 3.06 2.47–3.78 <0.001 2.73 2.20–3.38 <0.001

Gender 1.60 1.31–1.96 <0.001 1.39 1.13–1.69 0.001

Age 1.04 1.03–1.05 <0.001 1.03 1.02–1.04 <0.001

Stage 2.34 1.90–2.89 <0.001 2.01 1.63–2.48 <0.001

Testing dataset CGS 2.44 1.74–3.43 <0.001 2.21 1.57–3.12 <0.001

Gender 1.14 0.83–1.58 0.420 – – –

Age 1.03 1.01–1.05 <0.001 1.03 1.01–1.05 0.002

Stage 2.11 1.51–2.93 <0.001 2.00 1.43–2.79 <0.001

Validation dataset CGS 2.09 1.09–4.00 0.023 2.34 1.22–4.48 0.011

Gender 1.07 0.74–1.54 0.718 – – –

Age 1.02 1.00–1.04 <0.001 1.02 1.00–1.05 0.016

Stage 2.32 1.61–3.34 <0.001 2.22 1.54–3.22 <0.001

Age, stage, grade was coded as continuous variable. Stage was coded as I=1, II=2. The risk factors of gender and CGS are male and high 
CGS, respectively. CGS, clock gene signature; TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval.
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Figure 5 The CCPS was constructed by combining the CGS and clinical characteristics of patients with early-stage LUAD. (A) The 
optimal cutoff of the CCPS for identifying patients at high risk was estimated using time-dependent receiver operator characteristic curve in 
the training dataset. The optimal cutoff value of the CCPS was 1.52. (B) The RMS curves of the CGS and the CCPS in the training cohort 
were compared by the survcomp R package. (C) The survival curves of patients in the high- and low-CCPS groups were estimated using 
the Kaplan-Meier curves and were compared using the log-rank test in the TCGA validation cohort. The CCPS could accurately identified 
early-stage LUAD patients at a high risk in the TCGA validation dataset (HR =2.08; 95% CI: 1.35–3.20; P<0.001). (D) The RMS curves of 
the CGS and the CCPS revealed that a superior estimation for overall survival was achieved by the CCPS in the TCGA validation cohort. 
Concordance index: C-index. TP, true positive; FP, false positive; RMS, restricted mean survival; CGS, clock gene signature; CI, confidence 
interval; CCPS, clock clinical prognostic signature; HR, hazard ratio; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.

120

100

80

60

40

20

0

120

100

80

60

40

20

0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

TP

Cutoff =1.52

CGS

CGS

CCPS

CCPS

C-index =0.69; 95% CI: 0.66–0.72

C-index =0.55; 95% CI: 0.50–0.61

C-index =0.72; 95% CI: 0.69–0.74

C-index =0.64; 95% CI: 0.57–0.70

P=0.003

P=0.008

FP Percentile of scores

Percentile of scores

R
M

S
, m

on
th

s
R

M
S

, m
on

th
s

HR=2.08

95% CI: 1.35–3.20

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0 50 100 150 200 250
Months

CCPS >1.52 (233) <1.52 (140)

A B

C D

https://jtd.amegroups.com/article/view/10.21037/jtd-22-570/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-570/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-570/coif
https://jtd.amegroups.com/article/view/10.21037/jtd-22-570/coif


Wang et al. Prognostic immune-related clock gene signature3760

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(10):3748-3761 | https://dx.doi.org/10.21037/jtd-22-570

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the 
Ethics Committees of Tongji Medical College, Huazhong 
University of Science and Technology (UHCT-IEC-
SOP-016-03-01). Early-stage LUAD tissues which were 
used for immunohistochemical analyses were obtained 
from Union Hospital (Wuhan, China) with the consent of 
patients.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Patke A, Young MW, Axelrod S. Molecular mechanisms 
and physiological importance of circadian rhythms. Nat 
Rev Mol Cell Biol 2020;21:67-84.

2. Masri S, Sassone-Corsi P. The emerging link between 
cancer, metabolism, and circadian rhythms. Nat Med 
2018;24:1795-803.

3. Papagiannakopoulos T, Bauer MR, Davidson SM, 
et al. Circadian Rhythm Disruption Promotes Lung 
Tumorigenesis. Cell Metab 2016;24:324-31.

4. Shafi AA, Knudsen KE. Cancer and the Circadian Clock. 
Cancer Res 2019;79:3806-14.

5. Logan RW, Zhang C, Murugan S, et al. Chronic shift-lag 
alters the circadian clock of NK cells and promotes lung 
cancer growth in rats. J Immunol 2012;188:2583-91.

6. Casanova-Acebes M, Nicolás-Ávila JA, Li JL, et al. 
Neutrophils instruct homeostatic and pathological states 
in naive tissues. J Exp Med 2018;215:2778-95.

7. Beer DG, Kardia SL, Huang CC, et al. Gene-
expression profiles predict survival of patients with lung 
adenocarcinoma. Nat Med 2002;8:816-24.

8. Rousseaux S, Debernardi A, Jacquiau B, et al. Ectopic 
activation of germline and placental genes identifies 
aggressive metastasis-prone lung cancers. Sci Transl Med 

2013;5:186ra66.
9. Okayama H, Kohno T, Ishii Y, et al. Identification of 

genes upregulated in ALK-positive and EGFR/KRAS/
ALK-negative lung adenocarcinomas. Cancer Res 
2012;72:100-11.

10. Sato M, Larsen JE, Lee W, et al. Human lung epithelial 
cells progressed to malignancy through specific oncogenic 
manipulations. Mol Cancer Res 2013;11:638-50.

11. Der SD, Sykes J, Pintilie M, et al. Validation of a 
histology-independent prognostic gene signature for 
early-stage, non-small-cell lung cancer including stage IA 
patients. J Thorac Oncol 2014;9:59-64.

12. Tomida S, Takeuchi T, Shimada Y, et al. Relapse-
related molecular signature in lung adenocarcinomas 
identifies patients with dismal prognosis. J Clin Oncol 
2009;27:2793-9.

13. Wilkerson MD, Yin X, Walter V, et al. Differential 
pathogenesis of lung adenocarcinoma subtypes involving 
sequence mutations, copy number, chromosomal 
instability, and methylation. PLoS One 2012;7:e36530.

14. Bhattacharjee A, Richards WG, Staunton J, et al. 
Classification of human lung carcinomas by mRNA 
expression profiling reveals distinct adenocarcinoma 
subclasses. Proc Natl Acad Sci U S A 2001;98:13790-5.

15. Takeuchi T, Tomida S, Yatabe Y, et al. Expression 
profile-defined classification of lung adenocarcinoma 
shows close relationship with underlying major genetic 
changes and clinicopathologic behaviors. J Clin Oncol 
2006;24:1679-88.

16. Tang H, Xiao G, Behrens C, et al. A 12-gene set 
predicts survival benefits from adjuvant chemotherapy 
in non-small cell lung cancer patients. Clin Cancer Res 
2013;19:1577-86.

17. Kuner R, Muley T, Meister M, et al. Global gene 
expression analysis reveals specific patterns of cell junctions 
in non-small cell lung cancer subtypes. Lung Cancer 
2009;63:32-8.

18. Li B, Cui Y, Diehn M, et al. Development and Validation 
of an Individualized Immune Prognostic Signature in 
Early-Stage Nonsquamous Non-Small Cell Lung Cancer. 
JAMA Oncol 2017;3:1529-37.

19. Pizarro A, Hayer K, Lahens NF, et al. CircaDB: a database 
of mammalian circadian gene expression profiles. Nucleic 
Acids Res 2013;41:D1009-13.

20. Tu Z, Wu L, Wang P, et al. N6-Methylandenosine-Related 
lncRNAs Are Potential Biomarkers for Predicting the 
Overall Survival of Lower-Grade Glioma Patients. Front 
Cell Dev Biol 2020;8:642.

https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Thoracic Disease, Vol 14, No 10 October 2022 3761

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(10):3748-3761 | https://dx.doi.org/10.21037/jtd-22-570

21. Miao YR, Zhang Q, Lei Q, et al. ImmuCellAI: A Unique 
Method for Comprehensive T-Cell Subsets Abundance 
Prediction and its Application in Cancer Immunotherapy. 
Adv Sci (Weinh) 2020;7:1902880.

22. Li T, Fan J, Wang B, et al. TIMER: A Web Server for 
Comprehensive Analysis of Tumor-Infiltrating Immune 
Cells. Cancer Res 2017;77:e108-10.

23. Finotello F, Mayer C, Plattner C, et al. Molecular and 
pharmacological modulators of the tumor immune 
contexture revealed by deconvolution of RNA-seq data. 
Genome Med 2019;11:34.

24. Wei S, Shao J, Wang J, et al. EHD2 inhibits the invasive 
ability of lung adenocarcinoma and improves the prognosis 
of patients. J Thorac Dis 2022;14:2652-64.

25. Guo NL, Dowlati A, Raese RA, et al. A Predictive 7-Gene 
Assay and Prognostic Protein Biomarkers for Non-small 
Cell Lung Cancer. EBioMedicine 2018;32:102-10.

26. Song Y, Yan S, Fan W, et al. Identification and Validation 
of the Immune Subtypes of Lung Adenocarcinoma: 
Implications for Immunotherapy. Front Cell Dev Biol 
2020;8:550.

27. Sun H, Liu SY, Zhou JY, et al. Specific TP53 subtype 
as biomarker for immune checkpoint inhibitors in lung 
adenocarcinoma. EBioMedicine 2020;60:102990.

28. Jiang W, Xu J, Liao Z, et al. Prognostic Signature for Lung 
Adenocarcinoma Patients Based on Cell-Cycle-Related 
Genes. Front Cell Dev Biol 2021;9:655950.

29. Zhang A, Yang J, Ma C, et al. Development and 
Validation of a Robust Ferroptosis-Related Prognostic 
Signature in Lung Adenocarcinoma. Front Cell Dev Biol 
2021;9:616271.

30. Song Q, Shang J, Yang Z, et al. Identification of an 
immune signature predicting prognosis risk of patients in 
lung adenocarcinoma. J Transl Med 2019;17:70.

31. Zhang L, Zhang Z, Yu Z. Identification of a novel 
glycolysis-related gene signature for predicting metastasis 

and survival in patients with lung adenocarcinoma. J Transl 
Med 2019;17:423.

32. Modhukur V, Iljasenko T, Metsalu T, et al. MethSurv: a 
web tool to perform multivariable survival analysis using 
DNA methylation data. Epigenomics 2018;10:277-88.

33. Anuraga G, Wang WJ, Phan NN, et al. Potential 
Prognostic Biomarkers of NIMA (Never in Mitosis, Gene 
A)-Related Kinase (NEK) Family Members in Breast 
Cancer. J Pers Med 2021;11:1089.

34. Liu F, Wu H. Identification of Prognostic Biomarkers and 
Molecular Targets Among JAK Family in Breast Cancer. J 
Inflamm Res 2021;14:97-114.

35. Seung E, Xing Z, Wu L, et al. A trispecific antibody 
targeting HER2 and T cells inhibits breast cancer growth 
via CD4 cells. Nature 2022;603:328-34.

36. Koike N, Yoo SH, Huang HC, et al. Transcriptional 
architecture and chromatin landscape of the core circadian 
clock in mammals. Science 2012;338:349-54.

37. Qiu M, Chen YB, Jin S, et al. Research on circadian clock 
genes in non-small-cell lung carcinoma. Chronobiol Int 
2019;36:739-50.

38. Wu Y, Tao B, Zhang T, et al. Pan-Cancer Analysis Reveals 
Disrupted Circadian Clock Associates With T Cell 
Exhaustion. Front Immunol 2019;10:2451.

39. Wang Z, Su G, Dai Z, et al. Circadian clock genes 
promote glioma progression by affecting tumour immune 
infiltration and tumour cell proliferation. Cell Prolif 
2021;54:e12988.

40. Aiello I, Fedele MLM, Román F, et al. Circadian 
disruption promotes tumor-immune microenvironment 
remodeling favoring tumor cell proliferation. Sci Adv 
2020;6:eaaz4530.

41. Chang Y, Zhao C, Ding H, et al. Serum factor(s) 
from lung adenocarcinoma patients regulates the 
molecular clock expression. J Cancer Res Clin Oncol 
2021;147:493-8.

Cite this article as: Wang ZH, Zhang P, Du YH, Wei XS, Ye 
LL, Niu YR, Xiang X, Peng WB, Su Y, Zhou Q. High-risk 
early-stage lung adenocarcinoma patients are identified by an 
immune-related circadian clock gene signature. J Thorac Dis 
2022;14(10):3748-3761. doi: 10.21037/jtd-22-570



© Journal of Thoracic Disease. All rights reserved. https://dx.doi.org/10.21037/jtd-22-570

Supplementary

Figure S1 Pan-cancer analysis of 35 circadian clock gene expression.
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Table S1 The primer sequences of circadian clock genes used in quantitative real-time polymerase chain reaction (qRT-PCR) analysis

Gene Forward primer Reverse primer

ARNTL GATGGTTCAGTTTCATGAACC CCTCTTATCCTGTGGATTTCC

CLOCK TCGGTTTCTCTTCTTCCGTCC GCGCTGCGTGTAGGAAATTA 

PER2 GACATGAGACCAACGAAAACTGC AGGCTAAAGGTATCTGGACTCTG

CRY1 CCGTCTGTTTGTGATTCGTG AAGTTAGAGGCGGTTGTCCA

CRY2 GGAGGCTGGTGTGGAAGTAG CGTAGGTCTCGTCGTGGTTC

RNF38 TTCCTTCTTATCGGTTCA AACTCGTGGTTACAGGGT

MFAP4 GGCTCAGTAAGTTTCTTCCGCG CCAAGTCCACTCGCAGCTCATA

CHD9 ACC CTT AAG GTT TCC ATC TG TGA AGT TTC TGT ACC TGT TCC

ITPR1 GCACGTCTTCCTGAGAACCA TGTAAGGCACTTGCTGGTCA

RNASE4 CCAGTGCAAACGCTTCAACA TGA CAACTCGCCT AGTGCTG

GFOD1 GCCTTCAGTTCCAATCAG ATAATGTTCCTTGTTGTCCTT

EPB41L1 AGGAAACCACGCCGAGACACAA GGTGGATGAGTTTGCTGTTGGG

ETV1 CAGTGTCCCCACTGCATCAT TGGGGTAGCTGCTATCTGGT

COL4A5 TTCTCCTGAGAGACCGGCTT AATTCCCGGCTGGCTCTAAC

CCR1 CAGCCTTCACTTTCCTCACG AACGGACAGCTTTGGATTTCTT

FHL1 CAGTCAAACTTCTCCGCCAT CAACCATATCCAGCCTTTGC

CDKN1B CTAACTCTGAGGACACGCATT TTCTTCTGTTCTGTTGGCTCTT

RNF103 CGCTGATACACGGTTGTGGA TGCAGATGGAATCGGTCTCG

SEC61G AAAGGACTCCATTCGGCTGGTT CAAAGAAGCCAATGAATCCC

PIK3R1 AAGAAGTTGAACGAGTGGTTGG GCCCTGTTTACTGCTCTCCC

CBX7 CAT GGA GCT GTC AGC CAT C CTG TAC TTT GGG GGC CAT C

SENP2 CATTGGAGCCTGGTGGTGAT TGTTGAGGAATCTCGTGTGGTT

PSMC4 GGACATCGGAGGCATGGAC GGTGGGCCATACATGAGGAC

PCYOX1 TGGCATAGAGTGTGCAGCAA ATCATGTCTGTGTGCCCGTT

PLEKHA5 GCAGGCCTATGACTAGCTTCA TGAGACAAGCATTCTGAGGTGA

RPS6KA5 GGCCCCTTTGGCTAAGAGAA TTGCTGGGCTGCAGTGTCT

RORA AAAAACATGGAGTCAGCTCCG AGTGTTGGCAGCGGTTTCTA

NFIL3 TGACCGAGGCTCTTACAC GGAGGATCGGTTGACTTG

LIFR TGTATGTGGTGACAAAGGAAAA TGGATTTGGAATATCAGGGTAGA

ZBTB16 GAGCTTCCTGATAACGAGGCTG AGCCGCAAACTATCCAGGAACC

NPM3 CACCCGCTCCTTCACCTTTA GTTCCGGGCCACAACTTCTA

MGMT AACGCTTTGCGTCCCGA TCCAGTGTGGTGCGTTTCAT

SF3A2 GGAGCTACCTGGCACATACG CTCCGAGTCTCTCTGCTTGG

PPFIBP2 GCTGAGATGTGCCTTGAGGT CACCTGGTGTCCTTCCAGAC

TIMELESS GAGACTTCTGCTCTGAGTTCC CCAAGGCCCACATATAATAGGT
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Figure S2 Quantitative real-time polymerase chain reaction (qRT-PCR) data of ten patients with early-stage lung adenocarcinoma.


