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Background: Tumor metabolism and immune response can affect the biological behavior of tumor 
cells. There is an obvious relationship between glycolysis and immune response. However, the association 
between metabolism and immune response and prognosis in lung adenocarcinoma (LUAD) has not yet been 
examined in a comprehensive and detailed manner. The establishment of reliable models for predicting the 
prognosis of LUAD based on glycolysis ability and immune status is still highly anticipated.
Methods: The expression of genes were obtained from online databases, and the differentially expressed 
genes in LUAD tissues and adjacent tissues were identified. We used LUAD samples in The Cancer Genome 
Atlas (TCGA) database as training set and the Gene Expression Omnibus (GEO) databases as validation 
sets. The best predictive model was constructed using least absolute selection and shrinkage operator 
(LASSO) regression and Cox regression. The receiver operator characteristic (ROC) curve is used to verify 
the accuracy of the model. The expression status of the Glycolysis-related genes (GRGs) and the status of 
the immune cells in LUCD patients were further analyzed. The protein levels of the 3 identified genes were 
then tested in LUAD patients.
Results: We identified 3 GRGs and immune-related genes (i.e., fibroblast growth factor 2, hyaluronan-
mediated motor receptor, and nuclear receptor 0B2) and constructed a stable comprehensive index of 
glycolysis and immunity (CIGI) prediction model. The validation results for this CIGI model were quite 
stable across different datasets and patient subgroups and the CIGI score can be included as an independent 
prognostic factor for LUAD patients. The area under the curve (AUC) values of 1-, 3- and 5-year of the finally 
established nomogram model are 0.767, 0.735 and 0.769. Further analysis showed that LUAD patients in the 
low-risk group had lower levels of glycolytic gene expression than those in the high-risk group and exhibited 
an immunosuppressed state. Finally, hyaluronan-mediated motor receptor may play a role in inhibiting cancer, 
while fibroblast growth factor 2 and nuclear receptor 0B2 may play roles in promoting cancer.
Conclusions: In this study, we established a new prognostic prediction model for LUAD patients that 
combines glycolysis ability and immune status.
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Introduction

Lung adenocarcinoma (LUAD) is one of the deadliest 
tumors and is also the main pathological subtype of lung 
cancer. Currently, the treatment of LUAD includes surgery, 
chemotherapy, targeted therapy, and other methods. The 
combined use of these treatments has led to great strides 
in terms of overall patient benefits; however, the 5-year 
survival rate for LUAD patients remains low. Thus, a new 
personalized treatment approach is urgently needed to 
improve the survival time of patients.

In recent years, immunotherapy, especially immune 
checkpoint blockade therapy, has been considered a major 
breakthrough in the treatment of LUAD and is widely 
regarded as one of the most promising cancer treatments (1).  
However, the efficacy of immune checkpoint inhibitors 
(ICIs) faces a problem common to other drug treatments; 
that of, individual differences of the patients. Some patients 
treated with ICIs have been found have longer overall 
survival (OS) than those who receive other treatments; 
however, there are still some patients who do not benefit 
from ICIs (2).  Thus, further research on immune 
escape mechanisms needs to be conducted and potential 
therapeutic targets need to be identified to improve the 
therapeutic effect of immunotherapy and to identify 
beneficiary groups so that more patients can obtain better 
treatment outcomes.

The interplay between the metabolic changes of immune 
cells and tumor cells is considered a major critical point in 
tumor immune response and immunosuppression. Previous 
study has provided evidence that tumor metabolism not 
only plays a key role in tumor initiation and development 
by directly participating in energy metabolism but also 
affects the production and function of immune molecules 
by releasing metabolites, such as lactate (3). What’s more, 
the study has suggested that immune cells are regulated 
by metabolic reprogramming during differentiation, 
and the immune cells produced some biological effects, 
and this regulation is critical for immune responses (3).  
Thus, a comprehensive understanding of how the 
metabolic reprogramming of tumor cells modulates anti-
tumor immune responses may lead to the development of 
therapeutic approaches that target metabolic pathways that 
may affect the efficacy of immunotherapy.

Tumor metabolic reprogramming involves multiple 
processes, of which glycolysis is the most prominent 
and typical feature, involves multiple processes, such as 
enhanced aerobic glycolysis, the increased utilization, 
uptake and consumption of glucose, and increased lipid and 
protein synthesis (4-6). As first observed by Warburg, even 
in the presence of large amounts of oxygen, tumor cells 
produce lactate in the cytoplasm primarily by metabolizing 
glucose, which is known as the “Warburg effect” or “aerobic 
glycolysis” (7). Recent studies have shown that the primary 
source of energy required for the activation of some 
immune cells, such as T cells, is glycolysis (8,9). At the same 
time, the products of glycolysis affect the action of immune 
cells. For example, lactate, one of the major metabolites 
of tumor cells, is often highly enriched in the tumor 
microenvironment, and can inhibit the cytolytic ability and 
immune surveillance ability of some T cells (10,11). It has 
also been observed that regulatory T cells (Tregs) may be 
resistant to lactate, and the lactate metabolic pathway may 
be activated in Tregs and is used to support cell metabolism, 
proliferation, and inhibitory function (10,11). This suggests 
that glycolysis plays a critical and complex role in immune 
cells and tumor cells. Despite the clear association between 
glycolysis and immune responses, few studies have closely 
examined this relationship.

In recent years, some studies have attempted to establish 
a prognostic model of lung adenocarcinoma. However, 
the current models are usually based on the whole genome 
and rarely focus on specific mechanisms. This makes it 
difficult for existing models to reflect the metabolic status 
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and immune status of patients at the same time. The huge 
impact of tumor metabolism and tumor immunity on the 
prognosis and treatment of patients makes models based 
on glycolysis and immunity more targeted than other 
models. At the same time, this model also provides more 
information for follow-up treatment strategies. Therefore, a 
simple model is urgently needed to provide information on 
the glycolytic capacity and immune status of patients while 
predicting prognosis.

In this study, glycolysis-related genes (GRGs) and 
immune-related genes (IRGs) were selected as candidate 
genes,  and the optimal candidate gene range was 
determined using a variety of analytical screening methods. 
Next, a comprehensive index of glycolysis and immunity 
(CIGI) model was constructed. CIGI scores are stable 
and reliable biomarkers in different data sets and different 
subgroups. Finally, by analyzing the gene expression levels, 
we showed that CIGI scores reflect the glycolytic capacity 
and immune status of LUAD patients. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-1695/rc).

Methods

Data source: online database

Ribonucleic acid (RNA)–sequencing gene expression 
information for all the samples and clinical information 
for LUAD patients were obtained from The Cancer 
Genome Atlas (TCGA) database and the Gene Expression 
Omnibus (GEO) database (GSE31210, GSE41271, and 
GSE50081). The TCGA dataset was used as training set, 
and the GEO datasets were used as validation sets. All 
samples with deficient clinical information such as gender, 
tumor stages and OSs were excluded from the study. The 
ENSEMBL IDs in all the sequencing data were converted 
to gene symbols. When the same probe corresponded 
to multiple genes, it was excluded, and when multiple 
probes corresponded to the same gene, the median of the 
expression values was used for the analysis. GRGs and IRGs 
were identified in the Molecular Signatures database and 
the ImmPort data set.

CIGI build and verification

A univariate analysis was performed using the “survival” 
package in the GRGs and IRGs to select the independent 

prognostic predictors. The CIGI model was constructed 
using a least absolute selection and shrinkage operator 
(LASSO) analysis and Cox proportional hazards regression 
models. The risk value of each patient was calculated, and 
the LUAD patients were then divided into two groups 
according to the optimized risk value. The difference 
in survival between the two groups was examined via a 
Kaplan-Meier (K-M) survival analysis. The predicted values 
of the CIGI were analyzed by time-dependent receiver 
operator characteristic (ROC) curves. Multiple factors 
that may affect the prognosis, such as gender, T (primary 
tumor) stage, N (lymph node) stage, M (metastasis) stage, 
and tumor stage were included in COX regression analysis 
to identify independent prognostic factors. Based on the 
results of multivariate Cox regression analysis, a nomogram 
model was established to predict the prognosis. The 
calibration curves and the ROC curves were used to validate 
the nomogram model.

Analysis of potential regulatory pathways and immune 
infiltration

The pathway scores of each sample and the infiltration 
levels of the immune cells were analyzed by a single-sample 
gene set enrichment analysis (ssGSEA). The relationship 
between the CIGI and potential regulatory pathways was 
analyzed based on the scores. Genetic markers for each 
immune cell were determined from previous research (12).

IHC analysis

The LUAD samples and matched non-tumorous tissues 
were obtained from 80 LUAD patients in the First Affiliated 
Hospital of Anhui Medical University. The tissues were 
fixed in 10% formalin, embedded in paraffin, and processed 
as 4-µm continuous sections. Immunohistochemistry (IHC) 
staining was performed according to the manufacturers’ 
instructions (UltraSensitiveTM SP; MXB, China). The 
following antibodies were used: fibroblast growth factor 
(FGF2; Abcam, ab92337), hyaluronan-mediated motor 
receptor (HMMR; Proteintech, 15820-1-AP), and nuclear 
receptor 0B2 (NR0B2; Abcam, ab96605). Each sample was 
independently assessed by 2 pathologists and scored using 
a semi-quantitative scoring system with histoscores ranging 
from 0 (minimum) to 300 (maximum). The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by ethics 
board of the First Affiliated Hospital of Anhui Medical 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-1695/rc
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University (No. PJ2018-16-15) and individual consent for 
this retrospective analysis was waived.

Statistical analysis

Multiple factors that may affect the prognosis were included 
in univariate COX and multivariate COX regression 
analysis, and independent prognostic factors were selected 
according to P<0.05. A K-M analysis was conducted to 
analyze the differences in OS. Statistical comparisons 
between two groups were performed using the Student’s 
2-tailed t-test. A P value <0.05 was considered statistically 
significant. The P value was two sided. The threshold AUC 
value is 0.5.

Results

Construction of the LUAD CIGI model

We first performed an analysis using TCGA-LUAD data 
set. Differentially expressed genes between the LUAD 
tissues and adjacent paracancerous tissues were screened 
using the following standard: a log 2-fold change (FC) 
>1 and P<0.05 (Figure 1A). In total, 1,491 differentially 
expressed genes (of which 574 were upregulated and 917 
were downregulated) were identified. After intersecting 
these differentially expressed genes with the IRGs/GRGs, 
144 genes were identified (Figure 1B). We further analyzed 
the association between these 144 genes and OS and 
disease-free survival (DFS), and found that 18 genes were 
significantly associated with OS and DFS (Figure 1C-1E). 
To identify more precise candidate genes, we performed 
a LASSO regression analysis and cross-validated the 
regression coefficients and ultimately identified 9 candidate 
genes (Figure 1F,1G). To examine the relationship between 
these 9 candidate genes and survival time and to optimize 
the final prediction model, we identified a set of 3 genes 
(i.e., FGF2, HMMR, and NR0B2) using a Cox proportional 
hazards regression model. The analysis result was as follows: 
CIGI = (0.269× FGF2 expression level) + (0.177× HMMR 
expression level) + (–0.076× NR0B2 expression level).

Prognostic value of CIGI score in TCGA-LUAD data set

We calculated the risk score according to the CIGI model. 
The survival time distribution, expression levels of the  
3 genes, and risk score distribution of the LUAD patients 

are shown in Figure 2A. The risk values for all patients were 
calculated, and the best cut-off value was selected. Patients 
were assigned to two groups according to their scores. The 
K-M survival analysis showed that patients in the low-risk 
group had significantly longer OS than those in the high-
risk group (Figure 2B; P<0.0001). A ROC curve analysis 
was conducted to verify the predictive ability of the model, 
and the area under the curve (AUC) values for 1-, 3-, and 
5-year survival were 0.69, 0.672, and 0.678, respectively 
(Figure 2C).

CIGI validation in GEO data sets

To validate the prognostic value of CIGI, we selected 3 
external data sets. The reliability of the CIGI predictions 
was tested on 3 data sets; that is, GSE31210, GSE41271 
and GSE50081. The survival times, expression levels of the 
3 genes, and risk score distributions for the 3 cohorts are 
shown in Figure 3A-3C. The K-M survival analysis showed 
that in all 3 cohorts, patients with low scores had longer OS 
(Figure 3D-3F). A ROC curve analysis was used to verify the 
predictive power of the predictive model. The AUC values 
for 1-, 3-, 5-, and 7-year survival in GSE31210 were 0.7, 
0.612, 0.647, and 0.695, respectively (Figure 3G). The AUC 
values for 1-, 3-, 5-, and 7-year survival in GSE41271 were 
0.616, 0.612, 0.59, and 0.579, respectively (Figure 3H). The 
AUC values for 1-, 3-, 5-, and 7-year survival in GSE50081 
were 0.558, 0.595, 0.591, and 0.543, respectively (Figure 3I).

Prognostic performance of the CIGI in different subgroups

To more comprehensively and more closely evaluate the 
clinical predictive value of the CIGI, patients with LUAD 
were divided into different subgroups according to their 
clinical characteristics, and a K-M survival analysis was 
performed. The results showed that OS was longer in 
the low-score group in subgroups of LUAD patients by 
gender, T (primary tumor) stage, N (lymph node) stage, 
M (metastasis) stage, and tumor stage (Figure 4A-4J). A 
distribution analysis of the CIGI scores was also performed 
in the LUAD subgroups of patients with different T, N, M, 
and pathological stages, and the results showed that patients 
in the high CIGI group had later N and tumor stages  
(Figure 4K-4N). In conclusion, CIGI effectively predicted 
the prognosis of different subgroups of patients, which 
proves the accuracy and reliability of the CIGI.
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Figure 1 Identification of candidate genes in the CIGI model. (A) Volcano plot of the DEGs in the TCGA-LUAD data set. (B) Venn 
diagram showing that 144 GRGs and IRGs were identified among the differentially expressed genes. (C-E) 18 candidate genes associated 
with OS and RFS were identified. (F) LASSO coefficient profiles of the most relevant prognostic genes (upper panel) and cross-validation 
for tuning parameter selection in the LASSO model (lower panel). (G) Results of the cox proportional hazards regression model based on 
9 genes. CIGI, comprehensive indicator of glycolysis and immunity; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; 
OS, overall survival; PFS, progression-free survival; LASSO, least absolute selection and shrinkage operator; DEGs, differentially expressed 
genes; GRGs, glycolysis-related genes; IRGs, immune-related genes; RFS, recurrence free survival.
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Figure 2 Prognostic analysis of CIGI in TCGA data set. (A) Survival times, expression levels of the 3 genes in CIGI, and risk scores. In 
middle panel, each color block represents a patient, and the color changes with the gene expression levels (color bar). (B) K-M analysis of 
the OS in the high- versus low-CIGI groups. (C) Time-dependent ROC analysis of CIGI for OS and survival status. AUC, area under the 
curves; CIGI, comprehensive indicator of glycolysis and immunity; TCGA, The Cancer Genome Atlas; K-M, Kaplan-Meier; ROC, receiver 
operator characteristic; OS, overall survival.

The Cox analysis showed that CIGI is an independent 
prognostic factor of LUAD

First, a univariate Cox analysis was performed to explore 
the correlations between several candidate factors and 
prognosis. The candidate factors included the CIGI and 
5 common clinical features. The results showed that 4 
factors (i.e., CIGI, N stage, T stage, and tumor stage) were 
statistically significant for the prognosis of LUAD patients 
(Figure 5A). Next, a further multivariate Cox analysis was 
performed on the above 4 factors. The results showed that 
3 of the 4 factors (i.e., CIGI, N stage, and tumor stage) 
were statistically significant independent factors in the 
prognosis of LUAD patients (Figure 5B). In conclusion, 
the CIGI value is an independent prognostic factor in 
patients with LUAD. To further examine the prognostic 
predictive function of the CIGI values for LUAD patients, 
we incorporated all the independent prognostic factors and 
constructed a nomogram model to increase its predictive 

power (Figure 5C). The calibration curves showing the 1-, 
3-, and 5-year calibration points were in good agreement 
with the standard curve, indicating that the model exhibited 
a valid predictive performance (Figures 5D-5F). Further, 
the ROC analysis suggested that the nomogram model was 
more predictive of OS than a single clinicopathological 
feature (Figure 5G).

The CIGI is able to differentiate glycolytic status in LUAD 
patients

To further evaluate the relationship between CIGI and 
glycolysis, we identified multiple genes that encode 
cellular glycolysis regulation based on previous reports  
(Figure 6A) (13). We then analyzed the messenger RNA 
expression levels of the 11 genes in patients with low and 
high CIGI scores using TCGA database. According to 
TCGA data set, except for ALDOA (aldolase A), ENO1 
(α-enolase), and PFKL (phosphofructokinase-1 liver 
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type), the other GRGs showed higher expression levels 
in the high CIGI group (Figure 6B). In addition, the 
ssGSEA scores of the “HALLMARK GLYCOLYSIS” and 
“HALLMARK HYPOXIA” pathways were also generated 
based on the RNA expression profiles of TCGA data 

set, and the correlation analysis suggested that both the 
glycolytic pathway score and the hypoxia pathway score 
were positively correlated with the CIGI (Figure 6C). From 
the above results, we concluded that the expression levels 
of these genes in patients in the high CIGI group were 
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Figure 5 Establishment and validation of the nomogram prediction model. (A) Univariate Cox analyses of OS in TCGA data set. (B) 
Multivariate Cox analyses of OS in TCGA data set. (C) Nomogram model combining CIGI and traditional clinical features. (D) 1-year 
calibration curves of the nomogram model. (E) 3-year calibration curves of the nomogram model. (F) 5-year calibration curves of the 
nomogram model. (G) The ROC of the nomogram model. OS, overall survival; AUC, area under the curves; TCGA, The Cancer Genome 
Atlas; CIGI, comprehensive indicator of glycolysis and immunity; ROC, receiver operator characteristic.

higher than those patients in low CIGI group, suggesting 
that patients in the high CIGI group may have stronger 
glycolytic potential.

CIGI can differentiate among the different immune 
statuses of LUAD patients

To explore the link between immune status and the CIGI 
in LUAD patients, we conducted a ssGSEA to determine 
the correlations between the risk scores and immune cells 
and the infiltration levels of the immune cells. The results 
indicated that in patients with high CIGI, 21 immune 

cells showed high infiltration levels (Figure 7A). To further 
evaluate the relationship between the CIGI and the tumor 
immune microenvironment, the status of the tumor immune 
microenvironment was evaluated based on the stromal 
score, immune score, and tumor purity. As Figure 7B-7D 
shows, the CIGI scores were weakly positively correlated 
with immune scores (R=0.24, P<0.001) and stromal scores 
(R=0.32, P<0.01) but were weakly negatively correlated with 
tumor purity (R=–0.31, P<0.001). The above results suggest 
that patients with higher CIGI scores had relatively higher 
levels of immune cell infiltration, which also suggests that 
the immune level of such patients may be stronger.
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Figure 6 Glycolysis profile in CIGI. (A) Summary of the glycolytic genes. (B) Expression levels of glycolytic genes between the high- versus 
low-CIGI group in TCGA data set. (C) Correlations of ssGSEA scores of “HALLMARK GLYCOLYSIS” (upper panel) and “HALLMARK 
HYPOXIA” (lower panel) pathway with CIGI in TCGA data sets. **, P<0.01, ***, P<0.001, ****, P<0.0001. ns, no significance. CIGI, 
comprehensive indicator of glycolysis and immunity; TCGA, The Cancer Genome Atlas; ssGSEA, single-sample gene set enrichment 
analysis.

The protein expression of FGF2, HMMR, and NR0B2 in 
LUAD patients

To further verify the expression of FGF2, HMMR, 
and NR0B2 in the LUAD patients, we conducted IHC 
experiments in 80 LUAD patients’ tumor tissues and 
adjacent tissues to detect the protein expression levels of the 
above 3 genes. The results showed that HMMR was highly 
expressed in the tumor tissues but was lowly expressed in 
adjacent tissues. Conversely, NR0B2 and FGF2 were highly 
expressed in the adjacent tissues, but were lowly expressed 
in the tumor tissues (Figure 8A). We then performed a K-M 
survival analysis of the patients. The results showed that 
the patients with high expression of HMMR had a longer 
OS period, while those with a high expression of NR0B2 
and FGF2 had a shorter OS period (Figure 8B). This was 
consistent with our previous data analysis results.

Discussion

LUAD is a malignant tumor with high morbidity and 
mortality. Despite multiple treatment options, the prognosis 

of patients with LUAD, especially those with advanced 
LUAD, remains poor. Thus, a more detailed classification 
system for LUAD patients is urgently needed to better 
predict patient prognosis and provide evidence for more 
precise treatment. With the development of bioinformatics 
and sequencing technologies, studies have built predictive 
models based on immunity and glycolysis, but most models 
contain only 1 biological process. This study established the 
first model that combines immunity and glycolysis factors 
for LUAD.

In this study, we constructed a CIGI model using data 
from public databases. As shown in different data sets and 
patient subgroups, the CIGI model had excellent prognostic 
ability in LUAD patients and the CIGI score could be a 
key independent prognostic factor in LUCD patients, and 
thus has great potential for clinical application. Further, 
we demonstrated that CIGI is associated with glycolytic 
capacity and immune status. Our findings may also lead to a 
new research direction for the subsequent elucidation of the 
driving mechanism of LUAD.

In recent years, several studies have shown that altered 
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Figure 7 Immune profile in CIGI. (A) Distribution level of 28 types of immune cells in the high- versus low-CIGI group. (B-D) 
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metabolic processes in the tumor microenvironment 
inhibit some immune cell infiltration and other anti-
tumor immune processes by producing immunosuppressive 
metabolites (10,11). Interestingly, some metabolic processes 
underlie cancer and immune cell responses, while another 
direct consequence of changes in tumor metabolism 
is the activation of immunosuppressive pathways. In 
addition, changes in immune status can also affect cellular 
metabolism. For example, blocking immune checkpoints 
can inhibit glycolysis in tumor cells, and enable T-cell 
glycolysis and cytokine production (14). Thus, an in-
depth understanding of tumor metabolism and immune 
status could enable doctors to selectively modulate related 
functions while providing an accurate prognostic prediction 
and guidance for subsequent treatment.

In this study, a prognostic model combining glycolysis 
and immunity factors was constructed, which reflects the 
changes in these 2 characteristics of tumors at the same 
time. Notably, patients with higher CIGI scores had 
stronger glycolysis, a poorer prognosis, and a later stage of 
LUAD. However, patients with higher CIGI scores also had 
stronger immune responses, indicating that the immune 
responses of these patients did not produce stronger tumor 
suppressor effects, which suggests that these patients may 
have immune escape.

In recent years, many researchers have developed new 
prediction models. In 2020, Luo et al. proposed prognosis 
models based on IRGs (15,16). However, these models 
only target IRGs, and do not include metabolic processes, 
such as glycolysis. In the same year, Zhao et al. also 
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Figure 8 IHC in patients LUAD. (A) Protein expression levels (right panel) and typical pictures (left panel) of HMMR, FGF2 and NR0B2 in 
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P<0.05, ***, P<0.001. ns, no significance. IHC, immunohistochemistry; LUAD, lung adenocarcinoma; K-M, Kaplan-Meier.

developed a whole genome prediction model; however, 
this model is aimed at the whole genome, and does not 
reflect the relationship between patients’ IRGs and GRGs 
and prognosis (17). Unlike previously established models, 
our model was the first to combines IRGs and GRGs, and 
thus faithfully reflects the relationship between these two 
physiological processes and patient prognosis. Additionally, 

the CIGI score also indicates the immune infiltration 
level and glycolysis ability of the patient to some extent. 
In addition, our model does not include too many genes, 
which is beneficial for clinical application and detection. 
The expression of target genes has also been tested in the 
tissue section verification of patients. Thus, the model 
proposed in this study is innovative and of great significance 
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for clinical treatment and further research.
The CIGI model we constructed includes the following 

3 genes: FGF2, HMMR and NR0B2. FGF2 is an important 
growth factor necessary for the construction of lung tissue. 
In certain contexts, FGF2 triggers the abnormally high 
expression of VEGF (vascular endothelial-derived growth 
factor) and FGF-2, which are the main drivers of abnormal 
angiogenesis and lung cancer development, in lung tissue 
structures by activating the inflammatory cascade (18). 
FGFR2 (fibroblast growth factor receptor 2)-CCAR2 (cell 
cycle and apoptosis regulator 2) and other fusions and gain-
of-function mutations in FGFR2 have been observed in 
lung cancer (19-21), which suggests that aberrant FGFR 
signaling induces lung cancer. In addition, it has also been 
reported that abnormal FGFR signaling may promote 
tumor cell proliferation, survival, invasion, and metastasis, 
involving multiple stages of tumor development.

HMMR was originally identified as a soluble protein that 
binds to hyaluronic acid with diverse cellular functions. 
It primarily plays a role in the repair of tissue damage 
(22,23). A previous study showed that HMMR participates 
in the formation of microtubule spindles and activates the 
signaling pathways that enhance cell migration, thereby 
promoting cell cycle progression (24). A 2021 report noted 
an inverse correlation between HMMR expression levels 
and OS in patients with LUAD (25). HMMR has also been 
proposed as a prognostic marker for early stage non-small 
cell lung cancer (26). 

NR0B2 is an orphan nuclear receptor. NR0B2 expression 
is lacking in human cancer samples; 2 reports have noted 
that NR0B2 is downregulated in liver cancer (27) and 
renal cancer (28). NR0B2 has been reported to suppress 
inflammation and innate immunity to hepatocyte injury 
(29-32). Given that inflammatory responses and immune 
cells have distinct functions in immune escape and anti-
tumor immunity (30,33), the clinical significance of NR0B2 
expression in relation to tumor immunity requires more 
research. This study is the first to report that the expression 
of the above 3 genes in LUAD is related to glycolysis and 
immunity. Our results suggest that drugs related to FGF2, 
HMMR, and NR0B2 may become new options for lung 
cancer-targeted therapy.

Our findings show that the CIGI model is very accurate 
as a prognostic tool for LUAD patients; however, this study 
had some limitations. First, all the samples used in our 
study comprised retrospective cases obtained from public 
databases, so studies with prospective samples need to be 
conducted in the future to validate our results obtained. 

Second, the focus of our study was on the prognostic value 
of CIGI. The underlying mechanisms behind the prognostic 
predictive value of FGF2, HMMR, and NR0B2 in CIGI 
need to be further investigated by more experiments both  
in vivo and in vitro.

Conclusions

After a series of analyses and verifications, our research 
showed that the prognosis prediction model established 
using the expression levels of FGF2, HMMR, and NR0B2, 
the 3 GRGs and IRGs, accurately predicts the prognosis of 
LUAD patients. This model also predicts the corresponding 
glycolysis ability and immune infiltration level of patients.
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