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Background: Obstructive sleep apnea (OSA) is a common sleep disorder. However, current diagnostic 
methods are labor-intensive and require professionally trained personnel. We aimed to develop a deep 
learning model using upper airway computed tomography (CT) to predict OSA and to warn the medical 
technician if a patient has OSA while the patient is undergoing any head and neck CT scan, even for other 
diseases.
Methods: A total of 219 patients with OSA [apnea-hypopnea index (AHI) ≥10/h] and 81 controls (AHI 
<10/h) were enrolled. We reconstructed each patient’s CT into 3 types (skeletal structures, external skin 
structures, and airway structures) and captured reconstructed models in 6 directions (front, back, top, 
bottom, left profile, and right profile). The 6 images from each patient were imported into the ResNet-18 
network to extract features and output the probability of OSA using two fusion methods: Add and Concat. 
Five-fold cross-validation was used to reduce bias. Finally, sensitivity, specificity, and area under the receiver 
operating characteristic curve (AUC) were calculated.
Results: All 18 views with Add as the feature fusion performed better than did the other reconstruction and 
fusion methods. This gave the best performance for this prediction method with an AUC of 0.882.
Conclusions: We present a model for predicting OSA using upper airway CT and deep learning. The model 
has satisfactory performance and enables CT to accurately identify patients with moderate to severe OSA.
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Introduction

Obstructive sleep apnea (OSA) is a common sleep disorder 
characterized by the collapse of the upper airway during 
sleep, resulting in an increased risk of multisystem 
dysfunction and damage to the cardiovascular and 
endocrine systems. The prevalence of OSA is increasing 
annually, leading to a significant medical burden and 
economic cost (1). OSA affects 9% to 38% of the global 
population (2), with a prevalence exceeding 50% in some 
countries (3). In addition, some studies have shown that 
the prevalence of moderate to severe sleep-disordered 
breathing [apnea-hypopnea index (AHI) ≥15 events/h] is 
23.4% in women and 49.7% in men over 40 years of age (4). 
Polysomnography (PSG) is currently the gold standard for 
diagnosing OSA (5). However, it requires patients to sleep 
through the night in a specialized sleep laboratory and a 
professional technician to manually determine OSA based 
on signals such as airflow, electroencephalogram (EEG), 
and eye movements, which are very time-consuming and 
costly (6). These limitations result in many patients with 
potential OSA remaining undiagnosed (7).

Various degrees of obesity as well as craniofacial and 
upper airway structural abnormalities, including maxillary 
deficiency and retro-position (8,9), the inferior position 
of the hyoid bone (10,11), a larger tongue, and soft palate 
volume (12,13), cause OSA. Upper airway computed 
tomography (CT) is frequently used to assess airway 
structural abnormalities in patients with OSA; however, this 
also requires manual measurements by trained personnel 
(14,15). A simple photographic method for craniofacial 
phenotyping has been developed (16). This method was 
demonstrated to have predictive utility in identifying 
patients with OSA (17). Facial photography can provide 
a composite measure of both skeletal and soft tissues 
and has been shown to capture phenotypic information 
regarding upper airway structures (18,19). Hence, the 
presence of OSA or even the magnitude of the AHI can 
be predicted using facial imaging with an accuracy that 
can reach 87–91% (20,21). However, for this technique, 
the faces of patients often need to be individually outlined, 
photographed, and measured.

Based on these methods and anatomical principles, we 
aimed to develop a method using artificial intelligence (AI) 
and upper airway CT to automatically predict OSA without 
manual measurement and test its accuracy. We aimed to 
assess the predictive utility of these new measurements as 
a powerful noninvasive tool for providing an early warning 

of OSA, even when the patient is undergoing a CT scan 
for other diseases. We present the following article in 
accordance with the STARD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-22-
734/rc).

Methods

Patients

For inclusion in this study, we retrospectively and randomly 
selected 219 patients with OSA (AHI ≥10/h) and 81 
controls (AHI <10/h) aged 18 years or older from patients 
who visited Beijing Tongren Hospital between July 2017 
and February 2021 and who subsequently underwent PSG 
and upper airway CT. Patients with central sleep syndrome, 
a history of facial deformity, upper airway surgery or facial 
surgery were excluded.

CT images were mainly retrospectively collected from 
patients who visited our hospital complaining of sleep 
apnea. They underwent PSG to confirm the diagnosis of 
OSA, indicated a desire to undergo surgical treatment, and 
underwent preoperative upper airway CT.

CT images of individuals in the control group were 
mainly derived from patients who came to our hospital 
with a diagnosis of leukoplakia of the vocal cords and were 
going to be treated surgically. These patients underwent 
preoperative CT of the neck to define the extent of the 
lesion. PSG was performed to clarify whether these 
patients had OSA so that the risk from the subsequent 
anesthesia could be assessed. The control group was mainly 
selected retrospectively from this group of patients with 
a PSG diagnosis and an AHI less than 10. If the AHI was 
greater than or equal to 10, the patient was included in the 
experimental group.

This clinical study was a retrospective study, which 
only collected patients’ clinical data; it did not interfere 
with patients’ treatment plans and did not pose any risk 
to patients’ physiology. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Ethics Committee 
of Beijing Tongren Hospital,  Beijing, China (No. 
TRECKY2019-049). Informed consent was waived due to 
the retrospective nature of the study.

Anthropometric measurements

Clinical variables, including height (m), weight (kg), 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-734/rc
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body mass index (BMI, weight/height2, kg/m2), and neck 
circumference (circumference at the level of the thyroid 
cartilage angle, cm) were collected.

PSG

Al l  pa r t i c ipan t s  underwent  s t andard  overn igh t 
polysomnographic monitoring, which included EEGs 
(C3/A2 and C4/A1, measured using surface electrodes), 
electrooculograms (measured using surface electrodes), 
submental electromyograms (measured by surface 
electrodes), nasal airflow (measured using a nasal cannula 
with a pressure transducer), oral airflow (measured with a 
thermistor), chest wall and abdominal movements (recorded 
by inductance plethysmography), electrocardiography, and 
pulse oximetry. Respiratory events were classified according 
to the American Academy of Sleep Medicine Criteria 2012 
(version 2.0) (22). Apnea was defined as a drop in peak signal 
excursion by ≥90% of the pre-event baseline over ≥10 s  
with an oronasal thermal sensor. Hypopnea was defined as 
a drop in peak signal excursions by ≥30% of the pre-event 
baseline over ≥10 s, using nasal pressure in association with 
either ≥3% arterial oxygen desaturation or arousal. AHI was 
calculated as the total duration of all apneic and hypopneic 
events divided by the total sleep time. We chose AHI ≥10 as 

an index for the diagnosis of OSA.

Upper airway CT analysis

Upper airway CT scans were performed in the supine 
position at end-expiration using the Frankfort plane 
perpendicular to the horizontal plane while the patients 
were awake. Throughout the scans, the patients were 
instructed to keep their mouths closed without swallowing 
or chewing. Each patient had a complete CT sequence 
that included 300–600 CT images with one 512×512 pixel 
channel per CT image. We reconstructed each patient’s 
CT using Mimics image processing software version 
21.0 (Materialise, Leuven, Belgium) with the following  
3 methods: the skin method (Figure 1), the skeletal method 
(Figure 2), and the airway method (Figure 3) We intersected 
the reconstructed 3D model in 6 directional views (front, 
back, top, bottom, left profile, and right profile; Figures 1-3),  
using six 2D images to represent the information on a 
complete 3D model. Each image had 3 channels of 442×442 
pixels.

Data preprocessing

Figure 4 illustrates the structure of the neural networks. 

A B C

D E F

Figure 1 We reconstructed the patient’s CT using the skin method and intercepted the 3D model in 6 directional views. (A) The front 
image after reconstruction using the skin method. (B) The back image after reconstruction using the skin method. (C) The top image after 
reconstruction using the skin method. (D) The left profile image after reconstruction using the skin method. (E) The right profile image 
after reconstruction using the skin method. (F) The bottom image after reconstruction using the skin method. CT, computed tomography.
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A B C

D E F

Figure 2 We reconstructed the patient’s CT using the skeletal method and intercepted the 3D model in 6 directional views. (A) The front 
image after reconstruction using the skeletal method. (B) The back image after reconstruction using the skeletal method. (C) The top image 
after reconstruction using the skeletal method. (D) The left profile image after reconstruction using the skeletal method. (E) The right 
profile image after reconstruction using the skeletal method. (F) The bottom image after reconstruction using the skeletal method. CT, 
computed tomography.

A B C

D E F

Figure 3 We reconstructed the patient’s CT using the airway method and intercepted the 3D model in 6 directional views. (A) The front 
image after reconstruction using the airway method. (B) The back image after reconstruction using the airway method. (C) The top image 
after reconstruction using the airway method. (D) The left profile image after reconstruction using the airway method. (E) The right profile 
image after reconstruction using the airway method. (F) The bottom image after reconstruction using the airway method. CT, computed 
tomography.
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After reconstruction with each of the 3 different methods, 
we used CT sequences to obtain 3D models and acquired 
6 views in each direction (anterior, posterior, superior, 
inferior, left contour, and right contour). The 6 views 
from each reconstruction method and all 18 views were 
imported into the model to determine whether the patient 
experienced OSA. The task was converted into a binary 
classification of six 2D images. We chose ResNet-18 (22) as 
the back end of this model on the PyTorch framework. Each 
model was trained using the AdamW (23) optimizer with 
an initial learning rate of 3

0 10η −=  with a cosine learning 

rate decay schedule of 0
7cos
16

k
K
πη η  =  

 
. k is the current 

training step, and K is the total training step. The other 
hyperparameters are listed in Table S1. We chose the loss 
function as a cross-entropy function with weight. As shown 
in Eq. [1], we assigned a higher weight to the loss function 
for normal individuals, which was set to 2.
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Figure 4 The structure of the neural networks. (A) The structure of the whole neural network. (B) The structure of the Add fusion method. 
(C) The structure of the Concat fusion method. CT, computed tomography; BN, batch normalization; FC, fully connected layer. 
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We set the first layer of the network to 6 different 
convolutional layers to simultaneously extract features 
from the 6 images (when importing all 18 views into the 
network, the first layer was set to 18 convolutional layers), 
allowing it to be applied to multiple input images. The 
features of the initially captured images were then fused 
using 2 types of feature fusion methods: Add and Concat. 
Add is a commonly used feature fusion method, as shown in 
Figure 4B. Each of the views was imported into a separate 
convolutional layer for initial feature extraction to obtain a 
feature map. The Add feature fusion method directly adds 
these feature maps to obtain a feature map of the same 
size as the original feature map and contains the feature 
information on the maps. Concat differs from Add in that 
it obtains each feature map of the same shape and directly 
stitches them together in a certain dimension to obtain a 
new feature map (Figure 4C).

The features fused by Concat or Add methods were 
imported into the convolutional layer for feature extraction. 
After several feature extractions, the feature map was 
pooled for the maximum value, and the pooled feature 
dimensions were converted into flat vectors for input to 
the fully connected layer. Finally, the fully connected layer 
output a 2D probability vector indicating whether or not 
the patient had OSA. We used 5-fold cross-validation for 
training, validation, and testing to reduce overfitting and to 
obtain as much valid information as possible. The method 
was as follows: we divided the dataset into 5 equal parts and 
then selected 1 of these parts as the test set and the rest as 
training and verification sets. We performed training and 
testing 5 times and finally reported the performance as the 
average of the 5 results.

In addition, we selected different sample sizes for 
training to obtain F1 values and thus determine whether the 
sample size was sufficient. We randomly selected 20% of 
the data as the test set and 10% to 100% of the remaining 
data as the training set. The training mode included all 18 
views plus the fusion method.

The model was trained using a Cor 4210 CPU (Intel, 
CA, USA) and GeForce GTX 3090 GPU (Nvidia, CA, 
USA).

Statistical analysis

To evaluate the performance of the model, the following 
parameters were calculated: area under the receiver 
operating characteristic (AUC) curve, precision, recall, and 
F1 score.

Results

There was a significant difference in BMI between the OSA 
and non-OSA patients, and no significant difference in age 
or male-to-female ratio was observed (Table S2).

We experimented with each of the 6 views obtained 
through these 3 modes. For every type of reconstruction, 
we used 2 methods for feature fusion: Add and Concat. In 
addition, we imported all 18 views into a single model. The 
experimental results are shown in Table S3 and Figure 5.  
The best performance was achieved when using all  
18 views with Add as the feature fusion method compared 
with the other reconstruction and fusion methods. Using 
all 18 views with the Add fusion approach provided the best 
performance for this prediction method, with the largest 
AUC of 0.882. This was followed by using all 18 views with 
the Concat fusion method, resulting in an AUC of 0.868. 
The skin reconstruction method was the best predictor of 
OSA using only 6 images and had an AUC of 0.859. Airway 
reconstruction using the Concat fusion method had the 
lowest AUC (0.701).

The results of the sample size calculation are shown 
in Figure 6. The model’s performance did not improve 
significantly when the training set exceeded 154 (70%) of 
the data, proving that our dataset’s size was sufficient. In 
addition, the times (seconds) for the prediction of OSA with 
the different methods are listed in Table S4.

Discussion

To our knowledge, this is the first study to use CT-based 

Figure 5 The ROC curve and area under the curve of the 6 
different methods. ROC, receiver operating characteristic. 
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deep learning to predict OSA. This program is a convenient 
tool that can be used as a plug-in for various image-
examination software programs. When a patient undergoes 
a head and neck CT examination, the program can 
automatically indicate whether the patient has OSA without 
requiring manual measurement or assessment. The clinician 
receives an alert and determines whether further diagnostic 
testing is required in the context of the actual situation. 
Our model is sufficiently simple for routine clinical use and 
shows good performance, which will help increase OSA 
screening rates and reduce screening costs.

Convolutional neural networks perform well in image 
classification tasks, and there are many common neural 
network models, such as ResNet (22), InceptionNet (24), 
and DeseNet (25), that perform well in image classification 
tasks. Compared with the other two neural network models, 
ResNet-18 has the advantages of a simple network structure 
and a wide range of applications with the residual structure, 
which makes it possible to avoid overfitting. We modified 
the structure based on the original ResNet-18 model by 
setting the first layer of the network to 6 (or 18) different 
convolutional layers to extract the features of 6 images in 
parallel so that it can be applied to multiple input images to 
reduce the parameters of the model and the training time. 
After the extraction, we performed further feature extraction 
by fusing the features of the initially extracted images using 
2 different methods. In this manner, we could make good 
use of the information in the images without significantly 
increasing the model parameters and training time.

Our findings showed that using all 18 views was the 
most effective predictor of OSA with an accuracy rate of 
88.2%, probably because this method contains the most 
information (including facial features, bones, upper airway 
morphology, etc.). The skin reconstruction method was the 

best predictor of OSA using only 6 images, with an accuracy 
of 85.9%. The skin may contain information related to 
age or obesity (e.g., skeleton size and subcutaneous fat 
thickness) (26,27). AI can identify and use this information; 
however, the naked eye often fails to do so.

Recently, many studies have applied machine learning 
(ML) methods to predict whether an individual has 
OSA. Pombo et al. (28) reported that ML accounted for 
85.25% of the methods used to predict OSA, with good 
performance and reliability, and was the most used method 
and the most popular algorithm. The questionnaire is a 
convenient assessment tool that usually includes symptoms, 
demographic variables, and other factors. Clinicians 
frequently use it for the initial assessment of the probability 
of a patient having OSA and for deciding whether further 
diagnostic testing is required. Tan et al. (29) reported 
that the NoSAS (Neck circumference, Obesity, Snoring, 
Age, Sex) score was similar to the STOP-BANG (snoring 
history, tired during the day, observed stop breathing while 
sleep, high blood pressure, BMI more than 35 kg/m2,  
age more than 50 years, neck circumference more than 
40 cm and male gender) and Berlin questionnaires in 
predicting OSA. Tan et al. (29) concluded that the NoSAS 
score was slightly better than that of other questionnaires. 
However, regardless of the effect, they all agreed that the 
questionnaire could be used as a screening tool. Eijsvogel 
et al. (30) modified the scoring system to predict OSA 
using a two-step method, with a sensitivity of 63.1% 
and a specificity of 90.1%. Rowley et al. (31) evaluated 
4 previously published clinical prediction models based 
primarily on symptoms (including snoring, witnessed 
apneas, and gasping/choking) and anthropometric data 
(including BMI, age, and sex) for predicting OSA, reporting 
a sensitivity range of 33–39% and a specificity range of 
87–93%. Overall, questionnaires and anthropometrics 
have low levels of accuracy and greater patient subjectivity, 
which limits their use in clinical models. Therefore, we do 
not advocate the use of clinical tools, questionnaires, or 
predictive algorithms to diagnose OSA in adults (32).

Many studies used a combination of multiple PSG 
signals (e.g., electrocardiogram, EEG, and SpO2) to predict 
OSA with high accuracy and good predictive power (33). 
Compared with questionnaires, these methods are based 
on objective measurements with fewer subjective biases. 
However, they still require complex monitoring and are 
unsuitable for OSA screening.

The advent of photographic analysis has provided a 
replacement technique for the quantitative assessment 

Figure 6 Performance of models with different sized training sets.
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of craniofacial morphology and prediction of OSA. 
Reports show that the accuracy of OSA detection using 
photographic variables can reach 76.1% (16,17). However, 
strict standardization of calibration photography (control 
of distance from the camera and contour positions), manual 
annotation, and measurement may be both time-consuming 
and tedious, hindering the application of this technique (21). 
With the development of AI, deep learning has been highly 
successful in tasks such as the detection, segmentation, and 
classification of objects for both images and videos (34).  
OSA can be predicted simply and quickly using deep 
learning.

Combining facial features with AI provides objective 
measurement information and eliminates the need for 
manual measurements, making it a reliable method for 
the large-scale screening and early-warning provision of 
OSA. Tabatabaei et al. (35) separated the frontal and lateral 
perspectives of the face from the overall image and achieved 
an accuracy of up to 61.8% in their test set. Brink-Kjaer  
et al. (8) used frontal and lateral facial photographs and input 
them directly into a neural network classifier to achieve an 
average accuracy of 62% for OSA detection. Islam et al. (36) 
transformed 3D scans into frontal 2D depth maps. Three 
different ConvNet neural network models were chosen to 
classify patients, demonstrating 57.1–67.4% accuracy in the 
test group. Nosrati et al. (37) achieved 73.3% accuracy in 
predicting OSA using a support vector machine (SVM). Lee 
et al. (17) achieved 48.2% sensitivity and 92.4% specificity 
in predicting OSA using a single photographic measurement 
(mandibular width-length angle) and the simplest 
classification and regression trees (CART) model. They 
also applied CART using 4 photographic measurements 
(mandibular width-length angle, neck depth, mandible 
width, face width-lower face depth angle) to predict OSA 
with a sensitivity of 70.2% and a specificity of 87.9% (17). 
Similar sensitivities and specificities were obtained by 
Espinoza-Cuadros et al. (38) using Lee et al.’s facial features 
(specificity of 79.1% and sensitivity of 85.1%). He et al. (21) 
reported the best results thus far using frontal, 45-degree 
lateral, and 90-degree lateral images to predict OSA using 
ConvNet neural network models and could attain 91–95% 
sensitivity and 73–80% specificity. Hanif et al. (39) detected 
predefined facial landmarks and aligned the scans in 3D 
space. The scans were subsequently rendered and rotated 
in 45-degree increments to generate 2D images and depth 
maps that were fed into a convolutional neural network to 
predict the AHI values from the PSG. The mean absolute 
error of the proposed model was 11.38 events/hour, with 

an accuracy of 67% (39). The drawback of this prediction 
method is that it requires the facial acquisition of individual 
patients and needs to be calibrated and uploaded, which 
makes it difficult to collect patient data. Further, the upload 
of facial photographs requires consideration of data security 
and patient privacy protection.

Our model assesses objective data and does not include 
human subjectivity in the diagnostic process. It is also quite 
simple to apply in the clinic, does not require additional 
calibrations and acquisition of patients’ facial photographs, 
and is less labor-intensive and time-consuming. Moreover, 
this early detection allows for the OSA screening of a 
broader population than simply individuals who wish to 
be photographed. It minimizes the delay in diagnosis and 
referral of patients to secondary or tertiary care without 
the need to consider patient privacy breaches. Only Tsuiki  
et al. (20) reported a similar study in which they developed 
a deep convolutional neural network using lateral 
cephalometric radiographs to diagnose severe OSA, with 
sensitivity reaching 92%.

This study has some limitations. First, the patients 
were all recruited from a sleep center population, and this 
population may have a higher prevalence of OSA, males, and 
overweight individuals than does the general population. 
This is a limitation of the present and other similar studies. 
Second, our model requires further training in a female 
population due to the limited number of female patients 
and possible craniofacial differences between the sexes (40). 
In addition, our study included only Chinese individuals, 
and generalizability to other ethnicities is uncertain. 
Moreover, we only included patients with moderate and 
high OSA; however, previous studies have shown that 
an AHI threshold of 5 events/h is where concomitant 
changes in facial morphology are most remarkable (41). 
CT reconstruction includes clear identifiers (skin) and rich 
health data that require the same information protection as 
facial photography. In the future, further model refinement 
and validation with other ethnic groups and community 
populations are needed to overcome these limitations. 
Applying our model to populations that include mild OSA 
samples and more females will provide a more practical 
model for predicting OSA. In this study, the model did not 
include causative factors for OSA other than craniofacial 
anatomy (e.g., upper airway muscle responsiveness, 
respiratory control, arousal capacity). Further inclusion 
of physiological respiratory factors could be considered to 
improve the predictive power of the model; otherwise, false 
positives arising from low accuracy could lead to a more 
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costly investigation. However, false positives in patients 
may also indicate the presence of potentially hazardous 
anatomic features that need to be followed closely. This 
is because it is still possible to have OSA as weight and 
age increase. Due to technical limitations, we used 2D 
photographs from different angles to represent the 3D 
structure of the face, but this may still not cover all facial 
shape and contour information. Using 3D facial scans for 
direct OSA prediction may be a future trend. In addition, 
3D segmentation of the airway, combined with sleep apnea 
detection parameters, could be used in the diagnosis and 
prediction of OSA, which may be informative and lead to 
better results.

Conclusions

We propose a model for predicting OSA using upper 
airway CT and deep learning. The model has satisfactory 
performance and has high potential utility in enabling CT 
to accurately identify patients with moderate to severe OSA. 
It can be further incorporated into CT procedures to alert 
clinicians of OSA in patients who undergo head and neck 
CT. It can serve as an effective screening tool for OSA in 
clinics or communities to guide further treatment choices, 
contributing to epidemiological investigations and health 
management.
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Supplementary

Table S1 Hyperparameters of the AdamW optimizer

Parameter Value

Learning rate 0.001

β1 0.9

β2 0.999

ε 1×10-8

Weight decay 0.005

Table S2 Participant characteristics

Characteristics OSA non-OSA P value

N 219 81 –

Age (years) 37.63±9.79 41.28±14.96 0.101

Male (M/F) 200/19 68/13 0.066

BMI (kg/m2) 28.45±4.82 25.27±4.72 <0.001*

AHI (events/h) 48.97±23.84 3.94±3.04 <0.001*

Data are expressed as mean ± standard deviation or median (interquartile range). *, P<0.001. OSA, obstructive sleep apnea; AHI, apnea 
hypopnea index; BMI, body mass index.

Table S3 Results for different reconstruction and fusion models

Reconstruction method Fusion method Precision Recall F1-score AUC

All 18 views Add 85.47 81.21 82 96 0.882

Concat 82.58 78.67 80.27 0.868

Skin Add 78.48 85.31 81.60 0.859

Concat 75.58 77.39 75.00 0.856

Skeletal Add 74.47 76.47 75.46 0.829

Concat 74.60 79.64 77.01 0.802

Airway Add 74.79 75.68 75.23 0.792

Concat 75.15 74.29 74.72 0.701

AUC, area under the receiver operating characteristic curve.

Table S4 Times (every 32 volunteers) for prediction of OSA with 
the different methods (seconds)

Channel Fusion methods Time for prediction (s)

6-channels Add 0.671

Concat 0.822

18-channels Add 1.376

Concat 1.862

OSA, obstructive sleep apnea.


