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Background: Asthma has brought great economic burdens to community. Artesunate has shown certain 
effects on asthma experimentally, but relevant mechanisms are not clear. This study aims to systemically 
evaluate the efficacy and safety of artesunate and its metabolite, dihydroartemisinin (DHA), in asthma, based 
on network pharmacology and molecular docking.
Methods: All the information before March 1st, 2022 was collected. We evaluated the physicochemistry and 
Adsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of artesunate and DHA 
by SwissADME and ADMETlab, identified targets of artesunate and DHA from SwissTargetPrediction and 
PharmMapper, and acquired genes participating in asthma from GeneCards and DisGeNET. Overlapping 
targets and hub genes were identified with Maximal Clique Centrality (MCC) algorithm in Cytoscape, 
cytoHubba. Enrichment analyses were performed to analyze the potential mechanisms and target sites. 
Molecular docking was utilized to investigate the receptor-ligand interactions on Autodock Vina and 
visualized in PyMOL. 
Results: Artesunate and DHA showed acceptable druglikeness and safety for clinical application. A total 
of 282 targets of compounds and 7,997 targets of asthma were identified. 172 overlapping targets were 
visualized in a compound-target and protein-protein interaction network. Biofunction analysis showed 
the clustering associations with biosynthesis and metabolism of and response to steroid hormone, immune 
and inflammatory response, airway hyperresponsiveness, airway remodeling and cell survival and death 
regulation. CCND1, CASP3, MTOR, ERBB2, MAPK3, EGFR, MAP2K1, PTGS2, JAK2, and CASP8 were 
identified as the hub targets. Molecular docking indicated 10 stable receptor-ligand interactions, except for 
CASP3. 
Conclusions: Artesunate has the potential to be a potent and safe anti-asthmatic agent based on diverse 
therapeutic mechanisms and acceptable safety.
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Introduction

Bronchial asthma is a common chronic respiratory disorders 
affecting approximately 358 million people around the 
world (1), characterized by variable presentations of 
wheeze, shortness of breath, cough, and chest tightness, 
in correlation with chronic airway inflammation, 
reversible expiratory airflow limitation, and airway 
hyperresponsiveness (AHR) (2). Severe asthma occurred 
in more than 10% of adults and 2.5% of children with 
asthma, causing impaired quality of life and increased risk of 
persistent airflow limitation, exacerbations, hospitalization 
and death (3), leading to intensified treatment such as 
an additional dose, frequency or duration of inhaled 
glucocorticoids, maintenance oral glucocorticoid, or 
biologic therapies, etc. (2,4,5). All the intensified therapies 
may bring about various adverse events and heavy 
economic burdens, such as infection (e.g., herpes zoster and 
parasites), neoplasm, obesity or metabolic disorders, asthma 
worsening, nasopharyngitis, etc. (5-8). Therefore, a cost-
effective and safe drug with multiple targets is needed for 
anti-asthmatic treatment to comprehensively control and 
relieve asthma and, meanwhile, to alleviate the economic 
burdens of patients.

Artesunate, a semi-synthetic derivative of artemisinin 
which is isolated from Artemisia Annua L., a traditional 

Chinese herb, has been the first-line treatment against 
plasmodium falciparum malaria for decades (Figure 1A),  
which turns into dihydroartemisinin (DHA), the active 
metabolite, in a short time in vivo (Figure 1B). Recently, 
multiple experiments have been reported in the potential 
therapeutical effects of artesunate in asthma, including 
reversing airway hypersensitivity (9,10) and glucocorticoid 
insensitivity (11), ameliorating inflammation (12), 
preventing mast cell degranulation (13), and inducing 
eosinophil death (14-16), etc. However, there still remains a 
lack of comprehensive analysis and evaluation of artesunate 
and DHA in potential anti-asthmatic pharmacological 
mechanisms and toxicology in human studies.

In this study, we explore the potential mechanisms 
and evaluate the safety of artesunate and its metabolite, 
DHA, in asthma based on network pharmacology 
and bioinformatic analysis. We present the following 
article in accordance with the STROBE reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-1437/rc).

Methods 

This study was designed based on evaluating properties of 
artesunate and DHA, identifying targets of both compounds 
and asthma, screening out the overlapping targets, 
establishing a compound-target network and protein-
protein interaction network, and conducting enrichment 
analysis and molecular docking. The treatment of artesunate 
and its metabolite in asthma was regarded effective, if there 
were effective interactions founded between hub targets and 
compounds.

Property evaluation

SMILES of artesunate and DHA were obtained from 
PubChem. Propertie of both compounds were evaluated 
on the SwissADME (http://www.swissadme.ch) (17,18) 
and ADMETlab 2.0 (https://admetmesh.scbdd.com) (19), 
including properties like physicochemistry properties, 
absorption, distribution, metabolism, excretion and 
toxicology to evaluate their druglikeness and safety. 
SwissADME is the most commonly used platform to 
understand the ADME characteristics of chemicals, while 
the ADMETlab can supplement some information mainly 
in toxicology such as toxicity, toxicophore rules, and 
more medicinal chemistry rules with a faster computation 
time (19). Combined materials from both platforms can 
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provide a more comprehensive evaluations for both study 
molecules.

Targets of artesunate and its metabolite

Targets of artesunate and DHA were predicted from 
SwissTargetPrediction (http://swisstargetprediction.
ch) (20,21) and PharmMapper (http://lilab-ecust.cn/
pharmmapper/index.html) (22-24) by SMILES and 
3-dimensional structure (both downloaded from PubChem), 
respectively. All potential targets were combined as a union 
set for more accurate results.

Targets of asthma

Targets of asthma were acquired from GeneCards (https://
www.genecards.org) (25) and DisGeNET (https://disgenet.
org) (26) databases by the term of ‘asthma’. All targets were 
combined as a union set for further analysis.

Compound-target network

To identify the relationship between common targets and 
compounds, compound-target network was constructed. 
Common targets of compounds and asthma were obtained 
by overlapping the potential target set of artesunate and 
DHA and the target set of asthma and visualized by the 
Venndiagram package in R version 4.1.2. Corresponding 
compound-target network was constructed by Cytoscape 
3.8.0 where larger symbols were used to represent the 
common targets of both artesunate and DHA (27).

Protein-protein interaction network 

To explore the interaction between the common genes, 

protein-protein interaction (PPI) network was established 
by String (https://cn.string-db.org) with the confidence 
of 0.4 and visualized in Cytoscape 3.8.0, where targets 
were rearranged with degree and displayed with gradient 
color and size based on the degree. The Maximal Clique 
Centrality (MCC) algorithm, which was regarded as the 
most effective method to find hub nodes, was used to 
identify the top 10 hub genes by cytoHubba, a plugin in 
Cytoscape 3.8.0 (27).

Enrichment analysis

Enrichment analyses were conducted on Metascape (https://
metascape.org), including Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway, Reactome Gene Set 
pathway, Gene Ontology (GO) Biological Process (GOBP), 
GO Molecular Function (GOMF), and GO Cellular 
Component (GOCC), with a minimal overlap of 3, a P 
value cutoff of 0.01, and minimal enrichment of 1.5 (28). 
Corresponding bubble plots were made in R version 4.1.2 
where the bubble size represented the gene count and the 
color represented −lgP. 

Molecular docking 

Ten hub genes were identified as mentioned above and 
used for further molecular docking to investigate the 
interaction between the drugs and the targets. First, three-
dimensional structures of hub proteins without or with 
a ligand similar to the study compounds were obtained 
from RCSB Protein Data Bank (PDB, https://www.rcsb.
org) (29-31). Structures of artesunate and DHA were 
downloaded from Traditional Chinese Medicine Systems 
Pharmacology Database and Analysis Platform (TCMSP, 
https://old.tcmsp-e.com/index.php) (32).  Second, 

A B

Figure 1 Structures of artesunate (A) and DHA (B). DHA, dihydroartemisinin.
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through AutoDock Tools 1.5.7, water was deleted and 
all hydrogens were added for proteins, and all hydrogens 
were added and charge balance and rotatable bonds were 
detected for each molecule. Third, the whole protein or, 
at least, the receptor active center was enclosed in a grid 
for further dockings. Forth, the semi-flexible dockings of 
receptors and corresponding ligands were performed by 
AutoDock Vina with default settings. Then the optimal 
docking structures were output based on the over-all best 
vina energy (less than −4 kcal/mol, based on the rule of 
thumb), hydrogen bonds and active pockets of original 
ligands to select the most stable receptor-ligand complex. 
Finally, the results were visualized including interacting 
residues and hydrogen bonds in the PyMOL Molecular 
Graphics System (Version 2.5.2, Schrödinger, LLC).

Results

Property evaluation of Artesunate and DHA

Canonic SMILES of artesunate [CID: 6917864; CC1CC 
C2C(C(OC3C24C1CCC(O3)(OO4)C)OC(=O)CCC(=O) 
O)C) and DHA (CID: 3000518; CC1CCC2C(C(OC3C24 
C1CCC(O3)(OO4)C)O)C] were acquired from PubChem. 

Properties of artesunate and DHA obtained from 
SwissADME and ADMETlab indicated that both 
compounds had desirable performances for clinical 
application (Figure 2 and Table 1). Two molecules are both 
suitable to be drugs according to various druglikeness 
evaluation criteria, such as Lipinski rules, Ghose rules, 
Veber rules, Egan rules, Muegge rules, Bioavailability 
Score, Pfizer rules, GSK rules, GoldenTriangle rules, 
etc. High GI absorption indicated their desirable oral 
bioavailability. Safety and frequent administration was 
suggested based on the high clearance and relatively short 
half-life. Toxicology evaluations showed adverse events that 
needed special attention in further clinical practice mainly 
involved hepatotoxicity (H-HT and DILI), lung injury 
(respiratory toxicology), mutagenicity (AMES toxicity) and 
carcinogenicity (Table 1). 

Targets of artesunate and DHA

For artesunate, 86 target genes were obtained from 
SwissTargetPrediction, and 67 from PharmMapper, 
while for DHA, 97 potential targets were acquired from 
SwissTargetPrediction, and 67 from PharmMapper. 
After removing the duplicated data, we got a union set of  

282 targets.

Targets of asthma

When searching for the potential therapeutical targets of 
asthma, we obtained 7,490 targets from GeneCards, and 
2,096 targets from DisGeNET. A total of 7,997 targets 
were acquired based on both databases.

Compound-target network

A total of 172 overlapping targets were identified between 
the molecules and asthma (Figure 3). A compound-target 
network was established with 23 common target genes 
between artesunate and DHA (Figure 4), including CYP1A2, 
HMGCR, EDNRB, EDNRA, CASP1, CASP7, MAPK1, 
CASP8, PYGL, MDM2, MAPK14, MAPK10, MMP1, 
MMP2, PIK3CA, OPRM1, KDR, CDK2, MMP9, MMP8, 
ADORA2B, CTDSP2, and XRCC6.

Protein-protein interaction network and Hub genes

A protein-protein interaction (PPI) network was constructed 
with the total 172 common targets and visualized in 
Cytoscape. Genes were rearranged with gradient sizes and 
colors based on the degrees (Figure 5). After calculating with 
MCC algorithm, we got 10 hub genes, namely CCND1, 
CASP3, MTOR, ERBB2, MAPK3, EGFR, MAP2K1, PTGS2, 
JAK2, CASP8 (see Table 2 and Figure 6). 

Biofunction enrichment analysis

In order to investigate the potential therapeutic mechanisms 
that artesunate and DHA may be involved in, we conducted 
different enrichment analyses to explore the possible 
pathological and physiological processes, molecular 
functions and target cell components including KEGG 
pathway, Reactome Gene Sets, GO biological process, GO 
molecular function and GO cell component. 

Top 20 results were ranked in Figure 7. In Figure 7A-7C,  
artesunate and its metabolite were found participating in 
various pathways of the development and improvement 
of asthma. The investigated molecules may synergize 
the therapeutic effects of glucocortoid by enhancing 
the glucocorticoid sensitivity through regulating the 
biosynthesis and metabolism of and response to steroids. 
Meanwhile, they might play a role in alleviating the 
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Figure 2 Bioavailability radar plots of artesunate (A,C) and DHA (B,D). The radar plots showed the suitable physicochemical space of 
oral bioavailability of artesunate and DHA. The pink (A,B) and yellow (C,D) area represents the optimal range of each compound for each 
property. LIPO, lipophilicity; POLAR, polarity; INSOLU, insolubility; INSATU, unsaturation; FLEX, flexibility; MW, molecular weight; 
nRig, number of rigid bonds; fChar, formal charge; nHet, number of heteroatoms; MaxRing, number of atoms in the biggest ring; nRing, 
number of rings; nRot, number of rotatable bonds; TPSA, topological polar surface area; nHD, number of hydrogen bond donors; nHA, 
number of hydrogen bond acceptors; LogD, logarithm of the n-octanol/water distribution coefficient; LogS, logarithm of aqueous solubility 
value; LogP, logarithm of the n-octanol/water distribution coefficient; DHA, dihydroartemisinin.

Table 1 ADMET evaluation of artesunate and DHA

Properties Indicator Artesunate DHA

Physicochemistry properties MW 384.42 284.35

Rotatable bonds 5 0

H-bond acceptors 8 5

H-bond donors 1 1

TPSA 100.52 57.15

Consensus Log Po/w 2.07 2.25

Water Solubility Soluble Soluble

Table 1 (continued)

A

C

B

D

LIPO LIPO

SIZE SIZE

POLAR POLAR

INSOLU

MW MW
nRig nRig

fChar fChar

nHet nHet

MaxRing MaxRing

nRing nRing

nRot nRotTPSA TPSA

nHD nHD

nHA nHA

LogD LogD

LogS LogS

LogP LogP

Upper limit Upper limitLower limit Lower limitCompound properties Compound properties

INSOLU

INSATU INSATU

FLEX
FLEX
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Table 1 (continued)

Properties Indicator Artesunate DHA

Druglikeness Lipinski violations 0 0

Ghose violations 0 0

Veber violations 0 0

Egan violations 0 0

Muegge violations 0 0

Bioavailability score 0.56 0.55

Pfizer Accepted Accepted

GSK Accepted Accepted

GoldenTriangle Accepted Accepted

Absorption GI absorption High High

Pgp-substrate No No

Distribution BBB permeant No Yes

Log Kp (skin permeation, cm/s) −7.31 −5.91

PPB 60.43% 85.44%

Metabolism CYP1A2 inhibitor No Yes

CYP2C19 inhibitor No No

Metabolism CYP2C9 inhibitor No No

CYP2D6 inhibitor No No

CYP3A4 inhibitor No No

Excretion CL (mL/min/kg) 14.450 15.838

T1/2 score 0.549 0.181

Toxicology PAINS alerts 0 0

Brenk alerts Peroxide Peroxide

Leadlikeness violations MW>350 0

Synthetic accessibility 6.67 6.59

Toxicophores Peroxide Peroxide

SureChEMBL Peroxide Peroxide

Nongenotoxic carcinogenicity 0 0

Genotoxic carcinogenicity rule 0 0

hERG blockers −−− −

H-HT +++ +++

DILI ++ −

AMES toxicity +++ ++

FDAMDD −−− −−

Skin sensitivity − −−

Carcinogenicity + ++

Eye corrosion −−− −−−

Eye irritation −−− −−−

Respiratory toxicology ++ +++

DHA, dihydroartemisinin; MW, molecular weight; TPSA, topological polar surface area; GSK, GlaxoSmithKline; GI, gastrointestinal; BBB, 
blood-brain barrier; PPB, plasma protein binding; H-HT, human hepatotoxicity; DILI, drug-induced liver injury; AMES, Ames test for 
mutagenicity; FDAMDD, Food and Drug Administration maximum recommended daily dose.
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Figure 3 Common genes between drugs (artesunate and DHA) and asthma. (A) The blue points represented all the 7,997 genes of asthma 
obtained from GeneCards and DisGeNET, while the pink points represented the 172 genes which may be targeted by artesunate and 
DHA. (B) The Venn diagram showed the 172 overlapping targets between asthma and both compounds (i.e., artesunate and DHA). DHA, 
dihydroartemisinin.

Figure 4 Compound-target network. A total of 172 overlapping genes between asthma and molecules (artesunate and DHA) were shown in 
pink diamonds. Among these, 23 common targets of artesunate and DHA were emphasized with larger font in deeper background and larger 
diamonds. DHA, dihydroartemisinin.

A B

Asthma

Compounds

7,825 172 110
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Figure 5 Protein-protein interaction network of 172 overlapping genes between artesunate and DHA and asthma. Targets were 
presented with gene symbols in gradient fonts, background sizes and colors from yellow to red according to the interaction degree. DHA, 
dihydroartemisinin.

airway hyperresponsiveness (AHR) through regulating the 
response to multiple internal and external stimuli, such 
as stress, hormone, lipopolysaccharide (LPS), inorganic 
substance, decreased oxygen levels, etc. What’s more, these 
two compounds may modulate immunity and inflammation 
responses through interleukin signaling, neuroactive ligand-
receptor interaction, NF-kappa B signaling pathway, Fc 
epsilon receptor (FCERI) signaling, MAPK3 (ERK1) 
activation, Toll-like receptor cascades, hematopoietic or 
lymphoid organ development, serotonergic synapse, etc. 

In addition, the airway remodeling in the development of 
chronic asthma may be reversed by artesunate (and DHA) 
through affecting the gland development and extracellular 
matrix organization. Furthermore, diverse regulations in 
cell survival and death may affect multiple participant cells 
in asthma, such as increased and activated eosinophils and 
proliferative smooth muscle cells.

Multiple molecular functions were found by GO 
analysis, such as eicosanoid receptor activity, protein serine/
threonine/tyrosine kinase activity, nuclear receptor activity, 
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etc., which were associated with steroid hormone receptor 
activity, cell survival and death, and inflammation response, 
etc. (Figure 7D). Main cell components the overlapping 
genes cluster included membrane raft, vesicle lumen, and 
leading edge membrane (Figure 7E).

Molecular docking

Further, we performed molecular docking to figure out 
the interaction between the small molecules (artesunate 
and DHA) and hub proteins so as to screen most potential 

targets and corresponding binding sites. PDB database was 
used to acquire hub target proteins without or with ligands 
of similar structures to corresponding compounds, that is, 
G1/S-specific cyclin-D1 (gene symbol: CCND1; PDB ID: 
6P8E) (33), Caspase-3 (gene symbol: CASP3; PDB ID: 
1RHU) (34), mTOR (gene symbol: MTOR; PDB ID: 4JT5) 
(35), ErbB2 (gene symbol: ERBB2; PDB ID: 3PP0) (36), 
Mitogen-activated protein kinase (MAPK3; gene symbol: 
MAPK3; PDB ID: 2ZOQ) (37), epidermal growth factor 
receptor (EGFR; gene symbol: EGFR; PDB ID: 1M17) 
(38), dual specificity mitogen-activated protein kinase 
kinase 1 (gene symbol: MAP2K1; PDB ID: 3ZLW) (39), 
Prostaglandin G/H synthase 2 (PGHS-2; gene symbol: 
PTGS2; PDB ID: 5KIR) (40), Janus kinase 2 (JAK-2; gene 
symbol: JAK2; PDB ID: 3KRR) (41), and Caspase-8 (gene 
symbol: CASP8; PDB ID: 4ZBW) (42). Structures of 
artesunate (MOL007434) and DHA (MOL007425) were 
obtained by TCMSP. 

Through AutoDock Vina, 10 optimal stable interactions 
between 9 targets (except caspase-3) and corresponding 
compounds were identified based on the vina binding 
energy value, hydrogen bond formation and confirmed 
active pockets for original ligands (Figure 8). Corresponding 
binding energy values were presented and ranked by binding 
energy in Table 3, namely PGHS-2-DHA (−8.4 kcal/mol), 
MAPK3-DHA (−7.6 kcal/mol), JAK2-DHA (−7.6 kcal/mol),  
mTOR-DHA (−7.3 kcal/mol) ,  CASP8-Artesunate  
(−7.3 kcal/mol), CASP8-DHA (−6.5 kcal/mol), ErbB2-DHA 
(−6.3 kcal/mol), MAP2K1-DHA (−5.9 kcal/mol), CCND1-
Artesunate (−5.8 kcal/mol), and EGFR-DHA (−4.7 kcal/mol). 
All the 10 dockings indicated relatively stable interactions 
between the receptor and the corresponding ligands.

Discussion

Druglikeness and safety evaluation

In this study, we made a preliminary evaluation of 
artesunate (as well as its active metabolite, DHA) in 
therapeutic mechanisms and safety in treating asthma. 
Properties in physicochemistry, absorption, distribution, 
metabolism, excretion and toxicology showed that 
artesunate is a safe candidate for respiratory disorders 
with desirable druglikeness, acceptable oral bioavailability, 
quick metabolism and excretion, and relatively low toxicity. 
As for the alerts about the respiratory toxicity, previous 
studies have shown that artesunate showed no cytotoxicity 
on healthy, non-diseased cells, including human normal 
lung epithelial cells (BEAS-2B) (43), normal human lung 

Figure 6 Interaction network of top 10 hub genes. Hub genes 
were obtained and ranked with gradient colors by MCC algorithm 
in cytoHubba of Cytoscape. Targets were presented with gene 
symbols in gradient colors from yellow to red according to the 
score. MCC, Maximal Clique Centrality.

Table 2 Top10 hub genes

Rank Targets Score
Corresponding 

compounds

1 CCND1 9.72E+10 Artesunate

2 CASP3 9.71E+10 Artesunate

3 MTOR 9.71E+10 DHA

4 ERBB2 9.66E+10 DHA

5 MAPK3 9.66E+10 DHA

6 EGFR 9.65E+10 DHA

7 MAP2K1 9.64E+10 DHA

8 PTGS2 9.63E+10 DHA

9 JAK2 9.56E+10 DHA

10 CASP8 9.56E+10 Both

DHA, dihydroartemisinin.
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Figure 7 Enrichment analyses of overlapping genes between artesunate and DHA and asthma, including KEGG pathway, Reactome Gene 
Sets, GOBP, GOMF and GOCC. (A-C) Analyses indicated potential pathways and biological processes that artesunate and DHA may 
be involved in to treat asthma, like response to and metabolism of steroids, response to various stimuli, interleukin-involved signaling, 
cell survival and death regulation, gland development, and hematopoietic and lymphoid organ development, etc. (D-E) Analyses showed 
potential molecular functions and targeted cellular sites of artesunate and DHA in asthma. DHA, dihydroartemisinin.
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fibroblast (WI-38) (44,45), non-cancerous human dermal 
fibroblasts (CCD-1108Sk) (46), and normal hepatic cells 
(L-02) (47), providing more reliable evidence on its safety 
in clinical application. 

Biofunctional prediction

Further, we explored the potential therapeutic mechanisms 

of artesunate based on network pharmacology, a powerful 
method to obtain a systemic understanding of chemicals. 
In this study, actually, we searched SwissTargetPrediction, 
PharmMapper, Drugbank (https://go.drugbank.com) and 
TCMSP databases for the potential targets, but no targets 
of homo sapiens were found in the latter two platforms. 
Thus, 282 targets of artesunate and DHA were acquired. 
Besides, 7,997 genes were obtained that play a role in 

Figure 8 Molecular dockings of hub receptors and compounds. Optimal interaction complex structures with hydrogen bonds were ranked 
by the binding energy values, namely, (A) DHA and PGHS-2 (−8.4 kcal/mol), (B) DHA and MAPK3 (−7.6 kcal/mol), (C) DHA and JAK2 
(−0.6 kcal/mol), (D) DHA and mTOR (−7.3 kcal/mol), (E) Artesunate and CASP8 (−7.3 kcal/mol), (F) DHA and CASP8 (−6.5 kcal/mol), (G) 
DHA and ErbB2 (−6.3 kcal/mol), (H) DHA and MAP2K1 (−5.9 kcal/mol), (I) Artesunate and CCND1 (−5.8 kcal/mol), and (J) DHA and 
EGFR (−4.7 kcal/mol). Each indicated a stable interaction between the receptor and the corresponding ligand. DHA, dihydroartemisinin.
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bronchial asthma from GeneCards and DisGeNET. Finally, 
172 intersected targets were identified by overlapping these 
two gene sets.

According to the biofunction analysis, artesunate and 
DHA showed great potential in preventing, controlling 
and rel ieving bronchial  asthma through multiple 
pathophysiologic and therapeutic processes, including 
biosynthesis of, metabolism of and response to steroid 
hormone, immune and inflammatory response, airway 
hyperresponsiveness, airway remodeling and cell survival 
and death regulation. Results showed that artesunate and 
its metabolite may prevent the occurence of asthma by 
regulating the internal environment through immune and 
inflammatory pathways, the response to external stimuli, 
and the generation and survival of leukocytes. Further 
experiments are needed to figure out the prevention 
effects of artesunate on asthma. Moreover, such agents 
may relieve the acute exacerbations of asthma by reversing 
the airway hyperresponsiveness and inflammation. An 
animal experiment have proved that artesunate could 
decrease the airway resistance and the contraction of 
airway smooth cells by lowering the intracellular calcium 
ion (Ca2+) concentration through binding with G protein 
coupled bitter taste receptors (TAS2Rs) in the ASMCs (9). 
More in vivo and in vitro experiments are needed on the 
effects of the potential targets identified in this in-silico 
study. Additionally, during the conventional treatment of 
asthma, particularly difficult-to-treat asthma, artesunate was 

predicted to play a special role in modulating biosynthesis 
of, metabolism of and response to glucocorticoid so as 
to enhance the therapeutic effects and reduce the severe 
adverse effects of high-dose and long-term glucocorticoid. 
Our research team has found that artesunate could reverse 
CSE-induced glucocorticoid insensitivity and restored 
HDAC2 deactivation induced by CSE (11). What’s more, 
considering that cell cycle arrest and cell death induction 
are the main clustering functions in this study and, 
meanwhile, have been proved before in multiple oncologic 
studies, including apoptosis, autophagy, ferroptosis, etc. 
(44,46,48-53), combined with the development of asthma, 
we deduced that artesunate and its metabolite could 
alleviating asthma by decreasing the eosinophil count 
and smooth muscle count in airways. Relative studies 
performed by our team and others have partially proved 
the hypothesis (14-16), but complete explanations in 
detail are still needed. Besides, artesunate may function in 
suppressing the chronic progression of asthma by inhibiting 
airway remodeling through affecting extracellular matrix 
organization and smooth cell growth and proliferation. In 
an in-vitro experiment on primary human cultured airway 
smooth muscle cells (ASMC), proliferation of ASMCs and 
subsequent inflammation and oxidative stress was inhibited 
by artesunate through PI3K/Akt/p70S6K and p42/p44 
mitogen-activated protein kinases (MAPK) pathways (10), 
supporting our in-silico predictions. On the other hand, 
previous studies have also found that artesunate and DHA 
could prevent mast cells from degranulation (13), indicating 
that artesunate may treat asthma through much more 
pathways than we predicted in this study. From the other 
perspective, GO molecular function and cell component 
analysis provide additional information about the target 
locations and functions in a molecular level for further wet-
lab experiments.

Receptor-ligand interaction analysis

Among the 11 topological analysis methods in the 
Cytoscape plugin, cytoHubba, MCC performs better 
than the others, which captures more essential proteins 
in the top ranked list in both high-degree and low-
degree proteins (54). Therefore, this study used MCC 
to identify the hub genes. Combined with the molecular 
docking results, 9 targets were screened out according to 
the binding energy, hydrogen bonds, and active pockets 
of the original ligands, including PGHS-2, MAPK3, 
JAK2, mTOR, CASP8, ErbB2, MAP2K1, CCND1, and 

Table 3 Binding energy of targets and compounds

Rank Targets
Corresponding 

compounds
Binding energy 

(kcal/mol)

1 PGHS-2 DHA −8

2 MAPK3 DHA −7.6

3 JAK2 DHA −7.6

4 mTOR DHA −7.3

5 CASP8 Artesunate −7.3

6 CASP8 DHA −6.5

7 ErbB2 DHA −6.3

8 MAP2K1 DHA −5.9

9 CCND1 Artesunate −5.8

10 EGFR DHA −4.7

11 CASP3 Artesunate 0

DHA, dihydroartemisinin.
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EGFR, in rank order. Among these interactions, those 
with binding energy values lower than −6 kcal/mol could 
be regarded as strong affinity with biologic activity based 
on the rule of thumb and relative analysis (55), including 
PGHS-2, MAPK3, JAK2, and mTOR with DHA, CASP8 
with artesunate and DHA, and ErbB2 with DHA. Among 
these, prostaglandin G/H synthase 2, also known as 
cyclooxygenase-2 (COX-2), always plays an essential role 
in inflammatory response (56,57) and take the primary 
responsibility for the prostaglandin production in immune 
cells (58). In asthmatic mouse models and patients, PTGS2 
and its catalyzed product, PGE2, were found being up-
regulated and associated with allergic inflammation (59-63).  
What’s more, previous studies have also indicated that 
PTGS2 regulated the activity of Th1, Th2, and Th17 cells 
(61,64,65), and PGE2 was associated with exacerbations of 
allergen-induced pulmonary inflammation (66), systemic 
inflammation (67), and IgE production (68) in vivo. 
MAPK3/ERK2 takes a significant part in the MAPK/ERK 
cascade, regulating diverse intercellular activities, such 
as transcription, translation, cytoskeletal rearrangement, 
so as to mediate cell growth, adhesion, survival and 
differentiation, etc., especially after stimuli (69-72). Studies 
suggested that MAPK3/ERK2 pathway mainly participates 
in airway remodeling during the development of asthma, 
including lung fibroblast (73) and ASMCs proliferation 
(74,75). What’s more, activation of ERK1 and ERK2 
pathways in eosinophils stimulated by IL-5 contributes to 
synthesis of leukotriene C4 in the eosinophils (76). Besides, 
these signaling pathways can induce neutrophil recruitment 
by ASMCs leading to insensitivity to glucocorticoids in 
difficult-to-control asthma (77). JAK2 was expressed most 
in the spleen and peripheral blood leukocytes, especially 
eosinophils (78). Activated by IL-5, JAK2 could promote 
eosinophil survival through anti-apoptotic effects (79-83). 
According to a clinical case series, severe asthma with blood 
hypereosinophilia was proved to be associated with JAK2 
V617F mutations (84). Serine/threonine-protein kinase 
mTOR was activated at the onset of asthma and suppressed 
during the recovery, and suppressing the mTOR pathway 
in asthmatic mice could inhibit subsequent inflammatory 
processes and normalize the balance of Th17/Treg and 
Th1/Th2 cytokines (85,86). For caspase-8, one of the 
chromosomal regions contributing to the development of 
asthma and allergic disorders was found including caspase-8, 
and further tests on its single nucleotide polymorphisms 
(SNPs) indicated an association between caspase-8 and 
the severity of AHR (as determined by PC20) in race-

specific analysis (87). Combined with its main functions in 
programmed cell death (88-91), hypothesis could be made 
that artesunate may alleviate AHR through inducing the 
programmed cell death of ASMCs. Further investigations 
are needed. ErbB-2, an epithelial growth factor (EGF) 
family receptor, was proved to be a barrier to normal 
activity and repair of airway epithelial cell repair in asthma 
(92-95). Multiple previous studies on the pathophysiological 
processes and therapeutic targets of asthma provided 
theoretical evidence for artesunate to treat asthma from 
various pathways, but, still, there need experiments and 
clinical trials to confirm them.

There are limitations in this study. First, although we 
made a comprehensive evaluation and analysis based on 
various platforms and databases from multiple aspects, the 
conclusions are, from source, based on in-silico analysis. 
Considering the inherent limitations of computational 
analysis, web-lab experiments should be conducted 
further to clarify the real mechanisms. Second, asthma is a 
heterogeneous disease with diverse clinical presentations, 
types, and severity, but we only provided a systemic analysis 
based on bronchial asthma ignoring its subtypes. According 
to the results, further analysis can be performed based on 
difficult-to-control asthma, severe asthma, allergic asthma, 
exacerbations of asthma, and chronic asthma, etc. But 
no matter which target sets are utilized for analysis, the 
results still need to be confirmed by web-lab experiments 
and clinical trials. Therefore, the potential mechanism of 
artesunate still needs more experiments to explore.

Conclusions

Artesunate has the potential to be a potent and safe anti-
asthmatic agent based on its diverse therapeutic mechanisms 
and acceptable safety in silico.
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