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Background: An accumulating amount of studies are highlighting the impacts of cancer-associated 
fibroblasts (CAFs) on the initiation, metastasis, invasion, and immune evasion of lung cancer. However, it 
is still unclear how to tailor treatment regimens based on the transcriptomic characteristics of CAFs in the 
tumor microenvironment of patients with lung cancer. 
Methods: Our study examined single-cell RNA-sequencing data from the Gene Expression Omnibus 
(GEO) database to identify expression profiles for CAF marker genes and constructed a prognostic signature 
of lung adenocarcinoma using these genes in The Cancer Genome Atlas (TCGA) database. The signature 
was validated in 3 independent GEO cohorts. Univariate and multivariate analyses were used to confirm the 
clinical significance of the signature. Next, multiple differential gene enrichment analysis methods were used 
to explore the biological pathways related to the signature. Six algorithms were used to assess the relative 
proportion of infiltrating immune cells, and the relationship between the signature and immunotherapy 
response of lung adenocarcinoma (LUAD) was explored based on the tumor immune dysfunction and 
exclusion (TIDE) algorithm.
Results: The signature related to CAFs in this study showed good accuracy and predictive capacity. In 
all clinical subgroups, the high-risk patients had a poor prognosis. The univariate and multivariate analyses 
confirmed that the signature was an independent prognostic marker. Moreover, the signature was closely 
associated with particular biological pathways related to cell cycle, DNA replication, carcinogenesis, and 
immune response. The 6 algorithms used to assess the relative proportion of infiltrating immune cells 
indicated that a lower infiltration of immune cells in the tumor microenvironment was associated with high-
risk scores. Importantly, we found a negative correlation between TIDE, exclusion score, and risk score. 
Conclusions: Our study constructed a prognostic signature based on CAF marker genes useful for 
prognosis and immune infiltration estimation of lung adenocarcinoma. This tool could enhance therapy 
efficacy and allow individualized treatments.
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Introduction

Lung cancer is responsible for 18% of cancer-related 
mortality worldwide, making it the leading cause of death 
due to cancer (1). Based on histology, lung cancer is broadly 
divided into non-small cell lung cancer (NSCLC) and 
small-cell lung cancer (SCLC). Approximately 85% of lung 
cancer cases are NSCLCs, of which lung adenocarcinoma 
(LUAD) is the most common type (2). Over the last two 
decades, research into the understanding of the etiology and 
management of LUAD has made considerable progress, 
with targeted and immunotherapies providing a basis 
for the rational design of treatment regimens. However, 
most cancers develop resistance to targeted therapy, 
and only a fraction of patients with LUAD benefit from 
immunotherapies (3). Furthermore, the 5-year overall 
survival rate of patients with LUAD remains below 20% (4).  
Therefore, continued research into prognosis-related 
biomarkers of LUAD is required to predict treatment 
effects and improve outcomes.

A growing body of evidence suggests that the tumor 
microenvironment (TME) is essential in to dynamically 
orchestrating tumor initiation and progression (5). Moreover, 
the TME has a crucial impact on clinical outcomes and 
response to therapeutic interventions (5-7). Among the stromal 

cells in the TME, cancer-associated fibroblasts (CAFs) are 
the main cell type of the tumor mesenchyme, which not 
only play a critical role in promoting tumor invasion and 
metastasis but also contribute to regulating many immune 
components (8,9). On the one hand, CAFs exert a direct 
immunoregulatory effect through the secretome, which 
affects almost all cell types of innate and acquired immunity. 
On the other hand, CAFs induce uncontrolled extra matrix 
remodeling, indirectly disrupting immune cell infiltration 
into the tumor niche (10). Furthermore, CAFs may figure 
prominently in lung cancer development via crosstalk with 
cancer cells (11-14). A study found 11 genes in CAFs that 
were differentially expressed and associated with prognosis, 
using microarray gene expression analysis (15). This 
indicates that changes in oncogenes or tumor suppressor 
genes in CAFs may have a close relationship with tumor 
development. Numerous studies indicate that the survival 
rates of various malignancies are associated with the 
histological features of CAFs. CAFs are correlated with poor 
outcomes in patients with LUAD and contribute to therapy 
resistance (13,16,17). In the case of colorectal cancer, 
previous research has linked CAFs and pro-fibroblastic 
responses with an unfavorable prognosis. However, another 
independent study found that the pro-fibroplastic type, 
a histologic subtype in CAFs, was a predictor of good 
prognosis in colorectal cancer (18). Given the roles of CAFs 
in tumor progression and treatment response, it is worth 
developing a CAF-related gene signature for LUAD and 
evaluating its associations with prognosis and the immune 
infiltration characteristics in the TME. 

Recently, the TME has been extensively analyzed 
through single-cell RNA-sequencing (scRNA-seq). This 
still emerging technique allows for a finer characterization 
of tumor, adjacent stromal, and infiltrating immune cells 
(19,20). Compared with conventional transcriptomic 
investigation, scRNA-seq can identify specific cell types 
of the TME, discern the gene expression patterns of each 
cell, and provides clear insights into the whole tumor 
ensemble, thus enabling the characterization of various cell 
types and the identification of marker genes (21,22). Song 
et al. constructed a 9-gene signature for predicting LUAD 
prognosis based on 258 B-cell marker genes identified 
with scRNA-seq analysis, and the signature can serve as a 
predictor of immunotherapy (23).

In this study, we used scRNA-seq data of LUAD samples 
from the Gene Expression Omnibus (GEO) database to 
derive a cluster of CAFs and identify their marker genes. 
We then developed a prognostic signature based on these 
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CAF marker genes through bulk RNA-seq analysis. Finally, 
we validated the prediction potential of the signature in 
3 GEO cohorts and assessed the prognostic significance 
by investigating the variation of enriched biological signal 
pathways, immune cell infiltration characteristics, and 
immunotherapy response in patients with LUAD with 
different risk scores. As a result, we found the signature to 
be closely correlated with oncogenic signaling pathways 
and the immune infiltration status of the TME, which 
in turn may influence the clinical outcomes of patients 
and the response to immunotherapy. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-238/rc).

Methods

Data source and preprocessing

We downloaded scRNA sequencing data (GSE149655) from 
the National Center for Biotechnology Information (NCBI) 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). 
We downloaded the transcriptome expression profiles of 
LUAD and matched clinical information from The Cancer 
Genome Atlas database (TCGA; http://cancergenome.
nih.gov/) and GEO database. TCGA database contained 
527 LUAD samples and 59 non-LUAD samples. We 
normalized RNA-seq data to transcripts per million data 
and then performed log2 conversion. To perform a joint 
analysis of smooth RNA-seq and clinical data, we removed 
samples with incomplete clinical information. Ultimately, 
500 LUAD samples from TCGA served as the training set. 
We used the other LUAD samples from the GEO database, 
including GSE30219 (n=85), GSE31210 (n=226), and 
GSE72094 (n=398) for further validation. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). 

Determining the prognosis value of the CAF proportion

We estimated the proportion of CAFs in the samples from 
the GEO and TCGA data using the EPIC algorithm via 
the “EPIC” R package (The R Foundation for Statistical 
Computing). EPIC is one of the tools that calculates the 
percentage of different cell types in the TME based on 
RNA-seq data (24). We separated the LUAD samples into 
a high CAF proportion and a low CAF proportion group 

based on the optimal cutoff according to the “survminer” 
R package. To evaluate the prognosis value of the CAF 
proportion, we conducted a survival analysis using the 
“survival” and “survminer” R packages. Additionally, we 
assessed the activity, infiltration levels, and immune-related 
functions of 19 immune cells through single-sample gene 
set enrichment analysis (ssGSEA) using the “GSEABase” 
and “GSVA” R packages (25). Finally, we analyzed the 
correlations between CAF proportion and the infiltration 
level of different immune cells or functions using the 
Wilcoxon test. For all these analyses, we considered P<0.05 
to indicate a significant difference.

Identification of CAF marker genes using scRNA-seq 
analysis

We analyzed scRNA-seq data using the “Seurat” (version 
4.0.5) and “SingleR” (version 1.6.1) packages in R software 
(26,27). We removed the cells with mitochondrial gene 
content above 5% and mapped genes below 50. We also 
removed cell clusters with fewer than 3 cells. Next, we 
conducted principal component analysis (PCA) on the top 
2,000 variable expression genes. We applied the t-distributed 
stochastic neighbor embedding (tSNE) algorithm to 
visualize the results. Finally, we performed a differential 
analysis between fibroblasts and other cell types. Based 
on the differential analysis, we considered genes showing 
significantly higher expression in fibroblasts as CAF marker 
genes [log2 fold change (FC) >1 and P<0.05].

Development and validation of a prognostic signature 
related to CAFs

To find CAF marker genes with significantly different 
expression levels in LUAD samples and non-LUAD 
samples, we performed a differential analysis on TCGA 
data set (using the “limma” R package) with a cutoff 
of |log2(FC)| >1 and P<0.05 (28). To investigate the 
prognostic CAF marker genes, we performed univariate 
Cox regression analyses among differentially expressed CAF 
marker genes using the “survival” R package. We visualized 
the results as a forest map using the “forestplot” R package. 
Subsequently, we conducted least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis to 
further reduce the number of variables in the model and 
construct a signature related to the prognostic CAF marker 
genes with the following formula: 

https://jtd.amegroups.com/article/view/10.21037/jtd-23-238/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-238/rc
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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All the LUAD samples in the GEO and TCGA data sets 
were separated into a high-risk group and a low-risk group 
based on the median risk score.

We assessed the overall survival prediction ability of 
the signature using Kaplan-Meier survival curves, receiver 
operating characteristic (ROC) curves, and risk curves 
using the “survminer”, “timeROC”, and “pheatmap” R 
packages. We further used tSNE and PCA to determine 
the distribution of different risk groups and estimate the 
classification ability via the “Rtsne” R package. We also 
confirmed the overall survival prediction ability of the 
signature via Kaplan-Meier survival analysis, ROC analysis, 
risk scatter plot, tSNE, and PCA on the GSE30219, 
GSE31210, and GSE72094 data sets.

Investigation of the clinical significance of the CAF-related 
prognostic signature

To investigate whether the risk score is an independent 
prognostic factor, we performed univariate and multivariate 
Cox regression analysis on TCGA, GSE30219, GSE31210, 
and GSE7094 data sets. Next, we visualized these results 
as a forest map. Additionally, we verified the relationship 
between risk score and clinicopathological parameters in 
LUAD samples via the Kruskal-Wallis or Wilcoxon test and 
visualized the results as box violin plots. 

Function and pathway enrichment analysis of the different 
risk groups

Based on the study of Xiao et al. (29), we established 
the signature of 5 well-known cancer-related pathways  
(Table S1), including the cell cycle, Hippo, Myc, Notch, 
and PI3K pathways, and calculated an enrichment score 
for each pathway in each LUAD sample with the ssGSEA 
method. Using the Wilcoxon test, we analyzed the 
correlation between the pathway enrichment score and risk. 
Using the “clusterProfiler” R package, we performed gene 
ontology (GO) enrichment (30). In the results, we focused 
on GO terms with an adjusted P value <0.01, and to avoid 
very general terms, we limited the final GO terms lists to 

the set of pathways with fewer than 300 genes examined 
for annotation. Meanwhile, we evaluated the similarity 
between the GO terms using the “GOSemSim” R package 
and clustered the GO terms by similarity visualized as a 
tree diagram (using the “ggtree” R package). We obtained  
50 gene sets of hallmark pathways described in the 
molecular signature database (MsigDB database; http://
software.broadinstitute.org/gsea/msigdb) via the “msigdbr” 
R package. To reduce pathway overlap and redundancies, 
we pruned each pathway-related gene set to keep unique 
genes and remove all genes related to 2 or more pathways. 
Subsequently, we performed gene set variation analysis 
(GSVA) to calculate the enrichment score of each pathway 
for every LUAD sample via the “GSVA” R package. Next, 
we performed differential analysis with the “limma” R 
package to identify the correlation between enrichment 
scores of hallmark pathways and risk groups and visualize 
the difference of the pathways with an adjusted P value 
<0.05 as a heatmap using the “pheatmap” R package. 
Finally, we conducted GSEA to calculate the enrichment 
score of Kyoto Encyclopedia of Genes and Genomes 
(KEGG; http://www.genome.jp/kegg) pathways using the 
“clusterProfiler” R package.

Evaluation of TME immunological characteristics in 
LUAD

We used the CIBERSORT, EPIC, MCP-counter, 
quanTIseq, TIMER, and xCell algorithms to calculate 
the infiltration level of immune cells in the TME of 
LUAD (24,31-35). Additionally, we used the Wilcoxon 
test to assess the association between the infiltration level 
of immune cells and risk level. We selected the immune 
cells with P<0.0001 and visualized them as a heatmap. 
Next, we downloaded hematoxylin and eosin (HE)-stained 
images of TCGA-LUAD samples from the Genomic Data 
Commons (GDC; https://portal.gdc.cancer.gov/) and 
obtained matched immunophenotype pathology of TCGA-
LUAD samples from the supplementary research materials 
of Saltz et al. (36). Additionally, we obtained the list of 129 
immunomodulators (Table S2), including chemokines, 
interleukin, interferons, receptors, and other cytokines from 
the study of Charoentong et al. (37). The tumor immune 
dysfunction and exclusion algorithm (TIDE; http://tide.
dfci.harvard.edu) by Jiang et al. is based on the combination 
and modeling of data from 189 human malignant studies. 
The TIDE score can be used to assess the clinical response 
to immunotherapy (38). We thus used the TIDE algorithm 

https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
http://www.genome.jp/kegg
https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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to calculate the TIDE score of TCGA-LUAD samples 
and investigated the correlation between the efficacy of 
immunotherapy and risk score using the Wilcoxon test.

Statistical analysis

We used R software (version 4.1.0) and various R packages 
to analyze the data and visualize the results. For all analyses, 
statistical significance was defined as P<0.05.

Results

The clinical significance of the CAF proportion in LUAD

First, we analyzed the clinical significance of the CAF 
proportion in LUAD. We divided the patients into 2 
groups (high CAF and low CAF proportions) according 
to the optimal cutoff points. Patients with a higher 
CAF proportion had poor overall survival (GSE30219, 
GSE31210, and GSE72094; Figure 1A-1C). Moreover, 
the high CAF groups had lower overall survival rates 
than did the low CAF groups in TCGA and GSE13213 
cohorts, albeit not significantly (P=0.06 and P=0.089; 
Figure 1D,1E), and poor disease-free survival (GSE31210; 
Figure 1F). Additionally, the 2 groups differed significantly 
in immune cell infiltration and immune-related pathway 
activation, indicating a potential association between the 
CAF proportion and immune function in LUAD patients  
(Figure 1G). Taken together, these results suggest that a 
high CAF proportion was a potential risk factor for LUAD.

Identification of marker genes associated with CAFs 

The screening yielded gene expression profiles for 1546 
cells that we used for subsequent analysis from 2 LUAD 
samples. We performed PCA using the 2000 variable 
genes to reduce the dimensionality and classify cells into 
14 clusters. Subsequently, we adopted tSNE analysis to 
visualize the results (Figure 2A). We annotated each cell 
cluster by cross-referencing the differentially expressed 
genes (DEGs) with the well-known marker genes for each 
cluster. The following cell types were described: epithelial 
cells, endothelial cells, fibroblasts, T cells, macrophages, 
and tissue stem cells (Figure 2B). In addition, we identified 
significant differential marker genes of each cluster using 
log2 FC >1 and P<0.05 as thresholds. Figure 2C displays the 
heatmap for the top 10 significantly expressed marker genes 
of 6 cell clusters. Ultimately, we screened 417 CAF marker 
genes in LUAD.

Development and validation of the CAF-related gene 
signature

In the process of developing a prognostic signature 
based on CAF marker genes in LUAD, we used TCGA 
data as a training cohort. We first screened 232 DEGs 
(47 upregulated and 185 downregulated), using P<0.05 
and |log2(FC)| >1 as thresholds (Figure 3A). Next, 
we performed univariate Cox regression analysis. We 
identified 81 CAF marker genes distinctly associated with 
prognostication (Figure S1). We then carried out a LASSO 
and Cox regression analysis on these genes to select the 
most valuable ones for prognosis, resulting in a model 
containing 11 genes: AKAP12, FMO3, KRT8, FSTL3, 
BMP5, IGHM, SFTPB, TMEM125, CYP4B1, ID1, and 
IRX2 (Figure 3B). Next, we calculated each patient’s risk 
score according to Eq. [1]. 

Figure 3C presents the patients’ survival times and risk 
score distribution. The Kaplan-Meier curve revealed greater 
survival in low-risk patients with LUAD than in high-risk 
patients with LUAD in TCGA data set (Figure 3D). To 
assess the accuracy of the signature, we generated ROC 
curves for overall survival prediction at 1, 3, and 5 years, 
which yielded respective area under the ROC curve (AUC) 
values of 0.698, 0.695, and 0.651 (Figure 3E). Figure 3F,3G 
present the PCA and tSNE results. Patients with LUAD 
were separated into high-risk and low-risk groups according 
to risk score. Next, we divided the patients into subgroups 
based on clinical characteristics and performed a Kaplan-
Meier analysis for each group. The predictive capacity of 
the signature was further verified in subgroups of different 
ages, genders, and stages. In all clinical subgroups, the high-
risk patients had a poor prognosis (P<0.0001; Figure S2),  
demonstrating the powerful predictive ability of this 
prognostic signature.

To further validate the robustness of the CAF-related 
signature, we assessed its prediction power in 3 independent 
cohorts (GSE30219, GSE31210 and GSE72094). We 
calculated the risk scores of samples in each validation 
data set using the same formula and divided the patients 
with LUAD into high- and low-risk groups based on the 
median value. Figure 4A-4C show the distribution of risk 
scores in the validation data sets, and samples in the high-
risk group had poor outcomes. In line with the training 
cohort, the Kaplan-Meier survival curves revealed that 
the low-risk group had a superior survival to the high-risk 
group (Figure 4D-4F). Figure 4G-4I present each cohort’s 
ROC curves and AUCs. Thus, the prognostic signature 
had a good prediction ability. Furthermore, the PCA and 

https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
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tSNE allowed the clear distinction of the samples in each 
cohort (Figure S3). Moreover, we also classified the patients 
in the GSE31210 and GSE72094 cohorts into different 
subgroups based on their clinical variables. The Kaplan-
Meier overall survival analysis revealed that low-risk scores 
were associated with better outcomes (Figure S4).

Clinical significance of the prognostic signature in LUAD

Our next step was to evaluate the correlation between this 
signature and clinical features, such as disease stage, in 
LUAD patients of the TCGA cohort. Based on the median 

risk score, we categorized the training cohort patients into 
high-risk and low-risk groups and produced a heatmap of the 
gene expression levels (Figure 5A). The scores significantly 
increased as LUAD stages progressed (Figure 5A,5B).  
These outcomes revealed that the CAF-related signature 
and the clinicopathological parameters of patients with 
LUAD were correlated and confirmed the clinical 
application value of the prognostic model. We additionally 
performed 2-step Cox regression analyses (univariate and 
multivariate) to confirm whether the risk scores were 
independent of other clinical characteristics, such as age, 
gender, and stage, in predicting prognosis. As expected, 

https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
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Figure 6 Analysis of the differentially associated signaling pathways between the high-risk and low-risk groups in TCGA cohort. (A) 
Mountain map showing the score variations in 5 oncogenic pathways between the 2 groups (Wilcoxon test). *, P<0.05; ***, P<0.001. (B) 
GO enrichment analysis of the DEGs between the high- and low-risk groups, grouped by functional themes. (C) The different statuses of 
the signaling pathways between the different groups according to GSVA enrichment analysis. (D-G) The status of biological pathways in 
the high-risk group according to GSEA. TCGA, The Cancer Genome Atlas; GO, Gene Ontology; DEGs, differentially expressed genes; 
GSVA, gene set variation analysis; ssGSEA, single-sample gene set enrichment analysis; ES, enrichment score.

the results from TCGA data set [hazard ratio (HR) =5.913, 
95% confidence interval (CI): 3.252–10.751; P=5.67×10−9] 
and the other 3 cohorts (GSE30219: HR =9.752, 95% CI: 
2.065–46.061, P=4.04×10−3; GSE31210: HR =6.915, 95% 
CI: 1.547–30.900, P=1.14×10−2; GSE72094: HR =14.211, 
95% CI: 5.115–39.481, P=3.57×10−7) demonstrated that the 
risk score was an independent prognostic factor for LUAD 
(Figure 5C,5D). Overall, these results support the potential 
clinical utility of the prognostic model.

Signal differences between the risk groups

We identified the DEGs between the high-risk and low-risk 

groups and identified the features of the related signaling 
pathways. We used the ssGSEA analysis scores derived 
using the published signature correlated to 5 frequent 
oncogenic signaling pathways, including the cell cycle, 
Hippo, Myc, Notch, and PI3K pathways, to compare the  
2 groups (29). We found that the pathways had higher levels 
in the high-risk group (Figure 6A). Then, we assessed the 
correlation between these pathways and the 11 CAF marker 
genes. Among them, AKAP12, FSTL3, ID1, and KRT8 
were positively correlated with the carcinogen pathways  
(Figure S5). Moreover, we conducted GO enrichment 
analysis on these DEGs and grouped them according to 
functional theme. The analysis revealed that these genes 
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were related to antigen processing and presentation, 
cell cycle, p53 signaling, T-cell receptor signaling, and 
regulation of genetic material pathways (Figure 6B). 
Through functional enrichment analysis, we found that the 
high-risk group had upregulated levels of cancer- and cell 
cycle–related gene sets, with terms including “SHEDDEN 
LUNG CANCER POOR SURVIVAL A6”, “GOBP CELL 
DIVISION”, and “GOBP MITOTIC CELL CYCLE 
PROCESS” (Figure S6). Meanwhile, the high-risk group 
had downregulated levels of gene sets correlated to immune 
response, with terms including “GOBP ANTIGEN 
BINDING” and “GOBP ADAPTIVE IMMUNE 
RESPONSE”.

Similarly, the GSVA revealed that the high-risk group 
had a prevalence of cell cycle and common carcinogen 
pathways, including terms “MITOTIC SPINDLE”, 
“G2M CHECKPOINT”, “MYC TARGETS”, “PI3K 
AKT MTOR SIGNALING”, “WNT BETA CATENIN 
SIGNALING”,  and “TGF BETA SIGNALING”  
(Figure 6C). Furthermore, the inflammatory pathway 
termed “INFLAMMATORY RESPONSE” was inhibited 
in the high-risk group, indicating immunosuppression, 
which was consistent with our expectations. Figure S7 
presents the association between the CAF marker genes 
and these signaling pathways as a heatmap. The GSEA also 
confirmed that cell cycle and PI3K-Akt signaling pathways 
were activated in the high-risk group (Figure 6D,6E). 
Antigen processing and presentation; cytokine-cytokine 
receptor interaction; and T helper (Th)1, Th2-, and Th17-
cell differentiation was significantly inhibited in the high-
risk group (Figure 6F,6G). These results suggest that the 
prognostic signature was positively correlated with tumor 
progression-related pathways and negatively associated with 
immune-related pathways, further demonstrating the value 
of the signature in predicting clinical outcomes of patients 
with LUAD.

Correlation between TME immune cell infiltration 
characteristics and the CAF marker genes

Given the pivotal role of CAFs in the immune regulation 
of the TME and the association of the prognostic 
signature with immune-related biological pathways, we 
next investigated the relationship between the signature 
and immune cell infiltration in LUAD. We first used 
the CIBERSORT, EPIC, MCP-counter, quanTIseq, 
TIMER, and xCell algorithms to assess the proportion of 

immune cells infiltrating LUAD samples. Most immune 
cells with antitumor activity, including CD8+ T cells, B 
cells, monocytes, neutrophils, and myeloid dendric cells, 
had higher levels of infiltration in the low-risk group  
(Figure 7A). We next identified the relationships between 
the prognostic signature and the immune cells. We found 
that most immune cells expressed negative correlations 
with the 4 genes included in the signature (AKAP12, KRT8, 
FSTL3, and ID1), which are detrimental to the prognosis 
of patients with LUAD (Figure S8A). Additionally, immune 
cell components were positively correlated with the other 
7 prognostically favorable genes, consistent with our 
expectations.

To further explore the correlation between the model 
and the immune cell infiltration of TME, we used the 
ESTIMATE algorithm to compare the immune and 
matrix components in the TME of LUAD. The high-
risk group had higher tumor purity but a lower immune 
score and ESTIMATE score than did the low-risk group  
(Figure S8B-S8E). These results confirmed the negative 
correlations between the abundance of immune cell 
infiltration in the TME and the risk score. Furthermore, 
we downloaded the pathology slide and compared the 
levels of immune cell infiltration in the tumor tissue of 
patients with different risk scores from TCGA data set. 
Surprisingly, low-risk patients had a higher infiltration of 
immune cells in their tumor nests (Figure 7B, Figure S9). 
Moreover, using on the tumor-infiltrating lymphocyte map 
of TCGA HE pathology slides published by Saltz et al., 
we compared the discrepancy in infiltrating lymphocytes 
between patients with different risk scores and found higher 
levels of lymphocyte infiltration in patients with higher 
risk scores (36). Given that chemokines are crucial TME 
components, we analyzed the levels of chemokine mRNA 
expression in TCGA cohort. Higher chemokine abundance 
was associated with favorable lung cancer prognoses, 
with chemokines, including CCL17, CCR2, and CCR4, 
being more abundant in the low-risk group (Figure 7C). 
Furthermore, considering the impact of tumor immune 
infiltration and CAFs on antitumor therapy, we also 
explored the relationship between this prognostic model 
and immunotherapy response. We calculated the TIDE 
score to compare immunotherapy responses in the high-risk 
and low-risk groups. The high-risk group had higher TIDE 
and exclusion scores, which may be related to the levels of 
immune cell infiltration (Figure 7D). Thus, these results 
confirmed the correlation between this signature and TME 

https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-238-Supplementary.pdf
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Figure 7 Differences in immune cell infiltration characteristics and immune-related gene expression in the different risk groups. (A) 
Heatmap showing the immune infiltration status for the different risk groups. (B) Representative images of pathological HE staining 
of patients with the highest and lowest risk scores in TCGA database (TCGA pathology slide). (C) Thermogram showing the mRNA 
expression levels of chemokines, interieukins, interferons, and other cytokines in the high- and low-risk groups. (D) Exclusion and TIDE 
scores for the different risk groups. (E) Box plot showing the TME-related scores in the different groups. The upper and lower ends of the 
box correspond to the quartile ranges of values, lines to medians, and dots to outliers. ns, P≥0.05; ***, P<0.001; ****, P<0.0001. TCGA, The 
Cancer Genome Atlas; TIDE, tumor immune dysfunction and exclusion; TME, tumor microenvironment; EMT, epithelial-mesenchymal 
transition; Pan-F-TBRs, pan-fibroblast TGF-β response signature; HE, hematoxylin eosin.
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immune cell infiltration. 
Moreover, we compared the immune-related gene set 

scores of the different risk groups. The high-risk group 
had higher scores for epithelial-mesenchymal transition 2 
(EMT2), pan-fibroblast TGF-β response signature (Pan-F-
TBRs), and DNA repair-related gene sets and lower scores 
for the TME score gene set (Figure 7E). Thus, the prognostic 
model was strongly correlated with the level of immune cell 
infiltration in the TME of patients with LUAD.

Discussion

The essential regulatory role of the TME in cancer 
development processes, such as cancer cell survival, growth, 
migration, and even dormancy, is well established (5). 
Within the TME, CAFs are the most highly represented 
nonneoplastic stromal cells, and their significant roles in 
tumor progression have been identified in recent years (39).  
CAFs play a significant role in tumor progression 
by secreting various factors, such as growth factors, 
extracellular matrix proteins, and immunosuppressive 
ligands, which also contribute to the immunosuppressive 
effects of the TME (40). In LUAD, CAFs promote 
cancer progression by enhancing glutamine uptake in 
LUAD cells through CAF-specific long-chain non-coding 
RNA LINC01614 packaged in secreted exosomes (41). 
Furthermore, the reduction of extracellular CLCN3 
secretion via HNRNPK knockdown inhibits CAF activation 
and TGF-β1 production. This, in turn, affects the 
expression of nuclear HNRNPK and LUAD progression 
in a feedback loop (42). Due to the apparent heterogeneity 
of CAF markers, some studies have suggested that CAFs 
identified by a single or different marker may constitute 
various subtypes of CAFs with different functional roles in 
cancer progression. Haichuan Hu and colleagues identified 
three significant functional subtypes of CAFs in their 
study, based on distinct expression levels of hepatocyte 
growth factor (HGF), fibroblast growth factor 7 (FGF7), 
using PDF libraries. These subtypes exhibited diverse 
effects, particularly when treated with EGFR and ALK 
TKI (43). Therefore, reliable biomarkers based on CAFs 
have attracted an increasing amount of attention. However, 
CAF-related gene signatures in LUAD studies remain rare. 
Developing a gene signature based on CAFs in LUAD may 
help to understand how CAF relates to LUAD outcome, 
which could help classify patients and tailor therapies.

Recent applications of scRNA-seq have provided an 
objective characterization of TME cells and clear insights 

into the whole tumor ecosystem. In this study, we first 
confirmed that the proportion of CAFs in patients with 
LUAD was strongly correlated with survival and immune 
status in these patients. Next, using scRNA-seq analysis, 
we explored the CAF marker genes in LUAD that could 
not be distinguished in bulk RNA sequencing. Using the 
CAFs marker genes, we constructed a new prognostic 
signature for patients with LUAD in TCGA data set and 
validated it in 3 independent GEO cohorts and different 
clinical subgroups. We then confirmed that the signature 
was a reliable risk predictor. A comparison of the levels 
of enriched biological pathways and the immune cell 
infiltration of the high- and low-risk subgroups showed that 
the risk scores were positively correlated with the activation 
of oncogenic biological pathways and negatively correlated 
with the activation of immune-related pathways and levels 
of immune cell infiltration in the TME. In addition to 
tumor growth, invasion, and metastasis, CAFs also affect 
tumor treatment resistance (44). In gastric cancer, CAFs 
are able to secrete the exosome miR-522, which inhibits 
iron death in cancer cells by targeting ALOX15, thereby 
enhancing chemotherapy resistance (45). In HNSCC, CAFs 
are also involved in influencing the therapeutic efficacy of 
cetuximab, an effect that is strongly associated with TGF-β 
signaling (46). In this study, high-risk LUAD patients had 
higher TIDE and exclusion scores than did the low-risk 
patients, suggesting a higher immunotherapy response 
rate in the low-risk group. Further validation indicated 
that the signature could help determine LUAD prognosis, 
assess immune infiltration in the TME, and predict the 
effects of immunotherapy. An important research objective 
is to stratify the subgroup of high-risk patients with poor 
outcomes or low overall survival times after curative surgery 
for early-stage lung adenocarcinoma (LUAD). In this study, 
all the LUAD patients in the validation dataset (GSE30219) 
were at TNM stage I. Using the CAF-related signature 
developed in this study, we were able to categorize patients 
into high- and low-risk groups, which showed a significant 
difference in overall survival (P<0.0001). Therefore, we 
propose that this signature has the potential to identify a 
high-risk subgroup of early-stage LUAD patients, where 
the differential expression of the 11 genes involved in the 
signature may underlie the aggressive phenotype of early-
stage LUAD. 

The biological functions of the 11 CAF marker genes 
have been studied. Among them, KRT8, FSTL3, ID1, and 
AKAP12 are associated with unfavorable outcomes. KRT8 
is a type II basic intermediate filament protein; elevated 
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KRT8 levels have been reported in multiple human cancer 
types (47). KRT8 has been further shown to enhance the 
proliferation, migration, and invasion ability of lung cancer 
cells and is significantly associated with survival in LUAD 
(48,49). FSTL3, an established oncogene, participates in 
the development and progression of NSCLC (50). Yang 
et al. confirmed that FSTL3 activates EMT, promotes 
the polarization of macrophages and fibroblasts, and 
exhausts T cells (51). Moreover, a significant correlation 
was found between FSTL3 expression and immune and 
stromal components of TMEs (51); this is in line with 
the findings related to our signature, which was strongly 
related to immune-related pathways and the level of 
immune cell infiltration. ID1 belongs to the helix-loop-
helix (HLH) family and is a dominant negative regulator 
of transcription factors of the basic HLH family (52). As a 
direct downstream effector of the BMP/Smad pathway, ID1 
has a proangiogenic effect. In addition, it exerts antitumor 
immunosuppressive effects by inhibiting dendritic cell 
differentiation and CD8+ T cell proliferation (53,54). 
Baraibar et al. showed that programmed cell death protein 1  
(PD-1) blockade combined with ID1 inhibition increased 
the infiltration of CD8+ T cells and their programmed 
death-ligand 1 (PD-L1) expression, thereby significantly 
enhancing the immunotherapeutic effect (55). This result 
explains the lower CD8+ T lymphocyte infiltration in 
the high-risk group. AKAP12 belongs to the kinase-
anchored protein family (56). In LUAD, however, the role 
of AKAP12 remains unclear. Chang et al. reported that 
AKAP12 expression was upregulated in LUAD, and its 
high expression was related to tumor progression and poor 
prognosis (57). 

The remaining 7 genes exerted beneficial impacts on 
the outcome of patients with LUAD. Although FMO3 
has rarely been studied in lung cancer, it does increase 
apoptosis and reduce cell viability in hepatocellular 
carcinoma cells (58). BMP5 belongs to the transforming 
growth factor-β superfamily and participates in PinX1-
related cell proliferation and cell cycle transition (59). 
Breast CAFs express the BMP antagonist GREM1, which 
promotes the mesenchymal phenotype, stemness, and 
invasion of cancer cells (60). Moreover, it is downregulated 
in LUAD and correlated with poor prognosis (61). IGHM 
is an immune-related gene encoding the C region of the 
μ heavy chain and defines its isoform (62). It significantly 
affects the density of infiltrating CD20+ B cells in tumor 
tissues (63). In addition, Pocha et al. revealed that a high 
expression of surfactant genes, including SFTPB, was 

associated with intratumoral T-cell infiltration and a low 
immunosuppressive microenvironment in LUAD (64). As 
a xenobiotics metabolism enzyme, CYP4B1 has various 
biological roles. The CYP4B1 mRNA level is low in LUAD 
and even lower in LUAD at advanced clinical stages (65,66). 
In lung cancer, TMEM125 and IRX2 have been studied 
less extensively. IRX2 belongs to the Iroquois homeobox 
gene family, and there is evidence that LUADs commonly 
exhibit hypermethylation of the IRX2 promoter region (67).  
In addition, Fan et al. developed a risk model based on 
transmembrane proteins, such as TMEM125, and explored 
its relationship with immune cell infiltration profiles in the 
TME (68). The specific mechanisms underlying the effects 
of TMEM125 and IRX on the development of LUAD and 
its prognosis warrant further investigation.

We additionally examined the biological pathways 
associated with the CAF-related signature to better 
understand the mechanism underlying the effects of CAFs 
on LUAD. We found that common oncogenic pathways, 
including Hippo, Myc, PI3K, and Notch, as well as signaling 
pathways involved in cell cycle and DNA replication, were 
upregulated in the high-risk group. A previous study has 
reported that activating oncogenic pathways may inhibit 
immune infiltration (69). Furthermore, the Hippo pathway 
promotes cancer progression, and the main mediator of 
this pathway, yes-associated protein (YAP), participates 
in regulating PD-L1 expression in human NSCLC (70). 
Furthermore, Janse van Rensburg et al. reported that 
the Hippo signaling pathway targets PD-L1 and that 
transcriptional coactivator with PDZ-binding motif (TAZ), 
a Hippo pathway component, can promote immune 
evasion via PD-L1 (71). Meanwhile, Myc signaling can 
enable tumor cells to dysregulate their microenvironment 
and evade the host immune response (72,73). In addition, 
Isoyama et al. performed tumor immunotherapy combining 
a PI3K inhibitor and an anti-PD-1 monoclonal antibody, 
which suppressed T regulatory cell function and enhanced 
effector T cell function (74). Regarding the Notch 
signaling, numerous studies support its significance in 
immunotherapeutic efficacy (75,76). In agreement with 
these studies, we found that the following pathways were 
enriched in the low-risk group: antigen processing and 
presentation; cytokine–cytokine receptor interaction; and 
Th1, Th2, and Th17 cell differentiation. This finding 
prompted us to further investigate the relationship between 
this signature, the infiltration characteristics of the TME, 
and the response to immunotherapy.

The  in t e r ac t ion  o f  c ance r  ce l l s  and  immune 
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microenvironment components also regulate tumor growth 
and metastasis; thus, it is a crucial element for prognosis 
(77,78). We applied multiple algorithms to analyze the 
correlation between the signature and the immune cell 
infiltration characteristics. Our results show that the 
prognostic signature is significantly correlated to the 
immune cell infiltration characteristics in the TME. The 
low-risk group had higher levels of CD8+ T cells, B cells, 
monocytes, neutrophils, and myeloid dendric cells than 
did the high-risk group. Tumor-infiltrating B cells have a 
distinct role in antitumor immunity. They can differentiate 
into plasma cells and produce antibodies that recognize 
tumor-associated antigens and generate antitumor  
responses (79). Dendric cells participate in antigen 
presentation, CD4+ T cell differentiation, and natural killer 
cell recruitment; they are essential for efficient antitumor 
immunity (80). We also found that the high-risk group had 
higher infiltrating CD4+ Th2 cell levels than did the low-
risk group. In another study, the imbalance in the Th1:Th2 
cell ratio was associated with overall survival in patients with 
lung cancer (81). Tumors with poor infiltration immune 
cells are described as “cold tumors” and are invariably 
associated with poor prognosis (78). Tumor-infiltrating 
lymphocytes are usually considered good prognostic tools—
even superior to tumor stage in colon cancer (82). We 
compared the lymphocyte infiltration levels of the 2 risk 
groups using HE images of TCGA LUAD samples and 
confirmed that they were higher in the low-risk group, 
which may be one of the reasons for the better outcome in 
low-risk patients.

Cancer immunotherapies target the host immune 
response to fight the cancer. Because intratumoral CD8+ T 
lymphocyte infiltration is critical to the success of immune 
checkpoint inhibitor therapy (83), we hypothesized that this 
prognostic signature could also help to predict the response 
to immune checkpoint inhibitor therapy in patients with 
LUAD. Using the TIDE algorithm, we found that high-
risk patients had higher TIDE and exclusion scores, 
suggesting that immunotherapy is less effective in high-
risk patients. Overall, low-risk patients had higher immune 
infiltration levels in the TME and reaped more benefits 
from immunotherapy.

This study has several limitations. First, it was based on 
a public data set, and confirming the predictive power of 
the obtained signature requires a large prospective clinical 
study. Second, the potential molecular mechanisms by 
which these CAF marker genes affect patient outcomes and 
immune infiltration need to be elucidated through further 

experimental studies.

Conclusions

We constructed and validated a prognostic signature 
based on 11 CAF marker genes by integrating scRNA 
and bulk RNA-seq analysis. In patients with LUAD, 
the signature could predict the outcome and immune 
infiltration characteristics well. Our study may provide a 
biomarker-based prognostic tool to predict outcome and 
immunotherapy impact, thus enhancing individualized 
treatment and improving prognosis.
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Table S1 Marker gene sets for five carcinogenic pathways 

Symbol Pathway

CCND1 Cell.Cycle_activated

CCND2 Cell.Cycle_activated

CCND3 Cell.Cycle_activated

CCNE1 Cell.Cycle_activated

CDK2 Cell.Cycle_activated

CDK4 Cell.Cycle_activated

CDK6 Cell.Cycle_activated

E2F1 Cell.Cycle_activated

E2F3 Cell.Cycle_activated

YAP1 Hippo_activated

TEAD1 Hippo_activated

TEAD2 Hippo_activated

TEAD3 Hippo_activated

TEAD4 Hippo_activated

WWTR1 Hippo_activated

MYC MYC_activated

MYCL1 MYC_activated

MYCN MYC_activated

CREBBP NOTCH_activated

EP300 NOTCH_activated

HES1 NOTCH_activated

HES2 NOTCH_activated

HES3 NOTCH_activated

HES4 NOTCH_activated

HES5 NOTCH_activated

HEY1 NOTCH_activated

HEY2 NOTCH_activated

HEYL NOTCH_activated

KAT2B NOTCH_activated

NOTCH1 NOTCH_activated

NOTCH2 NOTCH_activated

NOTCH3 NOTCH_activated

NOTCH4 NOTCH_activated

PSEN2 NOTCH_activated

LFNG NOTCH_activated

NCSTN NOTCH_activated

JAG1 NOTCH_activated

APH1A NOTCH_activated

FHL1 NOTCH_activated

THBS2 NOTCH_activated

MFAP2 NOTCH_activated

RFNG NOTCH_activated

MFAP5 NOTCH_activated

JAG2 NOTCH_activated

MAML3 NOTCH_activated

MFNG NOTCH_activated

CNTN1 NOTCH_activated

MAML1 NOTCH_activated

MAML2 NOTCH_activated

PSEN1 NOTCH_activated

PSENEN NOTCH_activated

RBPJ NOTCH_activated

RBPJL NOTCH_activated

SNW1 NOTCH_activated

ADAM10 NOTCH_activated

APH1B NOTCH_activated

ADAM17 NOTCH_activated

DLK1 NOTCH_activated

DLL1 NOTCH_activated

DLL3 NOTCH_activated

DLL4 NOTCH_activated

DNER NOTCH_activated

DTX1 NOTCH_activated

DTX2 NOTCH_activated

DTX3 NOTCH_activated

DTX3L NOTCH_activated

DTX4 NOTCH_activated

EGFL7 NOTCH_activated

EIF4EBP1 PI3K_activated

AKT1 PI3K_activated

AKT2 PI3K_activated

AKT3 PI3K_activated

AKT1S1 PI3K_activated

INPP4B PI3K_activated

MAPKAP1 PI3K_activated

MLST8 PI3K_activated

MTOR PI3K_activated

PDK1 PI3K_activated

PIK3CA PI3K_activated

PIK3CB PI3K_activated

PIK3R2 PI3K_activated

RHEB PI3K_activated

RICTOR PI3K_activated

RPTOR PI3K_activated

RPS6 PI3K_activated

RPS6KB1 PI3K_activated

STK11 PI3K_activated

CDKN1A Cell.Cycle_repressed

CDKN1B Cell.Cycle_repressed

CDKN2A Cell.Cycle_repressed

CDKN2B Cell.Cycle_repressed

CDKN2C Cell.Cycle_repressed

RB1 Cell.Cycle_repressed

STK4 Hippo_repressed

STK3 Hippo_repressed

SAV1 Hippo_repressed

LATS1 Hippo_repressed

LATS2 Hippo_repressed

MOB1A Hippo_repressed

MOB1B Hippo_repressed

PTPN14 Hippo_repressed

NF2 Hippo_repressed

WWC1 Hippo_repressed

TAOK1 Hippo_repressed

TAOK2 Hippo_repressed

TAOK3 Hippo_repressed

CRB1 Hippo_repressed

CRB2 Hippo_repressed

CRB3 Hippo_repressed

LLGL1 Hippo_repressed

LLGL2 Hippo_repressed

HMCN1 Hippo_repressed

SCRIB Hippo_repressed

HIPK2 Hippo_repressed

FAT1 Hippo_repressed

FAT2 Hippo_repressed

FAT3 Hippo_repressed

FAT4 Hippo_repressed

DCHS1 Hippo_repressed

DCHS2 Hippo_repressed

CSNK1E Hippo_repressed

CSNK1D Hippo_repressed

AJUBA Hippo_repressed

LIMD1 Hippo_repressed

WTIP Hippo_repressed

MGA MYC_repressed

MNT MYC_repressed

MXD1 MYC_repressed

MXD3 MYC_repressed

MXD4 MYC_repressed

MXI1 MYC_repressed

ARRDC1 NOTCH_repressed

CNTN6 NOTCH_repressed

KDM5A NOTCH_repressed

NOV NOTCH_repressed

NRARP NOTCH_repressed

ITCH NOTCH_repressed

SPEN NOTCH_repressed

FBXW7 NOTCH_repressed

HDAC2 NOTCH_repressed

CUL1 NOTCH_repressed

NCOR1 NOTCH_repressed

NCOR2 NOTCH_repressed

HDAC1 NOTCH_repressed

NUMB NOTCH_repressed

CIR1 NOTCH_repressed

NUMBL NOTCH_repressed

RBX1 NOTCH_repressed

SAP30 NOTCH_repressed

SKP1 NOTCH_repressed

CTBP1 NOTCH_repressed

CTBP2 NOTCH_repressed

DEPDC5 PI3K_repressed

DEPTOR PI3K_repressed

NPRL2 PI3K_repressed

NPRL3 PI3K_repressed

PIK3R1 PI3K_repressed

PIK3R3 PI3K_repressed

PPP2R1A PI3K_repressed

PTEN PI3K_repressed

TSC1 PI3K_repressed

TSC2 PI3K_repressed
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Table S2 The list of 129 immunomodulators used in this study

Chemokines Interleukins Interferons Other cytokines

CXCL10 IL21R IFNG IDO1

CCL11 IL12B IFNB1 LTA

CXCL13 IL21 IFNAR2 FASLG

CXCL9 IL9R IFNGR2 TNF

CXCL11 IL26 IFNA8 CSF2

CCR8 IL27 IFNA1 CSF2RB

CCL17 IL29 IFNE CSF2RA

CCL20 IL2RB IFNA5 VEGFA

CCR4 IL12RB1 TGFBR1

CCL18 IL10 FAS

CCL25 IL24 TGFB3

CXCR4 IL7R CSF1

CXCR3 IL18 PDGFC

CCL26 IL32 ARG1

CCR3 IL2RG VEGFC

CCR7 IL8 VEGFB

CCR5 IL2RA PDGFRB

CCR2 IL12RB2 TGFBR2

XCL2 IL1A PDGFRA

CCL5 IL22 EPOR

CCL4 IL10RA PDGFA

CCR6 IL23A CSF3

CCR1 IL31RA EGFR

CCL3 IL1R2 PDGFD

CCL22 IL28A EGF

CCL8 IL28B TPO

XCL1 IL1B TGFBR3

CXCR6 IL27RA

CCL1 IL11

CXCL16 IL20RB

CXCR1 IL12A

CXCR2 IL16

CCR9 IL10RB

PF4 IL6R

CXCL6 IL10RB

CX3CL1 IL6R

CCR10 IL3RA

CX3CR1 IL4R

CXCR7 IL1R1

CCL16 IL34

CXCL14 IL17D

CXCL12 IL6

CCL21 IL11RA

PPBP IL5

CCL14 IL17RD

CCL28 IL33

IL20RA

IL17B
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Figure S1 Forest plot of survival-associated genes obtained with univariate Cox analysis. 
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Figure S2 Validation of the prediction power of the signature in different subgroups of the TCGA cohort based on clinical variables. 
Kaplan-Meier overall survival analysis based on risk scores in TCGA database for the following subgroups: (A) aged <65 years, (B) aged ≥65 
years, (C) female, (D) male, (E) at early stages (I + II), (F) at advanced stages (III + IV), (G) without lymph node metastasis, (H) with lymph 
node metastasis, (I) at early T stages (T1 + T2), and (J) at advanced T stages (T3 + T4). TCGA, The Cancer Genome Atlas.
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Figure S3 The PCA and tSNE analysis in the 3 validation cohorts. (A-C) PCA analysis and (D-F) tSNE analysis in the GSE30219, 
GSE31210, and GSE72094 cohorts. PCA, principal component analysis; tSNE, t-distributed stochastic neighbor embedding.
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Figure S4 Validation of the prediction power of the signature in different subgroups of the GEO cohorts based on clinical variables. Kaplan-
Meier overall survival analysis of the GSE31210 cohort for the following subgroups:(A) aged ≥65 years, (B) aged <65 years, (C) non-smoking,  
(D) smoking, (E) female, (F) male, and (G) at stage I. Kaplan-Meier overall survival curves based on risk score in the GSE72094 cohort for 
the following subgroups: (H) aged ≥65 years, (I) aged <65 years, (J) female, (K) male, (L) smoking, (M) at early stages (I + II), and (N) at 
advanced stages (III + IV). GEO, Gene Expression Omnibus.
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Figure S5 The thermogram shows the association between the 5 oncogenic signaling pathways and the 11 CAF marker genes.
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Figure S6 Histogram of gene set enrichment analysis based on MsigDB.
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Figure S7 Thermogram showing the association between the marker genes and biological signaling pathways according to GSVA. CAF, 
cancer-associated fibroblast; GSVA, gene set variation analysis.
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Figure S8 Correlation between the signature and immune cell infiltration in the TME. (A) Heatmap showing the correlation of the 11 CAF 
marker genes with immune cell infiltration characteristics. (B) Comparison of ESTIMATE scores, (C) tumor purity scores, (D) immune 
scores, and (E) stromal scores of the high-risk and low-risk groups. CAF, cancer-associated fibroblast; TME, the tumor microenvironment.
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Figure S9 Representative images of HE staining of the (A) low-risk and (B) high-risk patients in TCGA database (TCGA pathology slides). 
HE staining, hematoxylin-eosin staining; TCGA, The Cancer Genome Atlas.


