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Background: Radiomics is one of the research frontiers in the field of imaging and has excellent diagnostic 
performance. However, there is a lack of magnetic resonance imaging (MRI)-based omics studies on 
identifying pathological subtypes of lung cancer. Here we explored the value of the contrast-enhanced 
MRI-T2-weighted imaging (T2WI)-based radiomic analysis in distinguishing adenocarcinoma (Ade) from 
squamous cell carcinoma (Squ) with solid components >8 mm. 
Methods: A retrospective analysis was performed of a total of 71 lung cancer patients who undergoing 
contrast-enhanced MRI and computed tomography (CT) before treatment, and the nodules had solid 
components ≥8 mm in our center from January 2020 to September 2021. All enrolled patients were divided 
into Squ and Ade groups according to the pathological results. In addition, the two groups were randomly 
divided into training set and validation set in a ratio of about 7:3. Radiomics software was used to extract the 
relevant radiomic features. The least absolute shrinkage and selection operator (Lasso) was used to screen 
radiomic features that were most relevant to lung cancer subtypes, thus calculating the radiomic scores (Rad-
score) and constructing the radiomic models. Multivariate logistic regression was used to combine relevant 
clinical features with Rad-score to form combined model nomograms. The receiver operating characteristic 
(ROC) curves. the area under the ROC curve (AUC), the decision curve analysis (DCA) and the DeLong’s 
test were used to evaluate the clinical application potentials. 
Results: The sensitivity and specificity of the clinical model based on smoking was 75.0% and 93.8%. The 
AUC of the constructed magnetic resonance (MR)-Rad model for differentiating the pathological subtypes 
of lung cancer was 0.8651 in the validation sets. The AUC of the CT-Rad model in the validation set were 
0.9286. The combined model constructed by combining clinical features and Rad-score had AUC of 0.8016, 
for identifying the 2 pathological subtypes of lung cancer in the validation set. There was no significant 
difference in diagnostic performance between MR-Rad model and CT-Rad model (P>0.05). 
Conclusions: The MR-Rad model has a diagnostic performance similar to that of CT-Rad model, while 
the diagnostic performance of the combined mode was better than the single MR model.
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Introduction

In 2020, there were about 19.3 million new cancer cases 
and nearly 10 million cancer-related deaths worldwide. 
Among them there were 2.20 million new lung cancer cases 
(11.4%), making lung cancer the second most common 
malignancy; in addition, almost 1.78 million people (18.0%) 
died from lung cancer, and thus lung cancer remains the 
most common cause of cancer death globally (1). Non-small 
cell lung cancer (NSCLC) accounts for about 85% of all 
lung cancer cases. It has a variety of pathological subtypes, 
the most common of which are adenocarcinoma (Ade) and 
squamous cell carcinoma (Squ) (2). Different pathological 
subtypes of lung cancer have different phenotypes and 
biological features. Although Ade and Squ have similar 
clinical manifestations and imaging findings, they are 
dramatically different in pathogenesis, pathological features, 
treatment regimens, and prognosis. For example, targeted 
therapy brings high benefits to Ade patients but is typically 
ineffective for Squ. It can be explained by the fact epidermal 

growth factor receptor (EGFR) mutations and anaplastic 
lymphoma kinase (ALK) fusions are 2 major driver genes 
for targeted therapy of NSCLC, and their expressions are 
more commonly seen in Ade than in Squ (3). In addition, 
Squ is more sensitive to chemotherapy. Therefore, the 
differentiation between Ade and Squ is of great significance 
for regimen selection and prognostic prediction in lung 
cancer patients.

At present, lung cancer is often qualitatively diagnosed 
by clinicians based on conventional imaging examinations, 
which is highly dependent on clinicians’ personal experience 
and leaves a possibility of missed diagnosis or misdiagnosis. 
Pathologic diagnosis is the gold standard for lung cancer 
diagnosis, which is often based on needle biopsy of lesions 
or postoperative pathology; however, these techniques are 
generally invasive and non-reproducible and can cause 
complications (4).

Non-invasive early diagnostic techniques for lung 
nodules mainly include liquid biopsy and various imaging 
examinations. Liquid biopsy techniques for lung cancer 
include the detection of serum autoantibodies, circulating 
tumor DNA (ctDNA), RNA exosomes, and traditional 
tumor markers (5,6). Although there are a variety of 
liquid biopsy techniques for lung cancer, there is no 
mature detection system; these detection techniques are 
also expensive, which limits their clinical application 
(5,7). In 2012, Dutch researchers Kumar et al. first 
proposed the concept of radiomics, which has more 
advantages than traditional image reading techniques (8). 
Radiomics uses automatic data characterization algorithm 
to transform medical image analysis from traditional 
qualitative evaluation to quantitative analysis. It performs 
mathematical processing on the basis of tests statistic, 
and the results obtained may personalize the diagnosis, 
treatment, and prognosis of specific diseases (9-12). As a 
non-invasive and reproducible technique, radiomics has 
shed new light on the diagnosis and treatment of tumors. 
In recent years, many studies have explored the role of 
radiomics in lung cancer management, and radiomics has 
been widely used in subtype differentiation, prognostic 
prediction, phenotyping, and classification of benign and 
malignant lung nodules (13-17).

Most of the currently available studies on lung cancer 
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radiomics are based on computed tomography (CT) images. 
Ji et al. showed that by constructing a radiomic model 
predicting the classification of lung Ade and Squ based 
on stage-specific positron emission tomography (PET) 
radiomic, the AUC of it in the validation cohort was 0.886. 
The radiomic-clinical nomogram integrating radiomic 
features with independent clinical predictors exhibited 
more favorable discriminative performance, with AUC of 
0.978 in the validation cohort (18). The radiomic model, 
based on CT constructed by Zhu et al. had an AUC of 0.893 
(95% CI: 0.789 to 0.996) in the validation cohort, with a 
sensitivity of 0.828 and a specificity of 0.900 (19). However, 
CT and PET/CT are radiotoxic, and CT offers less precise 
visualization of soft tissue detail than magnetic resonance 
imaging (MRI). In addition, the tumor tissue function 
information provided by MRI has certain predictive value 
for the pathological classification of lung cancer. Clinically, 
pure ground-glass opacity neoplastic lung nodules are more 
likely to be Ade, whereas nodules with solid components 
are difficult to identify. Research has shown that MRI has 
a sensitivity of 60–75% for solid lung nodules measuring 
4–6 mm, 80–99% for solid lung nodules measuring  
6–8 mm, and 100% for solid nodules with a diameter of  
>8 mm (20-24). According to the Lung Imaging Reporting 
and Data System (Lung-RADS) (23), solid nodules 
measuring ≥6 mm belong to grade 3 and above nodules 
that require short-term follow-up or further clinical 
management. MRI has shown good sensitivity and 
specificity for solid nodules sized ≥6 mm (i.e., Lung-RADS 
grade 3 and above nodules) (20). The study conducted by 
Lacroix et al. identifies the tumor histological type from 
magnetic resonance (MR) T2-weighted images, with 
classification performance similar to those reported in 
PET/CT and in multiphase CT in lung cancers (25). More 
studies have been carried out on MRI-based radiomics. 
Tang et al. (26) integrated the radiomics features with the 
clinical features for the histological subtype stratification 
in patients with NSCLC, and the accuracy reached 79.2%. 
Some studies have also used MRI-based radiomics models 
to evaluate the distant metastasis of lung cancer and the 
efficacy of subsequent treatments (27-29). There have 
been some studies of T2WI-based models predicting 
tumor subtypes with some proven diagnostic value (30,31). 
However, MRI-based omics in identifying the pathological 
subtypes of lung cancer has not yet fully matured.

Therefore, based on the contrast-enhanced MRI-T2-
weighted imaging (T2WI)-based radiomic features, we 

constructed prediction models using the quantitative 
parameters of radiomics for the pathological classification 
of Ade and Squ with a solid component of >8 mm and 
investigated the value of this technology in the non-
invasive prediction of pathological subtypes of lung cancer. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-23-142/rc).

Methods

Patient selection and grouping

In this retrospective study, a total of 71 patients who visited 
the Department of Thoracic Surgery, The First Affiliated 
Hospital of Soochow University from January 2020 to 
September 2021 and underwent chest contrast-enhanced 
MRI and CT before treatment were enrolled. All cases had 
definite pathological diagnoses. There were 47 males aged 
64.08±7.69 years and 24 females aged 62.08±7.93 years. 
The pathological types included Ade (n=46) and Squ (n=25).

The inclusion criteria were as follows: (I) undergoing 
contrast-enhanced MRI and CT before treatment, and the 
nodules had solid components ≥8 mm; (II) treatment-naïve 
before the imaging examinations; (III) with pathologically 
(e.g., exfoliative cytology of pleural fluid, tracheoscopy, 
puncture biopsy, or surgery) confirmed Ade or Squ; and (IV) 
with complete clinical data, along with clear MRI and CT 
images of chest lung cancer lesions before treatment.

The exclusion criteria were as follows: (I) no pulmonary 
lesion found on MRI; (II) having received any form of 
treatment (such as radiotherapy and chemotherapy) 
before completing the imaging examinations; (III) with 
histopathological types other than Ade and Squ, as 
confirmed by pathology; (IV) lack of clinical data, or the 
imaging quality did not meet diagnostic criteria (e.g., 
obvious metal or motion artifacts, unclear development, 
etc.); and (V) with a previous history of other malignant 
tumors in the chest or with other systemic malignant 
tumors.

All enrolled patients were divided into the Ade group or 
Squ group according to the pathological results. In addition, 
according to the needs of model establishment, patients 
in each group were randomly divided into a training set 
(n=48) and validation set (n=23) in a ratio of about 7:3. The 
training set included 16 Squ patients and 32 Ade patients 
and the validation set included 9 Squ patients and 14 Ade 
patients.

https://jtd.amegroups.com/article/view/10.21037/jtd-23-142/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-142/rc
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Materials and methods

The examination was performed using a 3.0 T magnetic 
resonance scanner (Skyra; Siemens AG, Erlangen, Germany), 
which used a dedicated 16-channel phased-array coil. Patients 
underwent breathing training prior to examination to reduce 
respiratory motion artifacts. The following acquisition 
parameters were applied: coronal T2WI half-Fourier 
acquisition single-shot turbo spin echo (HASTE): rotation 
time (TR), 1,400 ms; echo time (TE), 87 ms; field of view 
(FOV), 400 mm × 400 mm; FOV, 1.3×1.3; slice thickness,  
5 mm; slices, 24. Axial T2WI BLADE [which is also named 
periodically rotated overlapping parallel lines with enhanced 
reconstruction (PROPELLER)]: TR, 3,000 ms; TE,  
87 ms;  FOV,  400 mm × 400 mm; FOV,  1 .3×1.3 ; 
slice thickness, 5 mm; slices, 24. Axial T1WI three-
dimensional  volumetric interpolated breath-hold 
examination (VIBE-3D): TR, 4.11 ms; TE, 1.22 ms; 
FOV, 420 mm × 420 mm; FOV, 1.3×1.3; slice thickness, 
3.5 mm. Diffusion-weighted imaging (DWI): b value,  
50,800 s/mm2; TR, 5,600 ms; TE, 72 ms; FOV, 400 mm ×  
400 mm; FOV, 1.6×1.6; slice thickness, 5 mm; and slices, 24. A 
dose of gadolinium-diethylenetriamine pentaacetic acid (Gd-
DTPA) [Magnevist; 0.1 mmol/kg (0.2 mL/kg)] was injected as 
a quick bolus into the cubital vein at a rate of 3.0 mL/s by using 
a double-barrel high-pressure syringe. Allergy testing was 
performed before contrast injection to ensure patient safety. 
Radiomic features were extracted from chest axial T2WI.

The CT images were scanned using Toshiba (Tokyo, 
Japan), Philips (Amsterdam, Netherlands), and Siemens CT 
scanners. The default values of the scanners included tube 
voltage 120 kV and tube current 110–240 mA. After the 
real-time dynamic dose mapper was turned on, the relevant 
parameters included: collimation, 192 mm × 0.6 mm; TR, 

0.25 s; pitch, 0.9; and slice thickness, 5 mm. The patient 
was asked to take a supine position, with both upper limbs 
naturally raised. The head was advanced first, and routine 
chest scan was performed at the end of the deep inspiration. 
The scan ranged from the thoracic inlet to the level 5 cm 
below the costophrenic angle. All CT images were reviewed 
with the lung window [window width, 1,500 Hounsfield 
units (HU); window level, −500 HU] and the mediastinal 
window (window width, 400 HU; window level, 45 HU), 
with the reconstructed slice thickness being 1 mm.

Radiomic data processing and model establishment

The workflow of radiomics mainly included image 
segmentation, feature extraction, feature selection, and 
machine learning modeling (32).

Image segmentation
The free and open-source 3D Slicer software (version 
4.11.20210226; https://www.slicer.org/) was used to extract 
radiomics features. After the chest MRI images (in DICOM 
format) were imported into 3D Slicer, the regions of interest 
(ROIs) on axial T2WI were manually delineated layer by 
layer. The delineation went through along the edge of the 
primary lung cancer lesion, with the adjacent normal tissues 
and lymph nodes excluded, thus the volume of interest (VOI) 
was obtained (Figure 1). Finally, the 3D segmentation results 
that were obtained from the MRI images were saved as .nii 
image files and exported 1 by 1. On all images, the ROIs 
were independently segmented by a thoracic surgeon and a 
radiologist for primary lesions on MRI-T2WI.

Feature extraction
The radiomic features were extracted by using the 

A B C

Figure 1 Delineation of lung cancer VOI on MRI-T2WI. (A) MRI-T2WI; (B) manual delineation of ROI (green area); (C) the VOI 
obtained. VOI, volume of interest; MRI, magnetic resonance imaging; ROI, region of interest; T2WI, T2-weighted imaging.

https://www.slicer.org/
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SlicerRadiomics, which is an extension for 3D Slicer. The 
radiomic features included: (I) shape features: shape features 
describe the geometric aspects of a ROI, such as volume, 
maximum diameter, and maximum surface area. (II) first-
order statistical features: including the average, median, 
maximum, and minimum values of voxel intensity as well as 
their skewness (asymmetry), kurtosis (flatness), uniformity, 
and randomness (entropy). (III) Second-order statistical 
features: including the so-called texture features such as gray 
level co-occurrence matrix (GLCM), gray-level dependence 
matrix (GLDM), gray-level run-length matrix (GLRLM), 
gray-level size-zone matrix (GLSZM), and neighboring 
gray tone difference matrix (NGTDM). (IV) Higher-order 
statistical features were acquired by wavelet transform on 
images (33-35). The voxel size after resampling was 1 mm × 
1 mm × 1 mm.

Feature screening
For the extracted radiomic features, the obtained features 
were then screened and dimensionally reduced by using the 
corresponding statistical methods, and finally the radiomic 
features that were most relevant to lung cancer subtypes 
were screened from each sequence image. The 5-fold cross-
validation was performed for overfitting, so as to improve 
the stability of the radiomic models.

Machine learning modeling
The imaging features with non-zero coefficients were 
weighted with the corresponding coefficients and then 
added linearly to obtain the radiomic scores (Rad-score). 
The formula used was Rad-score = intercept +βi * Xi, where 
β represents the coefficient, X represents the feature, and 
i represents the ordinal. The clinical feature data were 
combined with Rad-score to construct a combined model 
based on the results of multivariate logistic regression.

Collection of baseline clinical data and nomogram 
construction

A further prediction model was established by combining 
Rad-score and predictive clinical risk factors, the 
factors included the patient’s sex, age, smoking history. 
Univariate analysis was performed to select the candidate 
clinical risk factor and ensure that features for model 
training were informative and predictive. Subsequently, 
a multivariable logistic regression algorithm was used to 
build the nomogram. The study fully complied with the 

Declaration of Helsinki (as revised in 2013). The study was 
approved by the Medical Ethics Committee of The First 
Affiliated Hospital of Soochow University (approval No. 
LYP2022-507). Informed consent was obtained from all the 
participants.

Statistical analysis

Statistical analyses were performed using R Studio (version 
4.2.0; The R Foundation for Statistical Computing, Vienna, 
Austria) and SPSS 25.0 (IBM Corp., Armonk, NY, USA). 
Data were divided into measurement variables and count 
variables. Normally distributed measurement data were 
analyzed by using independent sample t-test, and non-
normally distributed measurement data by Mann-Whitney 
U test. The univariate analysis of categorical variables was 
based on χ2 test, whereas multivariate analysis was based 
on the binary logistic regression model. The measurement 
data are presented as mean ± standard deviation (SD), with 
0/1 representing the different categories of categorical 
variables. Accordingly, the relevant variables of Ade and Squ 
were screened out from the clinical features and imaging 
features. A P value of <0.05 was considered significantly 
different and ensured two-sided. The radiomic model was 
constructed based on the Rad-score, and the nomogram 
was established by multivariate logistic regression analysis 
to construct a combined model that combined MRI Rad-
score and clinical features. The area under the receiver 
operating characteristic (ROC) curves (AUC), sensitivity, 
and specificity were used to evaluate the performance of 
each model in distinguishing Ade from Squ. Decision curve 
analysis (DCA) was performed to evaluate the net clinical 
benefits of the models. The diagnostic performance of these 
models was compared by using the DeLong’s test.

Results

Clinical data 

There were significant differences in gender (P<0.001) 
and smoking history (P<0.001) between Ade group and 
Squ group, whereas age showed no statistically significant 
difference (P>0.05) (Table 1).

Creation of radiomic models

The radiomic features were extracted from the contrast-
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enhanced MRI-T2WI images, and 4 radiomic features were finally screened out after dimensionality reduction (Figure 2 and 
Table 2). The MRI Rad-score was calculated by weighting the coefficients of the selected features with the following formula:

MRI Rad -score = 0.7181763+ 0.005834573*original_firstorder_Minimum
0.0000003500894*wavelet - LLH_ngtdm_Busyness

+ 0.5322761*wavelet - HHL_glszm_SizeZoneNonUniformityNormalized
+ 0.09467841*wavelet - HHH_ firstorde

−

r_Minimum

	 [1]

Table 1 Comparison of clinical data between Ade group and Squ group

Variables Squ group (n=25) Ade group (n=46) χ2/t P value

Age (years), mean ± SD 63.08±9.50 63.59±6.77 1.94 0.795

Gender, n (%) 11.48 <0.001

Males 23 (92.0) 24 (52.2)

Females 2 (8.0) 22 (47.8)

Smoking history, n (%) 17.12 <0.001

No 4 (16.0) 31 (67.4)

Current or former smokers 21 (84.0) 15 (32.6)

Ade, adenocarcinoma; Squ, squamous cell carcinoma; SD, standard deviation.
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Figure 2 Validation of the screened MRI radiomic features by Lasso regression. (A) Distribution of coefficients in Lasso regression; (B) 
selection of the optimal adjustment parameters in Lasso regression. MRI, magnetic resonance imaging; Lasso, least absolute shrinkage and 
selection operator.

Table 2 MRI radiomic features and their weighting coefficients obtained by Lasso regression

Variable Coefficient

Original_firstorder_Minimum 0.005834573

Wavelet-LLH_ngtdm_Busyness −0.0000003500894

Wavelet-HHL_glszm_SizeZoneNonUniformityNormalized 0.5322761

Wavelet-HHH_firstorder_Minimum 0.09467841

MRI, magnetic resonance imaging; Lasso, least absolute shrinkage and selection operator.
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Radiomic features were extracted from the CT images, and ten radiomic features were finally screened out after 
dimensionality reduction (Figure 3 and Table 3). The CT Rad-score was calculated by weighting the coefficients of the 
selected features with the following formula:

CT Rad -score = 0.7236079 + 0.4597578 original_glcm_Imc2
0.00002389298 original_glrlm_SmallDependenceHighGrayLevelEmphasis
0.0004379094 wavelet - LLH_firstorder_Contrast
0.001056470 wavelet - LLH_firstorder_D

∗
− ∗
− ∗
− ∗ ifferenceVariance 

0.06892258 wavelet - LLH_firstorder_DependenceNonUniformityNormalized
0.00002721915 wavelet - LLH_glcm_Autocorrelation
0.001207498 wavelet - LHL_gldm_JointAverage

+ 0.4308770 wavelet - LHL_gl

− ∗
− ∗
− ∗

∗ dm_LargeDependenceLowGrayLevelEmphasis
0.0000000004934088 wavelet - LHL_glrlm_LargeAreaHighGrayLevelEmphasis
0.000002037892 wavelet - LHL_glrlm_Complexity

− ∗
− ∗

	 [2]
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Figure 3 Validation of the screened CT radiomic features by Lasso regression. (A) Distribution of coefficients in Lasso regression; (B) 
selection of the optimal adjustment parameters in Lasso regression. CT, computed tomography; Lasso, least absolute shrinkage and selection 
operator.

Table 3 CT radiomic features and their weighting coefficients obtained by Lasso regression

Variables Coefficient

Original_Glcm_Imc2 0.4597578

Original_Glrlm_SmallDependenceHighGrayLevelEmphasis −0.000023893

Wavelet-LLH_Firstorder_Contrast −0.000437909

Wavelet-LLH_Firstorder_DifferenceVariance −0.00105647

Wavelet-LLH_Firstorder_DependenceNonUniformityNormalized −0.06892258

Wavelet-LLH_Glcm_Autocorrelation −0.0000272192

Wavelet-LHL_Gldm_JointAverage −0.001207498

Wavelet-LHL_Gldm_LargeDependenceLowGrayLevelEmphasis 0.430877

Wavelet-LHL_Glrlm_LargeAreaHighGrayLevelEmphasis −0.000000000493409

Wavelet-LHL_Glrlm_Complexity −0.00000203789

CT, computed tomography; Lasso, least absolute shrinkage and selection operator.
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Creation of a combined model

In the multivariate logistic regression, only smoking history 
alone had a discriminating value (P<0.05). The sensitivity 
and specificity of the clinical model based on smoking was 
75.0% and 93.8%. Multivariate logistic regression was used 
to combine relevant clinical features or MRI Rad-score to 
form the nomogram of a combined model (Figure 4). Table 4  
lists the components of the combined model and the 
corresponding feature values. The score of the combined 
model was calculated as follows: comprehensive diagnostic 
score (Com-score) = −9.5768 − 6.3930 * Smoking (0/1) + 
23.4471 * MRI Rad-score.

Diagnostic performance of each model

The distribution of Rad-scores in the training set and 
validation set in the MR-Rad model is shown in Figure 5A,5B, 
and the Rad-score significantly differed between Squ group 
and Ade group (P<0.05). The distribution of Rad-scores 
in the training set and validation set in the CT-Rad model 
is shown in Figure 5C,5D, and the Rad-score significantly 
differed between Squ group and Ade group (P<0.05). The 
distribution of Com-scores in the training set and validation 
set in the combined model is shown in Figure 5E,5F, and the 
Com-score significantly differed between Squ group and Ade 

group (P<0.05). 
The ROC curve of the training set in the MR-Rad 

model is shown in Figure 6A, and its AUC was 0.8438 
[95% confidence interval (CI): 0.7304–0.9571], with 
the diagnostic sensitivity and specificity of 90.63% and 
68.75%, respectively. The ROC curve of the validation 
set in the MR-Rad model is shown in Figure 6B, and 
its AUC was 0.8651 (95% CI: 0.7170–1.000), with the 
diagnostic sensitivity and specificity of 71.43% and 88.89%, 
respectively. The ROC curve of the training set in CT-
Rad model is shown in Figure 6A, and its AUC was 0.8848 
(95% CI: 0.5699–0.9341), with the diagnostic sensitivity 
and specificity of 87.50% and 81.25%, respectively. The 
ROC curve of the validation set in CT-Rad model is shown 
in Figure 6B, and its AUC was 0.9286 (95% CI: 0.4526–
0.9605), with the diagnostic sensitivity and specificity of 
92.86% and 77.78%, respectively. The ROC curves of the 
training set and validation set in the combined model are 
shown in Figure 6A,6B. The AUC of the training set in 
the combined model was 0.9570 (95% CI: 0.9066–1.000), 
with the diagnostic sensitivity and specificity of 87.50% 
and 93.75%, respectively. The AUC of the validation set in 
the combined model was 0.8016 (95% CI: 0.6135–0.9897), 
with the diagnostic sensitivity and specificity of 64.29% and 
88.89%, respectively.

Therefore, all the constructed MR-Rad model, CT-
Rad model, and combined model had good diagnostic 
performance (Table 5).

The calibration curves of the MR-Rad model showed 
good prediction consistency in training and validation sets 
(Figure 7). The DCA curves of the radiomic models and 
the combined model showed that all models had good net 
survival benefits and thus may be clinically valuable (Figure 8).

The diagnostic performance of the ROC curves was 
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Figure 4 Nomogram of the combined model in training set.

Table 4 The components of the combined model and the 
corresponding feature values

Feature Coefficient

Smoking −6.3930

MRI Rad-score 23.4471

MRI, magnetic resonance imaging; Rad-score, radiomic scores.
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Figure 5 The distribution of MRI Rad-score (A, training set; B, validation set), CT Rad-score (C, training set; D, validation set), and Com-
score (E, training set; F, validation set) in Ade group and Squ group. Ade, adenocarcinoma; Squ, squamous cell carcinoma; MRI, magnetic 
resonance imaging; CT, computed tomography; Rad-score, radiomic scores; Com-score, comprehensive diagnostic score.
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Table 5 Diagnostic performance of different models

Group AUC (95% CI) Sensitivity (%) Specificity (%)

Training set

MR-Rad model 0.8438 (0.7304–0.9571) 90.63 68.75

CT-Rad model 0.8848 (0.5699–0.9341) 87.50 81.25

Combined model 0.9570 (0.9066–1.000) 87.50 93.75

Validation set

MR-Rad model 0.8651 (0.7170–1.000) 71.43 88.89

CT-Rad model 0.9286 (0.4526–0.9605) 92.86 77.78

Combined model 0.8016 (0.6135–0.9897) 64.29 88.89

AUC, area under the curve; CI, confidence interval; MR, magnetic resonance; Rad, radiomic; CT, computed tomography.
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compared among these models by using the DeLong’s test. 
In the training set, the diagnostic performance showed no 
significant difference between the CT-Rad model and the 
MR-Rad model (P=0.63) but was significantly better in the 
combined model than in the MR-Rad model (P=0.0247). 
In the validation set, the diagnostic performance showed 
no statistically significant difference between the CT-Rad 
model and the MR-Rad model (P=0.5245); in addition, it 
was also not significantly different between the combined 
model and the MR-Rad model (P=0.4807).

Discussion

In our present study, a radiomic model was established 
based on chest contrast-enhanced MRI-T2WI images to 
distinguish Ade from Squ with solid components >8 mm. It 
was found that the AUC of the MR-Rad model was 0.8438 
and 0.8651 in the training and validation sets, respectively. 
It was found that the AUC of the CT-Rad model was 0.8848 
and 0.9286 in the training and validation sets, respectively. 
In contrast, the AUC of the radiomic model based on 
chest CT images was 0.8848 and 0.9286 in the training 
and validation sets, respectively. With good degree of fit, 
consistency, and stability, these models could effectively 
predict Ade and Squ. The DCA of the radiomic models and 
the combined model showed that all models had good net 
survival benefits and thus may be clinically valuable. The 
diagnostic performance showed no significant difference 
between the CT-Rad model and the MR-Rad model. The 
diagnostic performance of the combined model was better 
than that of the MR-Rad model in the test set; however, 
no such difference was seen in the validation group. The 
possible explanation is that the sample size of the validation 
group was small, and the retrospective study had selection 
bias. Therefore, we could not draw a conclusion that the 
combined model was better than the MR-Rad model.

The role of radiomics in the diagnosis of lung cancer 
has increasingly been recognized in recent years (14,36). 
In our present study, a total of 4 MRI-based radiomic 
features were extracted, including 2 first-order features, 1 
NGTDM feature, and 1 GLSZM feature, among which 
the feature SizeZoneNonUniformityNormalized accounted 
for the largest weighted ratio; the features Minimal and 
wavelet-HHH_ firstorder_Minimum provided information 
features about the minimum gray value in the ROI; the 
feature Busyness was used to calculate the busyness of 
the image NGTDM, reflecting the difference in average 
gray value between a pixel and its neighborhood; the 

SizeZoneNonUniformityNormalized was used to describe 
the conditional probability density for 2 variables of image 
brightness, and more uniform image texture corresponds to 
wider and flatter matrix.

The principle of radiomics is that radiomic features can 
reflect the heterogeneity of tumor cells at the cellular level, 
and the latter determines the malignancy of a specific tumor. 
Thus, radiomics can be used to establish descriptive or 
predictive models to assist the clinical diagnosis of tumors 
(32,37). Ren et al. and Tang et al. found that the radiomic 
model constructed based on CT alone had a sensitivity of 
69.29%, a specificity of 85.25%, and an AUC of 0.794 in 
predicting lung cancer subtypes. The combined model based 
on clinical features, CT/PET radiomics, and tumor markers 
had a sensitivity of 96.28%, a specificity of 95%, and an 
AUC of 0.932 (38,39). In our current study, the MR-Rad 
model was basically the same as the CT-Rad model in terms 
of sensitivity, specificity, and clinical utility in differentiating 
lung cancer subtypes. CT is currently the most important 
examination for lung cancer screening and follow-up. In 
recent years, chest MRI has increasingly been applied in 
clinical practice thanks to the upgrading of MRI equipment 
and the advances in scanning technologies such as respiratory 
triggering, electrocardiogram (ECG) gating, and parallel 
acquisition. As another non-invasive imaging mode, MRI 
is superior to CT in the following aspects. First, unlike CT 
scan, MRI does not use ionizing radiation and is considered 
a safer procedure. It has been reported that there was a 
5.5% increase in lung cancer risk attributable to annual CT-
related radiation exposure in 5–70-year-old current or former 
smokers (40). Such a risk may be even higher in patients 
requiring repeated CT scans to determine whether their 
tumors are benign or malignant. Second, MRI has a high 
soft tissue resolution and therefore can clearly display the 
relationships between a tumor and its surrounding soft tissues 
such as blood vessels and lymph nodes. MRI can distinguish 
different types of tissues based on the water content and 
therefore has a better performance than CT in soft tissue 
imaging. For central lung cancer, for example, MRI can 
satisfactorily display the compression of bronchi and blood 
vessels by the tumor, especially the vascular invasion. 
When lung cancer is located near the mediastinum, MRI 
can show whether the cancer is adjacent to or infiltrating 
the mediastinum. When lung cancer is complicated by 
atelectasis, CT cannot distinguish between the mass and 
the atelectasis, whereas MRI can show that there is a border 
between them and can reveal the size and extent of the 
mass. For superior sulcus tumors, MRI can display tumor 
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involvement in the subclavian artery and brachial plexus; 
due to partial volumetric effects and bone artifacts, CT is 
suboptimal at this site. MRI also has certain advantages in the 
identification of enlarged mediastinal lymph nodes. Third, 
MRI provides richer functional information on tumor tissue; 
compared with histopathology and genetic testing, MRI can 
not only overcome sampling bias but also eliminate the pain 
and potential complications caused by biopsy or surgery. 
However, MRI can be inferior to CT in the following aspects: 
first, MRI has poorer spatial resolution than CT and is more 
susceptible to the effects of breath and heartbeat. Second, 
MRI is slow and requires longer examination time. Third, 
MRI is more expensive than CT, which limits its application 
in multiple follow-up observations and comparisons. Fourth, 
MRI is not feasible for patients with metallic clips after a 
vascular surgery, pacemaker users, or those who are critically 
ill and need to be monitored by ventilators or ECG. Whether 
MRI can completely replace CT for lung cancer screening 
needs to be further investigated. However, it is generally 
believed that MRI may replace CT in differentiating lung 
cancer at special sites such as central lung cancer and tumors 
at the base/apex of the lung.

Our current study had some limitations: first, selection 
bias might have existed due to the retrospective design of 
our current study. Second, our study was a small-sample 
single-center study, and its results need to be further 
validated in multi-center and large-sample studies. Third, 
the ROIs were manually drawn by physicians and there was 
a lack of standardized image acquisition process (41,42). 
Fourth, the stability of the features might be affected by 
the differences in machine models, scanning parameters, 
physiological motion, and other factors (43). Fifth, except 
for age, gender, and smoking history, no other clinical 
factors were included in this study.

Conclusions

In summary, contrast-enhanced MRI-T2WI-based radiomic 
model has a good diagnostic performance and can be used 
in distinguishing Ade from Squ with solid components  
>8 mm. MRI may replace CT in the differential diagnosis 
of some pathological subtypes of lung cancer located in 
special sites, which may facilitate the development of more 
tailored treatment protocols.
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