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Background: Esophageal squamous cell carcinoma (ESCC) has a poor prognosis, and the 5-year survival 
rate is less than 30%. Better differentiation of patients at high risk of recurrence or metastasis could guide 
clinical treatment. The close relationship between pyroptosis and ESCC has been recently reported. Herein, 
we aimed to identify genes associated with pyroptosis in ESCC and construct a prognostic risk model. 
Methods: RNA-seq data of ESCC was obtained from the The Cancer Genome Atlas (TCGA) database. 
Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were used to calculate the 
pyroptosis-related pathway score (Pys). Weighted gene co-expression network analysis (WGCNA) and 
univariate Cox regression were used to screen for pyroptotic genes associated with prognosis, and Lasso 
regression was used to establish a risk score. Finally, the T test was used to compare the relationship between 
the model and tumor-node-metastasis (TNM) stage. Furthermore, we compared the difference of immune 
infiltrating cells and immune checkpoints between the low- and high-risk groups.
Results: Using WGCNA, 283 genes were significantly associated with N staging and Pys. Among them, 
univariate Cox analysis suggested that 83 genes were associated with prognosis of ESCC patients. After 
that, AADAC, GSTA1, and KCNS3 were identified as prognostic signatures separating high- and low-risk 
groups. Patients in the high- and low-risk groups had significantly different distributions of T (P=0.018) and 
N staging (P<0.05). Moreover, the 2 groups had remarkably different immune infiltrating cell scores and 
immune checkpoint expressions. 
Conclusions: Our study identified 3 prognosis pyroptosis-related genes in the ESCC and successfully 
build a prognostic model. AADAC, GSTA1, and KCNS3 may serve as promising therapeutic targets in 
ESCC.
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Introduction

Esophageal squamous cell carcinoma (ESCC), a subtype of 
esophageal cancer (EC), is highly prevalent, lacks effective 
treatments, and has an extremely poor prognosis (1). ESCC 
is mainly found in Eastern to Central Asia, with these 
regions accounting for almost 90% of all EC cases each 
year. In China, ESCC ranks sixth in terms of morbidity and 
mortality among all types of cancers (2). Primary treatments 
for patients with ESCC include a combination of surgery, 
radiotherapy, chemotherapy, and immunotherapy based 
on disease staging (3). Unfortunately, a large proportion of 
patients with ESCC are diagnosed with advanced disease 
due to the lack of reliable screening methods, leading to low 
5-year survival rates (4). Therefore, there is an urgent need 
for biomarkers and viable models to predict the prognosis 
of ESCC and guide targeted therapy.

The incidence of ESCC varies significantly and is not 
fully understood in terms of the known mechanisms and 
environmental risk factors (5). To better understand the 
molecular characteristics of ESCC, a growing number 
of contributing factors are being investigated. Hanahan 
explored 10 hallmarks to obtain a more comprehensive 
understanding of cancer development and malignancy. 
This investigation expanded to 14 hallmarks, including 
“unlocking phenotypic plasticity”, “non-mutational 
epigenetic reprogramming”, “polymorphic microbiomes”, 

and “senescent cells” (6). In recent years, there has been an 
increasing focus on studying the mutations of genes related 
to ESCC patients’ overall survival (OS) and progression-
free survival (PFS), as researchers search for biomarkers or 
risk models for the disease. Lian et al. explored the survival 
rate of the high-risk samples distinguished by 8 genes 
(FABP7, TLR1, SYTL1, APLN, OSM, EGFR, IL17RD, 
MYH9) was significantly lower  than that of low-risk 
samples (7).Additionally, Pu et al. generated an independent 
prognostic signature based on the expression of YTHDF3, 
RBM15 ,  KIAA1429 ,  and ALKBH5  genes and their 
overexpression predicted better OS of ESCC patients (8).  
However, most studies were single-center retrospective 
research which the number of patients was relatively small. 
On the other hand, the short follow-ups may not reach the 
median survival time. So, we need a large cohort and longer 
follow-up for further validation to find effective biomarkers 
for the diagnosis, treatment, and prognosis of ESCC 
patients. 

Cell death is now recognized not only as a stress response 
but also as a physiological regulator of proliferation and 
homeostasis. Additionally, it serves as a mechanism for 
inhibiting cancer. Pyroptosis, triggered by caspase 4, 5, 
or 11, is a type of programmed cell death that is both 
proinflammatory and inflammatory (9). An increasing 
number of studies have been published that examine 
the role of pyroptosis in cardiovascular, neurological, 
immune system, and carcinoma research (10). Pyroptosis 
has a significant dual role in tumorigenesis and antitumor 
resistance, promoting or suppressing cancer depending on 
the circumstances, primarily determined by growth type, 
inflammatory and immune status, and other factors. The 
dual impact of pyroptosis is believed to have opposing 
effects on tumor growth. Prolonged and persistent injury 
may accelerate tumor growth as the exacerbation caused 
by pyroptosis is amplified by age and an inflammatory 
microenvironment surrounding the diseased cells. However, 
on the other hand, the strong impact of pyroptosis triggers 
the activation of various immune cells to suppress cancer 
growth (11). In summary, we are urgently seeking a series 
of biomarkers for ESCC to guide our understanding of its 
development and associated immune effects. This series of 
biomarkers can also help us find a new treatment method 
or combine with relevant immunotherapy to achieve more 
precise treatment of ESCC patients.

Despite the recent progress in ESCC research, the exact 
role of pyroptosis in malignant growth remains unclear, and 
its association with ESCC has not been extensively studied. 

Highlight box

Key findings
• Three prognosis pyroptosis-related genes, AADAC, GSTA1, and 

KCNS3, were investigated in ESCC.
• The high-risk and low-risk groups distinguished by AADAC, 

GSTA1, and KCNS3 showed significant differences in T staging 
and N staging.

• These 2 groups also showed obvious discrepancies in immune 
infiltration cell score and immune checkpoint molecules.

What is known and what is new? 
• Studies assessing the role of pyroptosis in cardiovascular, 

neurological, and immune systems, as well as cancer are being 
increasing conducted.

• Our study identified genes correlated with pyroptosis of ESCC and 
established a prognostic risk model.

What is the implication, and what should change now?
• The prognostic pyroptosis-related biomarkers may interact with 

the tumor immune microenvironment to regulate ESCC, and 
further study needs to be conducted to refine the immunotherapy 
for this disease. 
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Therefore, our aim was to identify the genes correlated 
with pyroptosis and ESCC, then develop a prognostic risk 
model. In this study, we investigated various pyroptosis-
inducing mechanisms and related molecules in ESCC. Our 
findings can provide valuable insights for the development 
of therapies for ESCC. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-23-
206/rc).

Methods

Data source

The RNA-seq data of 75 patients with ESCC who had the 
relevant clinical and survival information were obtained 
from The Cancer Genome Atlas (TCGA) (https://portal.
gdc.cancer.gov/). The clinical data included gender, age, 
tumor-node-metastasis (TNM) stage, and overall survival 
(OS). The “Limma” package in R was used to clarify the 
database background and normalize raw RNA-seq data. The 
downstream analyses were conducted using RPKM values.

Weighted gene coexpression network analysis

Gene set enrichment analysis (GSEA) was used to calculate 
the pyroptosis-related pathway score (Pys) using the 
gene set of the pyroptosis pathway. Outliers were first 
detected and excluded by sample clustering. Weighted gene 
coexpression network analysis (WGCNA) was carried out 
using gene expression data and the selected traits (TNM 
stages and Pys) of ESCC samples. Briefly, the optimal β 
(soft threshold) was identified using the pickSoftThreshold 
function, which was followed by the establishment of a 
network by converting the adjacent matrix to a topological 
overlap matrix and the determination of a gene dendrogram 
and module color. After the clustering and merging similar 
modules, the modules most correlated with TNM stages 
and Pys were identified with Pearson correlation analysis. 

Development of a Pys-related risk score

Univariate Cox regression was first carried out to obtain 
Pys-related genes (PRGs) associated with ESCC prognosis 
with P<0.05 being used as the cutoff. Next, least absolute 
shrinkage and selection operator (LASSO) regression was 
applied to further screen the prognostic signature, and 
following formula was used to calculate the risk score:

1

n the expression of  xi coefficient of  xi×∑  [1]

in which x is the screened prognostic signature. We then 
classified patients with ESCC into 2 risk groups according 
to median risk score. Kaplan-Meier curves were plotted 
to analyze and compare the overall survival of the 2 risk 
groups.

Gene set variation analysis

We used the “GSVA” and “Limma” R packages (The R 
Foundation of Statistical Computing) to score and classify 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways into 2 risk groups and identified the significantly 
differentially enriched pathways between the 2 risk groups 
using P<0.05 as the cutoff. 

Identification of differentially infiltrated immune cells 
between the two risk groups

We used the “CIBERSORT” (12) R package to evaluate 
the levels of 22 immune cells in the 2 risk groups. The 
Student t-test was applied to investigate whether there was 
a significant difference of immune cells between the 2 risk 
groups using P<0.05 as the cutoff.

Results

Identification of the PRGs in ESCC

WGCNA subsequently screened the relationship between 
tumor staging and the pyroptosis-related genes. First,  
4 outliers were screened out by calculating the Euclidean 
distance (Figure 1A) and were not included in further 
analysis. The soft threshold was set to 12 to build a scale-
free network with an R2 of approximately 0.9 (Figure 1B). 
Finally, 3 modules were identified (Figure 1C). The module-
trait heatmap showed that the pink module was most 
correlated with Pys [correlation (cor) =0.34; P=0.003] and 
N staging (cor =−0.54; P<0.001) (Figure 1D). Therefore, 
283 genes in the pink module were chosen for downstream 
analyses.

Identification of prognostic PRGs in ESCC 

The 283 PRGs from the pink model were then input 
into univariate Cox regression, through which 85 PRGs 
significantly associated with ESCC prognosis (P<0.05;  

https://jtd.amegroups.com/article/view/10.21037/jtd-23-206/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-206/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Table 1). To acquire more robust signature genes, 85 PRGs 
were further analyzed with LASSO. Three pyroptosis-
related genes, including arylacetamide deacetylase 
(AADAC), GSTA1, and KCNS3 were identified (Figure 2A), 
and their coefficients are shown in Figure 2B. 

According to their expressions and coefficients, we 
calculated the risk scores of patients with ESCC using 
the following formula: expression (AADAC) × coefficient 
(AADAC) + expression (GSTA1) × coefficient (GSTA1) 
+ expression (KCNS3) × coefficient (KCNS3). We then 
classified patients with ESCC into 2 (high and low) risk 
groups (Figure 3A). We observed that more patients died 
when their risk score was higher (Figure 3B). Moreover, 
compared to those in the high-risk group, the tumor 
stage and TNM of patients in the low-risk group were 
significantly low (Figure 4). 

GSVA and CIBERSORT revealed cell proliferation and 
immune infiltration-related mechanisms in ESCC

To investigate the association of the risk score built using 
AADAC, GSTA1, and KCNS3 with ESCC prognosis, 
the KEGG pathways enriched in the 2 risk groups were 
analyzed with GSVA. We found the top 30 differentially 
enriched KEGG pathways, including fructose catabolism 
pathway, fructose metabolism pathway, sterol esterase 
activity, xenobiotic glucuronidation pathway, and fructose 
catabolic process pathway (Figure 5A), indicating that the 
prognostic pyroptosis-related biomarkers may regulate 
proliferation of ESCC cells. In addition, we evaluated the 
levels of multiple immune cells in the 2 risk groups using 
CIBERSORT and found that the infiltration of CD4+ T 
cells, keratinocytes cells, monocytes cells, mesenchymal 

Figure 1 The 283 identified ESCC PRGs. (A) A clustering dendrogram of 78 samples. (B) Analysis of network topology for various soft-
thresholding powers. The upper panel shows the scale-free topology model fit index (y-axis) as a function of the soft-thresholding power 
(x-axis). The lower panel shows the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). (C) Gene 
networks and recognition modules. (D) Heat map of the correlation between modules and clinical phenotypes. Each cell contains the 
corresponding correlation and P value. ESCC, esophageal squamous carcinoma cell; PRGs, Pys-related genes.

Sample clustering to detect outliers Module-trait relationships

140

120

100

80

60

H
ei

gh
t

0.8

0.6

0.4

0.2

S
ca

le
 fr

ee
 to

po
lo

gy
m

od
el

 fi
t, 

si
gn

ed
 R

2

2500

1500

500
0M

ea
n 

co
nn

ec
tiv

ity

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

H
ei

gh
t

1

0.5

0

−0.5

−1

MEblack

MEmidnightblue

MEred

MEsaddlebrown

MEdarkgreen

MEcyan

MEyellow

MEdarkturquoise

MEgreenyellow

MEturquoise

MEsalmon

MEtan

MEblue

MEbrown

MEskyblue

MEdarkred

MEmagenta

MEpurple

MEgrey60

MEdarkorange

MEwhite

MEdarkgrey

MEgreen

MEpink

MElightgreen

MEroyalblue

MEorange

MElightcyan

MElightyellow

MEgrey

Cluster DendrogramScale independence

Mean connectivity

Module colors

mm          nn          tnm           tt             gs

5                   10                 15                  20
Soft threshold (power)

5                   10                 15                  20
Soft threshold (power)

A

B C

D



Journal of Thoracic Disease, Vol 15, No 3 March 2023 1391

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(3):1387-1397 | https://dx.doi.org/10.21037/jtd-23-206

Table 1 The 85 pyroptosis-related genes associated with prognosis

Genes OR 95% CI P

GSTA1 1.43 1.16–1.77 9.00E-04

ABCC5 1.92 1.27–2.9 0.0019

AADAC 1.85 1.23–2.81 0.0034

DSE 0.3 0.13–0.68 0.004

KCNS3 2 1.24–3.24 0.0047

TMEM14A 2.45 1.31–4.59 0.0051

UGT1A6 1.82 1.18–2.81 0.0067

ALDH1A1 1.33 1.08–1.64 0.007

PRDX1 2.41 1.26–4.6 0.0077

TIGD1 3.83 1.41–10.41 0.0084

GSTM4 1.56 1.12–2.18 0.0087

PLEKHF1 0.4 0.21–0.8 0.009

ALDH3A2 2.11 1.2–3.7 0.0093

NQO1 1.55 1.11–2.16 0.0098

CBX2 2.03 1.18–3.49 0.0104

SLC48A1 2.78 1.27–6.1 0.0107

CORO2A 2.34 1.21–4.5 0.0111

C6orf141 0.52 0.32–0.87 0.0117

GPX2 1.31 1.06–1.63 0.0119

CILK1 2.06 1.17–3.61 0.012

EHD1 0.26 0.09–0.74 0.0121

PCARE 410.73 3.57–47,282.85 0.0129

IGSF11 2.52 1.21–5.24 0.0138

TMEM183A 5.67 1.41–22.87 0.0146

AKR1C2 1.29 1.05–1.57 0.0147

AGPAT4 0.3 0.11–0.8 0.0158

PANX2 1.52 1.08–2.15 0.016

EPHX1 1.61 1.09–2.36 0.0163

MTARC1 2.65 1.19–5.92 0.0175

UBE2Q1 5.03 1.31–19.34 0.0189

CLDN8 1.5 1.07–2.1 0.019

ALDH5A1 1.96 1.11–3.44 0.0194

ZDHHC9 3.31 1.21–9.05 0.02

CES1 1.19 1.03–1.39 0.0207

PGD 1.52 1.06–2.17 0.0216

Table 1 (continued)

Table 1 (continued)

Genes OR 95% CI P

ADSS2 3.55 1.2–10.48 0.0217

OSGIN1 1.43 1.05–1.96 0.0244

ETFB 2.32 1.11–4.85 0.0253

MRAP2 1.53 1.05–2.24 0.0261

GCLC 1.58 1.05–2.36 0.0265

ARHGAP17 0.15 0.03–0.8 0.0266

KIAA0319 2.02 1.08–3.75 0.0266

SLC27A2 1.73 1.07–2.81 0.0266

MDGA1 1.71 1.06–2.75 0.0274

SELENOI 2.49 1.1–5.62 0.0279

AKR1C3 1.24 1.02–1.5 0.0282

ANXA10 1.44 1.04–2 0.0297

AKR1C1 1.23 1.02–1.48 0.0299

ABHD4 1.85 1.06–3.22 0.0304

PTGR1 1.5 1.04–2.16 0.0309

KLHL31 9.99 1.23–80.9 0.0311

ETNK2 1.73 1.05–2.85 0.0319

TMEM116 1.69 1.04–2.75 0.0326

TXNRD1 1.42 1.03–1.96 0.0331

TDP2 2.22 1.06–4.62 0.0336

CCDC190 1.32 1.02–1.7 0.0339

GCLM 1.38 1.02–1.86 0.0343

UST 2.19 1.06–4.52 0.0348

PPP1R3B 0.54 0.3–0.96 0.0355

MAGEF1 1.96 1.04–3.66 0.036

MPP3 2.48 1.06–5.85 0.0372

TFB2M 2.69 1.06–6.83 0.0374

FECH 1.91 1.04–3.51 0.0375

MARCHF3 3.14 1.07–9.26 0.0377

G6PD 1.46 1.02–2.09 0.0396

FLVCR1 2.24 1.04–4.84 0.0406

ME1 1.49 1.02–2.17 0.0406

RAB3B 1.57 1.02–2.43 0.0415

MCCC1 1.95 1.02–3.7 0.0419

CBR1 1.47 1.01–2.14 0.0425

Table 1 (continued)
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Figure 2 The 85 PRGs analyzed by LASSO regression. (A) Lambda expressions for tuning parameter selection in the LASSO regression. (B) 
LASSO coefficient profiles of the 85 candidate genes. PRGs, Pys-related genes; LASSO, least absolute shrinkage and selection operator.

Table 1 (continued)

Genes OR 95% CI P

CYP26A1 1.42 1.01–2 0.044

TSPAN7 1.33 1.01–1.75 0.0445

PLAAT2 1.72 1.01–2.91 0.0448

LYN 1.91 1.01–3.59 0.0457

CYP4F11 1.22 1–1.48 0.0462

COG2 3.74 1.02–13.7 0.0464

LRP8 1.93 1.01–3.69 0.0464

GSTM2 1.39 1–1.91 0.0466

COA6 1.64 1.01–2.67 0.0471

PYCR2 1.89 1.01–3.54 0.0471

NFE2L2 1.84 1.01–3.35 0.0477

ADH7 1.23 1–1.51 0.0479

NMNAT3 1.98 1.01–3.89 0.0479

ABHD2 1.72 1–2.94 0.0485

TKT 1.66 1–2.74 0.0494

OR, odds ratio; CI, confidence interval.

stem cells, nerve cells, natural killer T cells, activated 
mast cells, and neutrophils were greatly varied between  
2 groups (Figure 5B), indicating that prognostic pyroptosis-
related biomarkers may interact with the tumor immune 
microenvironment to regulate ESCC.

Discussion

ESCC, the dominant pathological type of EC, is the fourth 
main cause of cancer-associated death in China. Despite 
advancements in ESCC-related diagnosis and treatment, 
the prognosis of patients with ESCC is still low, with a 
5-year survival rate of less than 30%. This is due to the 
lack of ESCC-related hallmarks and corresponding target 
treatment, and although several biomarkers for ESCC 
have been explored, their clinical and therapeutic value has 
not been clearly determined. We thus aimed to identify 
and evaluate the biomarkers associated with the target 
treatment of ESCC. In our research, we came to learn that 
cell death acts as a critical barrier against the development 
ESCC, with pyroptosis being one of the major types of 
programmed cell death (13). Thus, searching for valid and 
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significant biomarkers for ESCC pyroptosis is a crucial step 
in developing treatment. 

Research into the relationship of pyroptosis with ESCC 
is rare, but studies on this subject are gradually emerging. 
By comprehensive analyzing 857 patients’ transcriptomes 
and 124 patients’ proteomic profiles, Zhang and Chen 
discovered that the pathway of necroptosis, ferroptosis, and 
pyroptosis is closely linked with the activation of immunity 
in ESCC (14). Zheng et al. found that a high level of 
STAT3β expression resulted in promoting the sensitivity 
of cisplatin and strengthening the reliant pyroptosis of 
gasdermin E (GSDME) in ESCC cells after exposuring 
to cisplatin (15). They further reported alpinumisoflavone 
(AIF) could trigger GSDME-dependent pyroptosis in 
ESCC via caspase-3 activation (16). Furthermore, Jiang 
et al. found that large bubbles grow in the cell membrane, 

which is followed by the low expression of PKM2, the 
stimulation of caspase-3/8, and the generation of GSDME-
NT, ultimately leading to the pyroptosis in ESCC (17). Wu 
et al. found that BI2536, a PLK1 kinase inhibitor, increases 
the rate of pyroptosis by suppressing the DNA damage 
repair pathway to enhance the chemosensitivity of cisplatin 
in ESCC (18). Wang et al. found that metformin might 
induce EC cell pyroptosis by targeting the microRNA-497/
PELP1 (proline, glutamate and leucine rich protein 1) 
axis (19). Overall, these researches have focused on the 
induction of pyroptosis with drugs working via various 
pathways. However, no coherent study has yet explored 
the mechanisms related to the pyroptosis of ESCC. Thus, 
in our study, we first evaluated patients’ ESCC PRGs 
and obtained a total of 283 modular genes that correlated 
with cell pyroptosis and N stage using WGCNA. To 

Figure 3 High and low risk groups were defined. (A) The survival status and duration of patients with ESCC. (B) Distribution of the 
multigene-model risk score. ESCC, esophageal squamous carcinoma cell.

Figure 4 Comparison of tumor stage and TNM of patients in the low-risk group and high-risk group. (A) Comparison of the TNM stage 
in patients with low- and high-risk ESCC. (B) Comparison of N stage in patients with low- and high-risk ESCC. TNM, tumor-node-
metastasis; ESCC, esophageal squamous carcinoma cell.
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further explore the key genes acting on ESCC, we found 
3 signature genes AADAC, GSTA1, and KCNS3 associated 
with cell pyroptosis using LASSO regression algorithms.

AADAC, as an esterase functioning at the endoplasmic 
reticulum (ER), is expressed chiefly in the gastrointestinal 
tract and liver and has been linked with cancer in some 
studies. Wang et al. reported that AADAC is an important 
prognostic factor whose high expression is significantly 
correlated with better OS and disease-free survival (DFS) 
for patients with Borrmann type III advanced gastric cancer 
(GC). Additionally, AADAC messenger RNA (mRNA) and 
protein expression levels have been found to be increased in 
differentiated GC cells (20). Through examining American 
and European patient populations of The Cancer Genome 

Atlas stomach adenocarcinoma (TCGA-STAD) data set, it 
was speculated that AADAC may enhance the expression of 
amino and fatty acids in tumor cells to promote cell growth 
by supplying energy for the rapid proliferation. In another 
study, Wang et al. identified AADAC as being upregulated 
in ovarian tumor tissues and reported that patients 
with a high expression level of AADAC had favorable 
survival compared to those with low AADAC expression. 
Additionally, overexpression of AADAC was demonstrated 
to inhibit the malignant progression of ovarian cancer 
cells. Both cisplatin and imatinib could suppress malignant 
cancer cell progression, while overexpression of AADAC 
synergistically enhanced such inhibition (21). 

Glutathione S-transferases (GSTs) enhance the 

Figure 5 KEGG pathways enrichment in the high- and low-risk groups according to GSVA. (A) The top 30 differential enriched pathways 
according to GSVA. (B) Comparison of immune cell infiltration in the low- and high-risk groups. KEGG, Kyoto Encyclopedia of Genes 
and Genomes; GSVA, gene set variation analysis. 
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electrophilic centers’ response to lipophilic and glutathione 
compounds, resulting in the products of oxidative stress, 
xenobiotics, and neutralization of toxic compounds. 
Glutathione S-transferase A1 (GSTA1), a GST member, 
may correlate with lung (22,23), bladder (24,25), gastric (26),  
breast (27,28), and colorectal cancer (29-31). In their 
study, Tong et al. identified 6 differentially expressed genes 
(SLC17A3, SLC17A4, NAT8, GSTA1, GSTA2, and FABP7) 
which were downregulated in clear cell renal cell carcinoma 
(ccRCC) and may be related to the immune signature (32). 
However, the mechanism underlying this effect of GSTA1 
has not been clarified.

KCNS3, the gene encoding Kv9.3 potassium channel 
α-subunit, is selectively expressed by parvalbumin neurons. 
The correlation between KCNS3 and cancer was not 
clear and need more exploration. One study reported 
that adenoma/advanced adenoma risk correlated with 49 
mutations, single-nucleotide polymorphisms, or haplotypes 
in 23 genes or chromosomal regions including KCNS3 
(3p24.1, 9q33.2, 13q33.2, APC, ALOX12/15, COX1/2, 
CYP2C9/24A1/7A1, DRD2, EGFR, EPHB1/KY, FAM188b, 
IL23R, IGSF5, KCNS3, KRAS, PGDH, ODC, SRC, 
UGT1A6) (33).

In our study, we used these 3 signature genes to establish 
a risk panel to classify TCGA-ESCC cohort patients into a 
high-risk group and low-risk group. We discovered there to 
be a close relationship between ESCC T and N tumor stage 
and this risk score. Our results confirmed that the risk panel 
may have an important role in the prognosis of ESCC.

Our findings suggest that the prognostic biomarkers 
related to pyroptosis may have a role in regulating 
ESCC through interactions with the tumor immune 
microenvironment. However, the mechanisms behind 
the relationship between pyroptosis and immunity have 
not been studied extensively, and there are few existing 
studies in this area. While Liu et al. did identify potential 
biomarkers related to immune infiltration in heart failure 
(CALU and PALLD) (34), more research is required to 
fully understand this relationship in the context of ESCC. 

However, there were several limitations in our study. 
First, we collected 75 ESCC patients which might not be 
adequate for a comprehensive analysis. Second, the vertical 
extent of our study which deeply explored the mechanisms 
of these 3 genes and the interaction with pyroptosis and 
immunity was not sufficient. Third, this research was short 
of other cohort and a follow-up for further validation. Thus, 
the pyroptosis and immunity associated signature explored 
in this study requires further validation by more prospective 

studies. 

Conclusions

AADAC, GSTA1, and KCNS3 significantly related to 
ESCC pyroptosis. This risk model incorporating these 
3 biomarkers may help predict pyroptosis of ESCC, and 
these genes may serve as therapeutic targets in the future 
treatment of ESCC.
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