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Background: In the tumor immune microenvironment, the contribution of innate and adaptive immune 
cells to tumor progression has been consistently demonstrated. However, reliable prognostic biomarkers 
for lung adenocarcinoma (LUAD) have not yet been identified. We thus developed and validated an 
immunologic long noncoding RNA (lncRNA) signature (ILLS) to facilitate the classification of patients with 
high and low risk and provide potential “made-to-measure” treatment choices.
Methods: The LUAD data sets were obtained and processed from public databases of The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus (GEO). The abundance of immune infiltration and its related 
pathways were calculated through consensus clustering, weighted gene coexpression network analysis 
(WGCNA), and an integrated ImmLnc to identify immune-related lncRNAs and extract immune-related 
prognostic lncRNAs. Based on the integrative procedure, the best algorithm composition was least absolute 
shrinkage and selection operator (LASSO) and stepwise Cox regression in both directions to develop the 
ILLS in the TCGA-LUAD data set and validate the predictive power of 4 independent data sets, GSE31210, 
GSE37745, GSE30219, and GSE50081 through survival analysis, receiver operating characteristic (ROC) 
analysis, and multivariate Cox regression. The concordance index (C-index) analysis was transversely 
compared with 49 published signatures in the above 5 data sets to further confirm its stability and superiority. 
Finally, drug sensitivity analysis was conducted to explore potential therapeutic agents.
Results: Patients from the high-risk groups consistently had worse overall survival (OS) compared to 
the low-risk groups. ILLS proved to be an independent prognostic factor with favorable sensitivity and 
specificity. Among the 4 GEO data sets, compared to those reported in the other literature, ILLS maintained 
stable prediction ability and was more suitable as a consensus risk-stratification tool. However, The Cancer 
Immunome Atlas and IMvigor210 data sets demonstrated practical utility in recognizing target populations 
with effective immunotherapy, while the high-risk group exhibited potential targets for certain chemotherapy 
drugs, such as carmustine, etoposide, arsenic trioxide, and alectinib. 
Conclusions: ILLS demonstrated superior and stable prognostic prediction ability and thus has potential 
as a tool for assisting in risk classification and clinical decision-making in patients with LUAD.
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Introduction

It is estimated that over 350 people die from lung cancer 
every day, which is more than from prostate, pancreatic, 
and breast cancers combined, and two-and-a-half times 
more than from colorectal cancer, the second largest cause 
of cancer-related death. Lung adenocarcinoma (LUAD) 
has become the most prevalent lung cancer subtype and has 
increased in frequency (1,2). Although remarkable advances 
have been made in the multidisciplinary treatment of 
LUAD, the unprecedented effectiveness has been observed 
in only a small portion of patients. Targeted therapy is 
limited to histological subtypes containing operable driver 
mutations, and durable responses to immunotherapy are 
not common, resulting in the insubstantial development 
of an overall prognosis for patients with LUAD (3,4). 
Therefore, the exploration of new prognostic biomarkers 
should be emphasized to stratify risk and provide optimal 
treatment for patients with LUAD. Unlike proteins, 
the stability of cancer-related Long noncoding RNA 
(lncRNA) is more suitable for cancer screening and 
detection. Although the research of circulating lncRNA 

is still in its early stage, the interest in lncRNA is growing 
worldwide and new technologies are emerging to develop 
potential (5). In LUAD, a significant correlation has been 
observed between tumor genomic features and the immune 
microenvironment. The immune microenvironment is 
highly heterogeneous between and within patients, and 
even in distinct regions of the same tumor, nearly a third of 
the samples show varying degrees of immune infiltration (6). 
LncRNAs have attracted increasing attention as biomarkers 
for cancer diagnosis and therapy as well as therapeutic 
targets due to their abnormal regulation in the process of 
tumorigenesis. Several experiments have demonstrated that 
lncRNA plays crucial roles in both cancer and the immune 
response through multiple regulatory mechanisms (7,8). 
Adjacent immune cells and various types of cells in the tumor 
immune microenvironment (TIME) continuously interact 
and evolve, affecting intrinsic and extrinsic processes such as 
proliferation, invasion, epithelial-mesenchymal transition, 
angiogenesis, and drug resistance (9). For example, He et al.  
focused on identifying immune-associated lncRNA in 
LUAD and found its prediction value in immune response 
between tumor and normal tissue (10). Gong et al. revealed 
the role of immune-related competing endogenous RNA 
(ceRNA) network in LUAD, helping to explore novel target 
of anti-tumor immunotherapy (11).

In this study, we mined public data from The Cancer 
Genome Atlas (TCGA) and the Gene Expression Omnibus 
(GEO) databases, identified immune-related lncRNAs, and 
developed an immunologic lncRNA signature (ILLS) with 
reliable prognostic value with the aim of stratifying risk and 
predicting prognosis. In addition, drug sensitivity analysis 
was conducted to provide novel insights into personalized 
treatment decisions with the aim of standardizing the 
prediction model reporting process and reporting quality 
evaluation. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-23-372/rc).

Methods

Obtaining and processing the public data

Raw data of patients with LUAD were obtained from 
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TCGA (https://cancergenome.nih.gov/) and GEO databases 
(https://www.ncbi.nlm.nih.gov/geo/) and included RNA-
sequencing (RNA-seq) profiling and clinical information. In 
this study, TCGA-LUAD data sets were used in supervised 
learning to construct our required signature. In addition, 
GSE50081, GSE31210, GSE37745, and GSE30219,  
4 independent data sets, were adopted as validation sets to 
evaluate the generalizability of the signature. Only patients 
with complete expression profiles, overall survival (OS) 
information, and necessary available clinical data were 
included for analysis. A total of 1,140 patients with LUAD, 
RNA expression matrix, and complete OS information 
were included across all the data sets. The Imvigor210 data 
set with response data was retrieved to assess the ability of 
ILLS to predict immunotherapy efficacy. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

The raw read count of RNA-seq from TCGA-LUAD 
data set was acquired in a unit of transcripts per kilobase 
million. In the GEO database, all files were received from 
the platform GPL570, and the “Affy” package running in 
R software (version 4.2.1) facilitated log-2 transformation 
through the robust multiarray averaging method for the 
above original data, in a process known as normalization. 
Via gene annotations from the Homo sapiens GRCh38, we 
found 16,773 lncRNAs in the TCGA-LUAD data sets. We 
reannotated the probe set of the gene GPL570 array and 
converted it into 1,134 lncRNAs.

Consensus clustering

Single-sample gene set enrichment analysis was employed to 
quantify the infiltration degree of 28 immune cells through 
use of the “GSVA” package in R software on the TCGA-
LUAD data set. Subsequently, based on the infiltration 
score of diverse immune cells, consensus clustering was 
used to discover an appropriate cluster. The procedure was 
implemented via the “ConsensusClusterPlus” package in R. 
Next, the proportion from the ambiguous clustering (PAC) 
score and k-means algorithm was consistently applied to 
determine the best number of clusters. The micro- and 
the macrolevels of immune infiltration difference were 
visualized in a boxplot and heat map.

Weighted correlation network analysis (WGCNA)

By means of R software’s “WGCNA” package, lncRNA 
coexpression networks were generated in TCGA-LUAD 

data set. In addition to the consequence of clustering, other 
clinical traits influencing clinical decision-making including 
age, sex, stage defined by American Joint Committee on 
Cancer (AJCC), pathological TNM stage, tumor mutation 
burden (TMB), microsatellite instability (MSI), and 
neoantigen load (NAL) state were also factored into the 
calculation. To satisfy the criterion of approximate scale-
free topology, a suitable β was calculated. Moreover, a 
topological overlap matrix (TOM) was transformed from 
the weighted adjacency matrix, and then corresponding 
dissimilarity was generated, termed “1-TOM”. To 
recognize those module eigengenes significantly correlated 
with cluster traits, the eigengenes with key modules that 
had the highest correlations were extracted. Only hub 
lncRNAs that met the criteria of gene significance >0.5 and 
module membership >0.6 were defined as immune-related 
lncRNAs.

ImmLnc enrichment analysis 

ImmLnc is a web-based resource for investigating the 
immune-related pathways of lncRNAs, and the process 
is achieved with R package “ImmLncRNA” containing 
3 functions. According to all messenger RNA (mRNA) 
expression profiles, the tumor purity of every sample was 
first estimated with the ESTIMATE algorithm. The 
partial correlation coefficient and P value between genes 
and lncRNAs were then calculated. Based on the gene set 
enrichment analysis, the enrichment score, P value, and 
the combined lncRES, statistics were obtained to identify 
the potential lncRNA modulators of immune-related 
pathways. Among them, only those with lncRES >0.995 
and false-discovery rate (FDR) <0.05 were considered 
statistically significant (12). Previous literature suggests that 
if a particular lncRNA acts as a crucial immunomodulator, 
its relevant genes ought to enrich in the high or low 
placing of immune-related pathways (13). The lncRNAs 
corresponding to the top 5 pathways were selected for 
further research.

Integrative approach-based ILLS development

Based on the intersection of WGCNA and ImmLnc 
results, univariate Cox analysis was used to determine if the 
prognostic lncRNAs correlated with OS in TCGA-LUAD 
data set. In order to develop signatures with superior and 
stable predictive ability, by means of integrative processing, 
we applied 10 algorithms and 101 combinations for 
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developing our desired signature. We included popular 
algorithms, such as least absolute shrinkage and selection 
operator (LASSO), ridge, elastic network, supervised 
principal components, and random survival forest, as well 
as relatively uncommon but equally powerful ones such 
as generalized boosted regression modelling, survival 
support vector machine, CoxBoost, and partial least 
squares regression for Cox. Cross-validation in the leave-
one-out principle was used to calculate the concordance 
index (C-index) for the 4 validation data sets (GSE31210, 
GSE37745, GSE30219, and GSE50081). The constructed 
model with the highest mean C-index was considered 
optimal.

Statistical analysis

All survival statistics computing and results illustration were 
performed using R software (version 4.2.1). The relevant 
coefficient and corresponding risk score of each LUAD 
sample were calculated. We distinguished the high-risk 
group from the low-risk group according to the median 
risk score (i.e., the optimal cutoff value). Between the 
high- and low-risk groups, Kaplan-Meier curve analysis 
was performed to show the OS difference of patients with 
LUAD. Within the range of possible values of a predictive 
variable, we compared the area under the receiver operating 
characteristic (ROC) curve (AUC) to assess the diagnostic 
accuracy of ILLS, and the time-dependent AUC for survival 
variables was conducted in 1-, 3-, and 5-year survival. We 
also calculated the Akaike information criterion value to 
locate the cutoff point for the AUC of 1 year. Through 
univariate and multivariate Cox regression, ILLS was tested 
to determine whether it was an independent prognostic 
factor. The same approaches were applied to the 4 validation 
data sets (GSE31210, GSE37745, GSE30219, and 
GSE50081) for cross-domain validations, which helped to 
prove the reliability of ILLS. The common R packages used 
in the above validation included “survival”, “survminer,” 
“timeROC”, “ggplot2”, “limma”, “scatterplot3d”, “ggpubr”, 
and “Rtsne”.

Transverse comparison of the published lncRNA signatures 
for LUAD

With advances in high-throughput sequencing and big-
data analysis techniques, there has been explosive increase 
in studies exploring effective predictors and therapeutic 
targets. In this paper, we reviewed the lncRNA signatures 

published in the MEDLINE database. The retrieved 
articles related to the prognosis analysis for patients with 
LUAD were included, and then we conducted a transverse 
comparison to rank their performance against ILLS.

Usability research

We classified 28 immune cell infiltrations into high- and 
low-risk groups and determined which subset increased 
most significantly. AJCC stage, pathological TNM stage, 
and several emerging immunotherapy markers (i.e., TMB, 
NAL, and MSI) were also used to determine whether their 
status was consistent with the desired risk and further 
ensured their potential as candidate Additionally, 2 data sets 
were used to help verify the ability of ILLS to predict the 
immunotherapeutic benefits. Moreover, the gene expression 
and immunotherapy response files were also retrieved from 
the IMvigor210 data set, and the differences in prognosis 
and response of the model constructed by the ILLS was 
determined. Subsequently, using The Cancer Immunome 
Atlas (https://www.tcia.at/home), we downloaded the 
immunophenoscore (IPS) of TCGA-LUAD patients, which 
mainly refers to the major histocompatibility complex 
(MHC) molecules, effector cells, immune checkpoints, 
and immunosuppressive cells. The IPS was confirmed as 
having a positive correlation with tumor immunogenicity. 
The immunogenicity was quantified on a scale from 0 to10 
based on the gene expression in the representative cell 
types, thereby reflecting the immunotherapy response. For 
suiting chemotherapy to the needs of the case, we obtained 
the top 15 drugs with the most significant correlations by 
performing a correlation analysis between half-maximal 
inhibitory concentration (IC50) values and ILLS expression, 
which is the widely used method for cancer drug-testing 
databases. CellMiner (NCI-60; https://discover.nci.nih.
gov/cellminer) contributed significantly to this exploration 
by providing compound activity information and RNA-seq 
expression. 

Results

Sample clustering and key immune differentiator findings

Based on the infiltration score of 28 separate immune cells 
deduced by single-sample gene set enrichment analysis in 
TCGA-LUAD samples, cluster analysis indicated typing 
into 2 distinct clusters (Figure 1A). The proportion statistic 
of ambiguous clustering displayed the fittest cluster number 

https://discover.nci.nih.gov/cellminer
https://discover.nci.nih.gov/cellminer
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Figure 1 Extraction of lncRNAs. (A) The consensus score matrix of TCGA-LUAD samples when k=2. The higher the consistency score 
between 2 samples is, the more likely they are to be grouped into the same cluster in different iterations. (B) The proportion from the 
ambiguous clustering score: a lower value implies a flatter middle segment, deducing the optimal number of k is 2 based on the lowest PAC. 
(C) The k-means algorithm indicated that k=2 met the most criteria. (D) The infiltration abundance of 28 immune cell subsets evaluated 
by single sample gene set enrichment analysis for 2 clusters. (E) The abundance difference of overall immune score between 2 clusters in 
TCGA-LUAD data set (****, P<0.0001). (F) In the coexpression network, the yellow module represented the highest correlation between the 
module eigengenes and clustering trait but without insignificant in TMB, MSI and NAL traits; there were 589 immune-related lncRNAs with 
both high gene significance and module membership. (G) ImmLnc identified a total of 1,002 lncRNAs that were significantly associated with 
immune-related pathways. (H) The overlapping lncRNAs between weighted gene coexpression network analysis and ImmLnc results. lncRNA, 
long noncoding RNA; TCGA-LUAD, The Cancer Genome Atlas-lung adenocarcinoma; PAC, proportion from the ambiguous clustering; MSS, 
microstate stable; TMB, tumor mutation burden; MSI, microsatellite instability; NAL, neoantigen load; WGCNA, weighted correlation network 
analysis; TNF, tumor necrosis factor; TGFb, transforming growth factor β; BCR, B cell receptor; TCR, T cell receptor. 
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= 2, k-means clustering also achieved the same result (Figure 
1B,1C). We then identified a clustering trait which classified 
C1/C2 into immune-cold or immune-hot subtypes, and 
a difference was indeed found (Figure 1D,1E) which was 
then incorporated into the construction of a coexpression 
network. Seven modules with individual colors were 
identified. The highest correlation and significance were 
observed between the yellow module and the clustering trait 
(Figure 1F). Among the eigengenes of the yellow module, 
589 hub lncRNAs with satisfactory gene significance 
and module membership were taken as immune-related 
lncRNAs, presenting the strongest correlation in the 
classification of immune subtypes.

Immune pathway regulator generation 

In all, 1,002 lncRNAs met the significance threshold 
and were selected and determined to enrich the top 
5pathways of antimicrobials, cytokine receptors, cytokines, 
chemokines, and tumor necrosis family (TNF) family 
members (Figure 1G). Finally, we extracted 253 immune-
related lncRNAs that overlapped in the WGCNA and 
ImmLnc results for further development (Figure 1H).

Consensus signature development 

Among the above immune-related lncRNAs, 52 prognostic 
lncRNAs were identified in the univariate Cox analysis. 
Comprehensive approaches were then employed to develop 
a consensus signature. According to the model performance 
in the GSE31210, GSE37745, GSE30219, and GSE50081 
data sets, among the 101 algorithm compositions, the model 
constructed by LASSO and stepwise Cox in both directions 
demonstrated a superior accuracy and generalizability. The 
average C-index reached a high of 0.69 (Figure 2A,2B). The 
ILLS was as follows: LINC01138, LPP-AS2, LINC00857, 
UCA1, and LINC01116, with positive coefficients regarded 
as risk factors. Conversely, GAS6-AS1, AF186192.1, NNT-
AS1, and LINC00996 were negatively coefficient and thus 
considered to exert a protective role (Figure 2C). From the 
division into high- and low-risk groups, survival analysis 
showed that patients from the former experienced lower OS 
than the latter in TCGA-LUAD (P<0.0001), GSE31210 
(P<0.0001), GSE30219 (P<0.0001), GSE50081 (P=0.009), 
GSE37745 (P=0.023) and the Meta-Datasets (P<0.0001) 
(Figure 2D-2I).

ILLS performance testing

To prioritize sensitivity and specificity, we tested the 
distinguishing capacity of ILLS, and revealed that the 
1-, 3-, and 5-year AUCs were 0.712, 0.711, and 0.653 
in TCGA-LUAD data set; 0.886, 0.644, and 0.683 
in the GSE31210 data set; 0.785, 0.596, and 0.634 in 
the GSE30219 data set; 0.689, 0.547, and 0.563 in the 
GSE50081 data set; and 0.751, 0.705, and 0.617 in the 
GSE37745 data set, respectively (Figure 3A-3E). The best 
cutoff points were assessed to divide patients into high- 
and low-risk groups (Figure 3F-3J). Moreover, ILLS was 
found to be an independent prognostic factor in TCGA-
LUAD, GSE31210, GSE30210, and GSE50081 data 
sets. Although ILLS had a certain degree of predictive 
value for OS in the GSE37745 data set, it was not found 
to be an independent prognostic factor (Figure 3K-3O), 
possibly due to the small sample size. We found 49 recently 
published articles focused on developing a lncRNA-based 
signature for risk stratification and therapeutic assessment 
in patients with LUAD. The signatures examined were 
associated with several key bioprocesses, including immune 
microenvironments, N6-methyladenosine, pyroptosis, 
ferroptosis, hypoxia, autophagy, and redox genome 
instability, among others. Their wide-range predictive 
ability was compared using C-index statistics. The results 
demonstrated that ILLS possessed desirable discriminative 
ability and generalizability among these signatures. It is 
worth noting that most of signatures, worked very well in 
their initial training model and a small portion of validation 
data sets, but performed poorly in other data sets (Figure 4).

Clinical guidance

Correlation analysis between the low- and high-risk 
groups of the 28 immune cell subtypes revealed the 
expected outcome. Except for activated CD4 T cells, 
immature dendritic cells, macrophages, natural killer T 
cells, neutrophils and plasmacytoid dendritic cells, all the 
other subtypes (22 subtypes) of immune cells displayed 
significantly higher infiltration levels in the tumor site of 
the patients with low risk (P<0.001) (Figure 5A). The TIME 
was not the only strong correlation deduced from the 
model, and differences in AJCC stage, TMB, and NAL were 
also identified. In the patients with high risk, TIME and 
NAL tended to show a higher degree of correlation, while 
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Figure 2 Derivation and cross-domain validation of consensus ILLS via the machine learning–based integrative procedure. (A) A total of 
101 kinds of prediction models via a leave-one-out cross-validation framework and further calculated the C-index of each model across all 
validation data sets. (B) In TCGA-LUAD dataset, the determination of the optimal λ was obtained with the minimum value of the partial 
likelihood deviance and further generated the LASSO coefficients of the most useful prognostic genes. (C) Based on LASSO and stepwise 
Cox (direction=both) algorithm, the coefficients of 9 lncRNAs were obtained. (D-I) Kaplan-Meier curves of OS according to the ILLS 
model in TCGA-LUAD data set (P<0.0001) (D), GSE31210 data set (P<0.0001) (E), GSE30219 data set (P<0.0001) (F), GSE50081 data set 
(P=0.009) (G), GSE37745 data set (P=0.023) (H), and the Meta-Dataset (P<0.0001) (I). lncRNA, long noncoding RNA; ILLS, immunologic 
lncRNA signature; TCGA-LUAD, The Cancer Genome Atlas-lung adenocarcinoma; LASSO, least absolute shrinkage and selection 
operator; OS, overall survival.
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Figure 3 Evaluation of the ILLS model. (A-E) Time-dependent ROC analysis presented with the 1-, 3-, and 5-year AUCs of 0.712, 0.711, 
and 0.653 in TCGA-LUAD dataset (A); 0.886, 0.644, and 0.683 in GSE31210 data set (B); 0.785, 0.596, and 0.634 in GSE30219 data set 
(C); 0.689, 0.547, and 0.563 in GSE50081 data set (D); 0.751, 0.705, and 0.617 in GSE37745 data set (E), respectively. (F-J) The Akaike 
Information Criterion value was calculated to locate the cut-off point for the ROC curve of 1 year. (K-O) Multivariable Cox regression 
analysis of OS has shown ILLS to be an independent prognostic factor in TCGA-LUAD data set (P<0.001) (K), GSE31210 data set (P=0.010) 
(L), GSE30219 data set (P=0.013) (M), and GSE50081 data set (P=0.007) (N) but not the GSE37745 data set (P=0.088) (O). lncRNA, long 
noncoding RNA; ILLS, immunologic lncRNA signature; TCGA-LUAD, The Cancer Genome Atlas-lung adenocarcinoma; ROC, receiver 
operating characteristic; AUC, area under the curve.
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AJCC stage and TMB showed a lower level of correlation; 
however, differences in pathological TNM stage and MSI 
were nonsignificant (Figure 5B). According to the genetic 
and clinical information of the IMvigor210, the high-
risk group tended to possess a worse survival in the model 
(Figure 5C). As the risk score increased, the proportion of 
patients presenting with stable disease or progressive disease 
increased, and patients at low risk were more likely to have 
a complete or partial response status (P<0.01) (Figure 5D). 
Overall, these results indicate that ILLS can, to a degree, 
be an alternative immunotherapy biomarker and assist in 
selecting patients sensitive to immune checkpoint inhibitors 
(ICIs). Immunogenicity quantification suggested that for 
PD-1/PD-L1/PD-L2, CTLA4, and PD1/PD-L1/PD-
L2 plus CTLA4 blockers, an ideal immunotherapy benefit 
could be achieved in the low-risk group, especially for 
CTLA-4 blockers (P<0.01), while for the total IPS, there 
was no significant response difference between the 2 groups 
(Figure 5E-5H). Pharmacological analysis revealed 15 
chemotherapeutic medicines that showed a high correlation 
between ILLS expression and drug sensitivity. The higher 
the expression of ILLS, the more sensitive tumor cells were 
to fluphenazine, imiquimod, megestrol acetate, dacarbazine, 
denileukin diftitox, hydroxyurea, alectinib, and fludarabine 
as feasible alternative treatments. As ILLS expression 
increased, irofulven, carmustine, etoposide, raloxifene, 
bortezomib, arsenic trioxide, and trametinib appeared to be 
less effective in patients with LUAD (all P values <0.001) 
(Figure 5I-5W).

Discussion

LUAD is characterized by high interpatient and intratumor 
heterogeneity, and multiple gene mutations and epigenetic 
changes drive the tumor development and progression. 
It has been identified that within the TIME, oncogenic 
processes and histopathology heterogeneity are main 
drivers for tumor evolution (14-16). Intratumor lncRNA 
also leads to diverse TIME (7). As there is a lack of accurate 
predictors concerning the effect of continuous treatment, 
we conducted this study in order to derive a consensus 
signature based on TIME characteristics with the added 
aim of accurately identifying high-risk groups to facilitate 
clinical decision-making.

In this study, RNA-seq profiles and clinical information 
were mined from publicly available data sets. Depending 
on the immune status of samples from TCGA-LUAD data 
set, we successively used clustering analysis, WGCNA, and 
the integrated ImmLnc algorithm, and then combined the 
extracted immune-related lncRNA with survival data. Via 
integrative approaches, we ultimately derived 9 lncRNAs for 
the consensus ILLS. After repeated cross-domain validation 
and transverse comparison, the stability and superiority 
of ILLS was confirmed. However, with treatment being 
the correct solution, in the end, testing the ability for 
immunotherapy response prediction and discovering 
potential therapeutic agents can assist in bringing fresh 
insight into tailoring regiments for patients at high risk.

The lncRNAs can function as ceRNAs by competitively 
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binding to shared sequences of microRNAs (miRNAs) and 
affecting the expression levels of their downstream mRNA, 
Reducing/enhancing its expression, which form lncRNA-
miRNA-mRNA interactions or ceRNA networks. This 
dual relationship is important in affecting proliferation and 
metastasis of cancer cells (17,18).

LINC01138 has proven to be a promising prognostic 
indicator via the LINC01138-PRMT5 axis in hepatocellular 
carcinoma and was concluded to be a risk factor driving 
malignancies in patients with LUAD (19,20). Through 
in vivo and in vitro assays, LPP-AS2 was assessed to be an 
oncogene to modulate the downstream protein of EGFR, 
promoting glioma tumorigenesis via a miR-7-5p/EGFR/
PI3K/AKT/c-MYC feedback loop; likewise, a higher 
expression of LPP-AS2 was found to be associated with a 
poorer prognosis in LUAD (21,22). In addition, lncRNA 
LINC00857 was shown to have a prominent role in lung 
cancer progression. For example, silencing of LINC00857 
can mediate the proliferation of lung cancer cells through 
inducing cell apoptosis and autophagy (23). In recent years, 
accumulating research has demonstrated the oncogenic 
role of lncRNA UCA1 in a wide array of human cancer cell 
lines and patient samples, including those of LUAD (24). 
A high index of LINC01116 expression was associated with 
gefitinib resistance in non-small cell lung cancer (NSCLC) 
and unfavorable outcomes (25). GAS6-AS1 was also shown 
to serve as a tumor suppressor in LUAD, mainly regulating 
the reprogramming of glucose metabolism (26). AF186192.1-
associated cancer research has only been conducted in 
LUAD and has been identified as a methylation driving 
mechanism (27). An in-depth study showed that the 
regulatory mechanism of NNT-AS1  is as a miRNA 
sponge, critically contributing to the proliferation, invasion, 
metastasis, and apoptosis of lung cancer cells (28). Within the 
immune-editing theory approach, lncRNA LINC00996 was 
identified as a potential therapeutic target in LUAD (29). In 
the present study, the most highly expressed biomarkers in 
the ILLS—whether acting as oncogenes or antioncogenes 
in tumor progression—consistently followed the expected 
prognostic trends in accordance with the general findings 
of basic experiments. It is concerning that although some 
researchers have already engaged in the investigation of 
biomarkers with diverse depth and scope, little is known 
about their immunity and immunotherapy. It is hoped that 
more relevant explorations will be carried out in this high-
potential area in the future.

Despite frequent clinical application, ICI therapy still 
produces a limited response rate, and thus achieving the 

accurate recognition of target patients is highly desirable. 
In the context of immunotherapy, ILLS can contribute to 
identifying those patients with satisfactory response, which 
facilitates clinical guiding in applying anti-PD-1 and anti-
CTLA4 drug to a certain degree. Functional genomic 
experiments have suggested that LUAD and urothelial 
carcinoma of the bladder have a similar distribution of 
certain immune cells, such as macrophages, with the same 
survival trend occurring in patients with high a proportion 
CD8+ T cells and a low proportion of macrophages (30,31). 
There also have confirmed common immunomodulatory 
molecules and similar patterns in overall  immune 
response between them. Therefore, we tried to verify the 
efficacy prediction of ILLS for immunotherapy through 
the IMvirgor210 data set with the aim of providing a 
reference for preclinical studies (32,33). In general, ILLS 
demonstrated the ability to predict immunotherapy in 
terms of immunogenicity and response results. Up to now, 
drug resistance remains a huge challenge in the reason 
of causing therapeutic failure (34). The effect of some 
immunosuppressors such as Carmustine, Dacarbazine, 
Etoposide can also be predicted based on ILLS expression.

The immune infiltration within TME was increasingly 
recognized to be associated with immunotherapy response 
and patient prognosis among LUAD and other cancers (35).  
Within TIME, the crosstalk between tumor and infiltrating 
immune cells is active and involves the whole process 
of immunotherapy (36). In NSCLC, a meta-analysis 
summarized that the CD8+ T cell subtype was the best 
predictor of survival (37). CD4+ T helper cells promote 
the priming and effector and memory functions of CD8+ 
cytotoxic T cells (38). Tumor-associated macrophages 
display suppressive activity to blunt CD8+ T cells (39). 
Dendritic cells are powerful antigen-presenting cells that 
are critical for initiating T-cell responses (40). Natural 
killer cells are crucial for immunosurveillance, and higher 
susceptibility to cancer and metastasis arises when they are 
diminished (41). The desired distribution of infiltrating 
immune cells between the high- and low-risk groups in this 
study can explain this consistency of the immunotherapy in 
previous findings.

Several large prospective clinical trials have found 
that patients with high TMB levels contributed to 
improving response to immunotherapy and survival, 
and this observation of benefit extended to cases with all 
levels of PD-L1 expression (42-44). Multi-aspect analyses 
are beneficial in fostering a better understanding of the 
mechanisms of ILLS that are essential for follow-up studies 



Journal of Thoracic Disease, Vol 15, No 4 April 2023 1835

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(4):1823-1837 | https://dx.doi.org/10.21037/jtd-23-372

and clinical guidance. Whole-exome sequencing has 
clarified the relationship between overall TMB/NAL and 
ICI response in NSCLC (45). TMB and NAL have been 
strongly correlated, with high TMB tumors co-occurring 
with increased levels of immunogenic neoantigens; however, 
only a handful of lung cancers are MSI-high and have DNA 
mismatch repair (46-48). Moreover, patients with near-
high–MSI have been found to have high TMB, harboring 
higher NAL originating from an elevated genome-wide 
mutation rate (49,50). In short, the role of MSI in lung 
cancer is less certain, but a high TMB and NAL tend to be 
associated with the desired response to ICIs (51), which is 
in line with the findings our study.

Some limitations to this study should be noted. First, 
we employed a retrospective study, and although several 
measures were taken to guarantee the clinical significance 
of ILLS, further experimental data are needed to support 
our findings, which presently may not be enough to attract 
clinical translation and implementation. Second, the 
relationship between ILLS and immunotherapy is complex. 
The available public data sets were insufficient to allow us to 
clarify the relationship between ILLS and immunotherapy. 
Third, the mechanism of immune function relating to 
tumorigenesis and treatment is unclear, and, although our 
understanding of the immune cellular infiltration within 
TIME used to derive the ILLS is not comprehensive, the 
result was satisfactory.

Conclusions

Following a mass of bioinformatics computing and 
algorithm deduction, we derived a superior and stable 
tool, the ILLS. This ILLS model can help to predict the 
prognosis and enhance immunotherapy by personalizing 
treatment for patients with LUAD.
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